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Abstract. Many cache management schemes designed for mobile environments are based on invalidation reports (IRs). However, IR-based
approach suffers from long query latency and it cannot efficiently utilize the broadcast bandwidth. In this paper, we propose techniques to
address these problems. First, by replicating a small fraction of the essential information related to cache invalidation, the query latency can
be reduced. Then, we propose techniques to efficiently utilize the broadcast bandwidth based on counters associated with each data item.
Novel techniques are designed to maintain the accuracy of the counter in case of server failures, client failures, and disconnections. Extensive
simulations are provided and used to evaluate the proposed methodology. Compared to previous IR-based algorithms, the proposed solution
can significantly reduce the query latency, improve the bandwidth utilization, and effectively deal with disconnections and failures.
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1. Introduction

With the explosive growth of wireless techniques and mobile
devices such as laptops, personal digital assistants, people
with battery powered mobile devices wish to access various
kinds of services at any time any place. However, existing
wireless services are limited by the constraints of mobile envi-
ronments such as narrow bandwidth, frequent disconnections,
and limitations of the battery technology [6]. Thus, mecha-
nisms to efficiently transmit information from the server to a
massive number of clients (running on mobile devices) have
received considerable attention [2,3,7,9,13,18].

Caching frequently accessed data items on the client side
is an effective technique to improve performance in a mo-
bile environment. Average data access latency is reduced as
several data access requests can be satisfied from the local
cache thereby obviating the need for data transmission over
the scarce wireless links. However, classical cache invalida-
tion strategies may not be suitable for mobile environments
due to frequent disconnections [6,15] and high mobility of
mobile clients. It is difficult for the server to send invalidation
messages directly to the clients because they often disconnect
to conserve battery power and are frequently on the move.
For the clients, querying data servers through wireless links
for cache invalidation is much slower than wired links be-
cause of the latency of the wireless links. Also, conventional
client/server interactions cannot scale to massive numbers of
clients due to the narrow bandwidth of the wireless links.

Barbara and Imielinski [2] provide a solution which is suit-
able for mobile environments. In this approach, the server
periodically broadcasts an invalidation report (IR) in which
the changed data items are indicated. Rather than querying
the server directly regarding the validation of cached copies,
the clients can listen to these IRs over the wireless channel,
and use them to validate their local cache. The IR-based
solution is attractive because it can scale to any number of

clients who listen to the IR. However, the IR-based solution
has some major drawbacks. First, there is a long query la-
tency associated with this scheme since a client must listen to
the next IR and use the report to conclude whether its cache
is valid or not before answering a query. Hence, the average
latency of answering a query is the sum of the actual query
processing time and half of the IR interval. If the IR interval
is long, the delay may not be able to satisfy the requirements
of many clients. Second, even though some data items are
not cached by any client, the server still includes them in the
IR, thereby wasting a significant amount of bandwidth. Third,
even though many clients cache the same updated data item,
all of them have to query the server and get the data from the
server separately. Although the approach works fine for some
cold data items, which are not cached by many clients, it is
not effective for hot data items. For example, suppose a data
item is frequently accessed (cached) by 100 clients, updating
the data item once may generate 100 uplink (from the client
to the server) requests and 100 downlink (from the server to
the client) broadcasts. Obviously, it wastes a large amount of
wireless bandwidth and battery energy.

We [3] addressed the first problem with a UIR-based ap-
proach. In this approach, a small fraction of the essential in-
formation (called updated invalidation report (UIR)) related
to cache invalidation is replicated several times within an IR
interval, and hence the client can answer a query without wait-
ing until the next IR. However, if there is a cache miss, the
client still needs to wait for the data to be delivered. Thus,
both issues (query delay and bandwidth utilization) are related
to the cache hit ratio. In this paper, we address the problems
associated with the IR-based cache invalidation strategies. We
use the UIR approach to reduce the query latency, and we
propose techniques to improve the cache hit ratio. Instead of
passively waiting, clients intelligently prefetch the data that
are most likely used in the future. To help clients prefetch
the right data and efficiently utilize the broadcast bandwidth,
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counters are used. Novel techniques are designed to maintain
the accuracy of the counter in case of server failures, client
failures, and disconnections. Extensive simulations are pro-
vided and used to evaluate the proposed methodology. Com-
pared to previous IR-based algorithms, the proposed solution
can significantly reduce the query latency, improve the band-
width utilization, and effectively deal with disconnections and
failures.

The rest of the paper is organized as follows. Section 2
develops the necessary background. In section 3, we propose
techniques to efficiently utilize the wireless bandwidth and
maintain the accuracy of the counter in case of server failures,
client failures, and disconnections. Section 4 evaluates the
performance of our algorithm. Section 5 concludes the paper.

2. Preliminaries

When cache techniques are used, data consistency issues must
be addressed. The notion of data consistency is, of course, ap-
plication dependent. In database systems, data consistency is
traditionally tied to the notion of transaction serializability.
In practice, however, few applications demand or even want
full serializability, and more efforts have gone into defining
weaker forms of correctness [12]. In this paper, we use the
latest value consistency model! [1,3,11,14], which is widely
used in dissemination-based information systems. In the lat-
est value consistency model, clients must always access the
most recent value of a data item. This level of consistency
is what would arise naturally if the clients do not perform
caching and the server broadcasts only the most recent values
of items. When client caching is allowed, techniques should
be applied to maintain the latest value consistency.

2.1. The IR-based cache invalidation model

In the IR-based cache invalidation strategy, the server period-
ically broadcasts invalidation reports (IRs), which indicates
the updated data items. Note that only the server can up-
date the data. To ensure cache consistency, every client, if
active, listens to the IRs and uses these IRs to invalidate its
cache accordingly. To answer a query, the client listens to the
next IR and uses it to decide whether its cache is still valid
or not. If there is a valid cached copy of the requested data
item, the client returns the item immediately. Otherwise, it
sends a query request through the uplink. The server keeps
track of the recently updated information and broadcasts an
IR every L second. In general, a large IR can provide more
information and is more effective for cache invalidation, but a
large IR occupies a large amount of broadcast bandwidth and
the clients may need to spend more power listening to the IR
since they cannot switch to power save mode while listening.
In the following, we look at two IR-based algorithms.

I The Coda file system [16] does not follow the latest value consistency
model. It supports a much weaker consistency model to improve perfor-
mance. However, some conflicts may require manu-configuration and some
updated work may be discarded.
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2.1.1. The broadcasting timestamp (TS) scheme
The TS scheme was proposed by Barbara and Imielinski [2].
In this scheme, the server broadcasts an IR every L seconds.
The IR consists of the current timestamp 7; and a list of tuples
(dy, ty) such that t, > (T; — w - L), where d, is the data item
id, t, is the most recent update timestamp of dy, and w is
the invalidation broadcast window size. In other words, IR
contains the update history of the past w broadcast intervals.
In order to save energy, an MT may power off most of the
time and only turn on during the IR broadcast time. More-
over, an MT may be in the power off mode for a long time to
save energy, and hence the client running the MT may miss
some IRs. Since the IR includes the history of the past w
broadcast intervals, the client can still validate its cache as
long as its disconnection time is shorter than w - L. However,
if the client disconnects longer than w - L, it has to discard
the entire cached data items since it has no way to tell which
parts of the cache are valid. Since the client may need to
access some items in its cache, discarding the entire cache
may consume a large amount of wireless bandwidth in future
queries.

2.1.2. The bit sequences (BS) scheme

In the BS scheme [10], the IR consists of a sequence of bits.
Each bit represents a data item in the database. Setting the bit
to 1 means that the data item has been updated. The update
time of each data item is also included in the IR. To reduce the
length of the IR, some grouping methods are used to make one
bit coarsely represent several data items. Instead of including
one update timestamp for each data item, the BS scheme uses
one timestamp to represent a group of data items in a hier-
archical manner. Let IR be {[Bg, TS(Bo)], ..., [Bk, TS(By)]1}
where B; = 1 means that half of the data items from 0 to 2¢
at time 7S(B;) have been updated. The clients use the bit
sequences and the time-stamps to decide what data items in
their local cache should be invalidated. The scheme is very
flexible (no invalidation window size is needed) and it can be
used to deal with the long disconnection problem by carefully
arranging the bit sequence. However, since the IR represents
the data of the entire database (half of the recently updated
data items in the database if more than half data items have
been updated since the initial time), broadcasting the IR may
consume a large amount of downlink bandwidth.

Many solutions [7,10,17] are proposed to address the long
disconnection problem, and Hu et al. [7] have a good survey
of these schemes. Although different approaches [2,10] ap-
ply different techniques to construct the IR to address the long
disconnection problem, these schemes maintain cache consis-
tency by periodically broadcasting the IR. The IR-based so-
lution is attractive because it can scale to any number of MTs
who listen to the IR. However, this solution has long query
latency, since the client can only answer the query after it re-
ceives the next IR to ensure cache consistency. Hence, the
average latency of answering a query is the sum of the actual
query processing time and half of the IR interval.
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Figure 1. Reducing the query latency by replicating UIRs.

2.2. The UIR-based cache invalidation

In order to reduce the query latency, Cao [3] proposed to repli-
cate the IRs m times; that is, the IR is repeated every (1/m)th
of the IR interval. As a result, a client only needs to wait
at most (1/m)th of the IR interval before answering a query.
Hence, latency can be reduced to (1/m)th of the latency in the
previous schemes (when query processing time is not consid-
ered).

Since the IR contains a large amount of update history in-
formation, replicating the complete IR m times may consume
a large amount of broadcast bandwidth. In order to save the
broadcast bandwidth, after one IR, m — 1 updated invalida-
tion reports (UIRs) are inserted within an IR interval. Each
UIR only contains the data items that have been updated after
the last IR was broadcasted. In this way, the size of the UIR
becomes much smaller compared to that of the IR. As long as
the client downloads the most recent IR, it can use the UIR
to verify its own cache. The idea of the proposed technique
can be further explained by figure 1. In figure 1, 7; ; repre-
sents the time of the kth UIR after the ith IR. When a client
receives a query between 7;_1,1 and T;_1 2, it cannot answer
the query until 7; in the IR-based approach, but it can answer
the query at 7;_; > in the UIR-based approach. Hence, the
UIR-based approach can reduce the query latency in case of
a cache hit. However, if there is a cache miss, the client still
needs to fetch data from the server, which increases the query
latency. Next, we propose a cache management algorithm to
improve the cache hit ratio and the bandwidth utilization.

3. The counter-based cache invalidation algorithm

In this section, we present our counter-based cache invalida-
tion algorithm to reduce the query latency and improve the
bandwidth utilization.

3.1. Efficiently utilize the broadcast bandwidth by prefetching

In most previous IR-based algorithms, updating a hot data
item may generate many unnecessary uplink requests and
downlink broadcasts, and waste a large amount of wireless
bandwidth. We address the problem by asking the clients to
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prefetch data that may be used in the near future. For exam-
ple, if a client observes that the server is broadcasting a data
item which is an invalid entry2 of its local cache, it is bet-
ter to download the data; otherwise, the client may have to
send another request to the server, and the server will have to
broadcast the data again in the future.

Using broadcast list to save energy. There may be a large
number of hot data items. Broadcasting all of them may re-
quire a large amount of bandwidth. In our scheme, the server
only broadcasts the hot data items which have been updated in
the last IR interval. Note that the hot data item is only broad-
casted once after the update even though the hot data id may
appear w times in the IRs.

To save power, clients may only wake up during the IR
broadcast time, and then how to prefetch data becomes an
issue. As a solution, after broadcasting the IR, the server first
broadcasts the id list (Lpcagt) of the data items whose real data
will be broadcasted next, and then broadcasts the real data of
the data items in the id list. Each client should listen to the
IR if it is not disconnected. At the end of the IR, the client
downloads the id list Lyt and finds out when the interested
data will come, and wakes up at that time to download the
data. With this approach, power can be saved since clients
stay in the doze mode most of the time; bandwidth can be
saved since the server may only need to broadcast the updated
data once.

Relying on counters to identify the hot data. The effective-
ness of the prefetch depends on how hot the broadcasted data
is. Let us assume a data item is frequently accessed (cached)
by n clients. If the server broadcasts the data after it is up-
dated, prefetching the data may save uplink and downlink
bandwidth up to a factor of n. Thus, it is very important
to identify which data should be included in the id list. We
address the problem with a counter-based scheme. In our
scheme, a counter is maintained for each data item. The
counter associated with a data item is increased by one when
a client requests the data from the server. A client may re-
place its local cache data by some new data, and the server
should decrease the counter associated with the discarded (re-
placed) cache item. To achieve this, clients need to notify
the server which data items have been discarded from their
cache. To save bandwidth, clients piggyback the discarded
data item ids when they send new data requests to the server.
When the server receives a request, it decreases the coun-
ters associated with the data items that the client will discard,
and increases the counters associated with the requested data
items.

The counter scheme has two benefits. First, based on the
counters, the server can find out which data items are hot and
broadcast their updates to the clients. For example, when a
data item has a counter larger than a system parameter cnfy,
it is a hot data item and should be broadcasted. Second, in
previous IR-based cache invalidation algorithms, the server

2 We assume cache locality exists. When cache locality does not exist, other
techniques should be used to improve the effectiveness of the prefetch.
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includes all updated data ids to the IR even though some
of them are not cached by any client. In the counter-based
scheme, when the counter associated with a data item be-
comes 0, no client is caching the data, and hence the server
does not add it to the IR even though the data is updated dur-
ing the last IR interval. In this way, broadcast bandwidth can
be saved.

3.2. Dealing with the problems of client failures and
disconnections

Due to client failures and disconnections, the counters that are
associated with the data cached by the failed MT, may become
larger than expected. Moreover, all counters may grow larger
than 0 or even larger than cnt, after some amount of time and
fail to represent the number of accessing clients. Some simple
solutions may not work. For example, we can increase cnty
based on the counter values so that there are not too many data
items which have counters larger than cnt,. If the traffic pat-
tern does not change too much; i.e., hot data is always hot and
cold data is always cold, this is a good solution. However, if
the traffic pattern changes frequently, this solution may not be
able to identify the hot data items. In the following, we pro-
vide two approaches to deal with the counter accuracy prob-
lem: the stateful server approach and the stateless server ap-
proach. Due to the disadvantages associated with the stateless
server approach, we only describe it in the appendix.

The stateful server approach. In this approach, the server
maintains a cached item register (CIR) for each client. The
CIR maintains the cached data item ids of the client. When
the server receives a data request from a client, it updates the
relevant counters and the corresponding CIR. When a client
sends a request to the server, it signs a lease with the server.
The lease specifies a lease renew time before which the client
should renew the lease with the server. If the client does not
renew the lease after the lease renew time, the server assumes
that the client has failed. Hence, the server decreases the rel-
evant counters and removes the associated CIR. Note that the
lease is automatically renewed if the client sends a new re-
quest to the server before the last lease expires.

When a client reconnects after a disconnection time longer
than w - L, it sends a request with the last received IR
timestamp (before disconnection) to the server. Based on the
timestamp and the CIR of the client, the server replies with
the valid data ids if the number of valid ids is smaller than
the number of invalid data ids, or vice versa. During a hand-
off, the client needs to notify the new base station or server
about its old base station, and the new base station will be re-
sponsible to transfer the CIR information from the old base
station.

Figure 2 shows the structure of the counter-based cache in-
validation. The server maintains a CIR for each client. Based
on the counter value and the update history, the server con-
structs and broadcasts IRs periodically. After the IR, the
server broadcasts the hot data which has been updated dur-
ing the last IR interval. Based on the received IR, the clients
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Figure 2. The counter-based cache invalidation.

validate their local cache. In case that the client cannot serve
the query from its local cache, it has to send a request to the
server, which will send back the requested data. Figures 3
and 4 show the formal descriptions of the server algorithm
and the client algorithm, respectively.

3.3. Handling server failures

When the server fails, the CIRs may be lost, and the counter
values may not be accurate. As one solution, the CIR and the
counter information can be stored on stable storage. By using
some checkpointing and recovery schemes [4,5], the recov-
ery time can be reduced at the cost of increased overhead on
normal operations. As another option, the server can recon-
struct its state by polling its clients. Since the server may lose
the information about the clients, and then it may not be able
to poll all the clients. One possible solution is to broadcast
a recovery message to notify clients to report their cache in-
formation. However, this approach has two problems. First,
since clients need to access the reverse control channel to get
the permission to use the uplink channel, it may result in lots
of collisions if they respond to the recovery message at the
same time. Second, due to disconnections, there is no guar-
antee that all clients will respond the recovery and then the
server may not be able to collect all the necessary informa-
tion about the clients. As a result, some items may be cached
by the clients, but the server may not know and will not add
the data item ids to the IR even though the data have been
updated.

Due to the problems or overhead associated with the above
solutions, we propose to apply a stepwise approach to address
the server failure problem. After the server recovers from the
crash, it broadcasts a recovery message with the timestamp of
the recovery. Then, it resets all the counters associated with
the data items. During the recovery process, it includes all
the data item ids in its IR or UIR regardless of the associated
counter value. The recovery process terminates after w IR in-
tervals. When the recovery process terminates, all processes
should be able to learn about the recovery process. If a client
disconnects longer than w IR interval, it sends a request to the
server during the reconnection, and the server can notify the
client about the recovery process. For each client, on receiv-
ing the broadcasted recovery message, it changes its status to
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Notations:

e L,w,d,,t.: defined before.
e D: the set of data items.
e cnty: the counter associated with data d.
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e cnty: the counter threshold. When cnt,, > cnt,, B, will be set to 1, and the data item will be broadcasted

after the IR.
o lease;: the time when the lease of CIR; expires.

e T,: the lease time between the server and the client. For simplicity, we use one lease time for all clients.

o Lpcast: an id list that the server will broadcast after the IR.
Lgiscard: a list of data items that will be replaced from the cache.
Lyequest: a list of new data items that the client requested from the server.

(A) Atinterval time 7;, construct IR; as follows:

IR; = {{dx,ty) | (dy € D) A (cnty > O)A(Tj — L-w <ty < Tp)};

Lpcast = {dyx | (Ti—1 <ty < T;) A (enty > cnty)};

Broadcast IR; and Lpcast; Lupdate = 95
for each d, € Lpcast do
broadcast data item d,;

Execute step B if the UIR interval reaches.

for each CIR; /* remove timeout clients */
if T; > lease;
then for each item d, € CIR; do cnt,

(B) Atinterval time 7; x, construct UIR; i as follows:

——; remove CIR;.

UIR x = {dx | (dx € D) A (cntx > 0) A (Ti0 < tx < Tip)} (0 <k < m);

for each d, € UIR; do

if d; € Lupdate then UIR; ; = UIR; i — dy; UIR; x = UIR; ; U (dy, t,).

(C) Receives a request(Lgiscard, Lrequest) from client C;:

leasej = T, + current time;
CIRj = CIRj U Lrequest — Ladiscard;
for each d; € Liequest do

cnty ++; send data to Cj; Lypdate = Lupdate U dx;

for each d, € Lgjscarg do cnty ——;
(D) Receives a reconnect(1}) from Cj:

Lyalid = Linvalid = 0;
for each d, € CIR;

if (ty > T;) then Lipyaiid = Linvalid U dx else Lyajig = Lyalig U dy;

if (| Linvatial > |Lvatidl)
then send valid(Lyaiiq) to C;
else send invalid(Lipyaiia) to C;.

Figure 3. The algorithm at the server.

recovery_begin. At this stage, when it sends a data request to
the server in case of a cache miss, it appends the local cache
status and changes its status to recovery_finish. With these
cache status information, the server can rebuild the CIR of
the client. Since clients responds to the recovery message at
different time, the number of collisions on the reserve control
channel can be significantly reduced. After w IR intervals,
the server finishes the recovery process, and switches back to
the original algorithm, where it only adds the data ids whose
counter is larger than to the IR or UIR.

4. Performance evaluation

In this section, we evaluate the performance of the proposed
algorithm, the TS algorithm [2], and the BS algorithm [10] by
extensive simulations.

4.1. The simulation model and system parameters

In order to evaluate the performance of various cache inval-
idation algorithms, we develop a simulation model which is
similar to that used in [3,10]. It consists of a single server that
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Notations:

e (Q; = {d, | dy has been queried before 7;}.

G.CAO

e ;i = {dx | dx has been queried in the interval [7; x—1, T; 1}

o ¢: the timestamp of cached data item d,.

(A) When C; receives IR; and Lipcast:

if lease; is about to expire

then send dummy data to the server to extend its lease;

if T} < (T; — L - w) then send reconnect(T;) to the server;

for each data item (d,, ¢{) in the cache
if (dy € IR) A (15 < 1)
then invalidate d,;
else 1y = T;;
for each d, € Lycag do
if d, is an invalid cache entry
then download d, into local cache;

T) = T;; if (Q; # 0) then query(Q;).
(B) Receives a UIR; i:
if missed IR; then break;

for each data item (d,, £{) in the cache

/* wait for the next IR */

if (dy € UIR; i) vV (({dx, tx) € UIR; i) A (£ < ty))

then invalidate d,;
if (Qix # ¥) then query(Q; k).
(C) Procedure query(Q)

for each d, € Q do
if d, is a valid entry in the cache

then use the cache’s value to answer the query;

else Lrequest = Lrequest U dy;

send request(Ldiscard, Lrequest) to the server; Ldiscard = ¥;

Use the received data to answer the query;

Add the received data item to local cache, if there is a need to replace one data item d, out of cache,

Ldiscard = Ldiscard + dx'

Figure 4. The algorithm at the client.

serves multiple clients. The database can only be updated by
the server while the queries are made on the client side. The
data items in the database are divided into two subsets: the
hot data subset and the cold data subset. The hot data subset
includes data items from 1 to 50 and the cold data subset in-
cludes the remaining data items of the database. Clients have
a large probability (80%) to access the data in the hot set and
a low probability (20%) to access the data in the cold set. In
the IR or UIR, the server uses 32 bits to represent a timestamp
and a data id. Including message header overhead, each data
item has 1024 bytes.

The server. The server broadcasts IRs (and UIRs in our al-
gorithm) periodically to the clients. The server assigns the
highest priority to the IR (or UIR) broadcasts, and equal pri-
orities to the rest of the messages. This strategy ensures that
the IRs (or UIRs) can always be broadcasted over the wireless

channels with the broadcast interval specified by the parame-
ter L (or L/m). All other messages are served on a FCFS
(first-come-first-serve) basis. It is possible that an IR or UIR
time interval reaches while the server is still in the middle of
broadcasting a packet. We use a scheme similar to the beacon
broadcast in IEEE 802.11 [8], where the server defers the IR
or UIR broadcast until it finishes the current packet transmis-
sion. However, the next IR or UIR should be broadcasted at
its originally scheduled time interval. To simplify the simula-
tion, the IR interval L is set to be 20 s. The UIR is replicated
four times (m = 5) within each IR interval.

The server generates a single stream of updates separated
by an exponentially distributed update inter-arrival time. All
updates are randomly distributed inside the hot data subset
and the cold data subset, while 33.3% of the updates are ap-
plied to the hot data subset. In the experiment, we assume
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Table 1
Simulation parameters.

Number of clients 100
Database size (D) 1000-90000 items

Data item size 1024 bytes
Broadcast interval (L) 20s

Broadcast bandwidth 10000 bits/s
Cache size (¢) 50 to 300 items
Mean think time (7%) 0-300 s
Broadcast window (w) 10 intervals
UIR replicate times (m — 1) 4(=5-1)
Hot data items 1-50

Cold data items remainder of DB
Hot data access probability (pp,) 0.8

Mean update arrival time (7y) 1-10000 s
Hot data update probability 0.33
Mean disconnect time (74) 0-400 s
Client disconnect probability (Pg) 0.1

that the server processing time (not data transmission time)
is negligible, and the broadcast bandwidth is fully utilized
for broadcasting IRs (and UIRs) and serving clients’ data re-
quests.

The client. Each client generates a single stream of read-
only queries. Each new query is separated from the comple-
tion of the previous query by either an exponentially distrib-
uted think time or an exponentially distributed disconnection
time. A client can only enter disconnection mode when the
outstanding query has been served.

The client processes generated queries one by one. If the
referenced data items are not cached on the client side, the
data ids are sent to the server for fetching the data items.
Once the requested data items arrive on the channel, the client
brings them into its cache. Client cache management follows
the LRU replacement policy, but there are some differences
between the TS (or BS) algorithm and our algorithm. In the
TS algorithm, since the clients will not use the invalid cache
items, the invalidated cache items are first replaced. If there
is no invalid cache item, LRU is used to replace the oldest
valid cache item. In our algorithm, if there are invalid data
items, the client replaces the oldest invalid item. If there is no
invalid cache item, the client replaces the oldest valid cache
item. The difference is due to the fact that the clients in our
algorithm can download data from the broadcast channel.

To simplify the simulation model, we fix the counter
threshold cnt, to be 10 and we do not consider client failures
except section 4.2.8. With cnt, = 10, most of the updated
hot data will be broadcasted since there are 100 clients in the
cell and they have a large probability (80%) to access the hot
data. Most of the system parameters are listed in table 1.

4.2. Simulation results

4.2.1. The cache hit ratio

The performance metrics such as the query delay and the
throughput have strong relations with the cache hit ratio. For
example, if the cache hit ratio is high, the query delay can be
reduced since the client can process most of the queries lo-
cally and does not need to request the data from the server.
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To help understand the simulation results, we first look at the
cache hit ratio difference between the TS algorithm and our
algorithm.

As shown in figure 5, without considering client discon-
nections, for one particular cache size (cache size is 50 items,
100 items, or 300 items), the cache hit ratio of our algorithm
is always higher than that of the TS algorithm. In the TS al-
gorithm, a client only downloads the data that it has requested
from the server. In our algorithm, clients also download the
updated hot data items that are broadcasted by the server. Due
to cache locality, a client has a large chance to access the in-
validated cache items in the near future, so downloading these
data items in advance should be able to increase the cache hit
ratio. This explains why our algorithm has higher cache hit
ratio than the TS algorithm.

From figure 5, without considering client disconnections,
we can see that the cache hit ratio grows as the cache size
increases. However, the growing trend is different between
the TS algorithm and our algorithm. For example, in the TS
algorithm, when the mean update time is 1 s, the cache hit ra-
tio does not have any difference when the cache size changes
from 50 data items to 300 data items. In our algorithm, un-
der the same situation, the cache hit ratio increases from 57%
to 82% (figure 5(a)). In our algorithm, clients may need to
download interested data for future use, so a large cache size
may increase the cache hit ratio. But, in the TS algorithm,
clients do not download data items that are not addressed to
them. When the server updates data frequently, increasing the
cache size does not help. This explains why different cache
size does not affect the cache hit ratio of the TS algorithm
when T, = 1 s.

As shown in figure 5(a), the cache hit ratio drops as the
mean update time decreases. However, the cache hit ratio
of the TS algorithm drops much faster than our algorithm.
When the update arrival time is 10000 s, without disconnec-
tion, both algorithms have similar cache hit ratio for one par-
ticular cache size. With ¢ = 300, as the mean update time
reaches 1 s, the cache hit ratio of our algorithm still keeps
around 80%, whereas the cache hit ratio of the TS algorithm
drops to near 0. In the TS algorithm, when the mean update
time is very high (e.g., 10000 s), most of the cache misses
are due to cold data accesses; when the mean update time
is very low (e.g., 1 s), besides the cold data cache misses,
most of the cached hot data may be updated by the server
and resulting in a large amount of cache misses. In our algo-
rithm, the updated hot data are most likely to be broadcasted
and downloaded by the clients. When the cache size is large
enough to save the hot data, accessing hot data should not re-
sult in cache misses. This explains why the cache hit ratio
does not change too much when the mean update arrival time
changes.

Generally speaking, client disconnections reduce the cache
hit radio. However, both schemes react differently to the
client disconnections. In the TS algorithm, if a client dis-
connects longer than w - L, it invalidates all cached data al-
though some of them may be valid. As a result, the client
will have many cache misses before it fills up the cache again.
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Figure 6. The query delay and throughput as a function of the mean update arrival time (7; = 50 s, Tq = 400 s, D = 1000 items, ¢ = 100 items).

When the mean update arrival time is small, most of the cache
misses are due to the server update. When the mean update
arrival time increases, most of the cache misses are due to the
client disconnections. This explains why the cache hit ratio
of the TS algorithm in figure 5(a) is much less than that in
figure 5(b), especially when the mean update arrival time is
greater than 100 s. In our algorithm, if a client disconnects
longer than w - L, it sends a request to the server, and the
server notifies the client which cache items are valid based on
the CIR and the update history. As a result, the clients do not
need to discard all cached data, and hence the cache hit ratio
of our algorithm does not drop too much when considering
client disconnections.

4.2.2. The effects of the mean update arrival time
As shown in figure 6, our algorithm outperforms the IR al-
gorithm and the BS algorithm in terms of query delay and

throughput. In our algorithm, in case of a cache hit, a client
only needs to wait for the next UIR to serve queries, and hence
the query delay is about % . 25—0 = 2 5. In case of a cache miss,
the client needs to send a request to the server and wait for
the reply. From figure 5, the cache hit ratio of our algorithm
does not have too much difference between T, = 10000 s and
T, = 1 s. However, the query delay increases from about 2 s
when T, = 10000 s to almost 4 s when T, = 1 s. This can be
explained as follows. When the mean update arrival time is
very small (e.g., 1 s), a large amount of hot data may be up-
dated by the server, and the server may broadcast these data.
Since broadcasting these data occupies the broadcast chan-
nel for some time, clients may experience long delay during
cache misses.

In the BS algorithm and the TS algorithm, clients have to
wait until the next IR before answering any query. Thus, the
query delay is always longer than 10 s. During a cache miss,
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Figure 7. The query delay and throughput as a function of the mean think time (7, = 10's, D = 1000 items, ¢ = 100 items). There is no client disconnection.

the clients have to request data from the server and the server
may receive many requests. Due to the bandwidth limita-
tion, these requests may suffer from long delays. When the
mean update arrival time is very low (e.g., 1 s), the cache
miss rate of the BS algorithm and the TS algorithm are all
very high, and hence both algorithms have long query delay.
As the mean update arrival time increases, the BS algorithm
and the TS algorithm react differently. In the TS algorithm,
when a client disconnects longer than w - L, it discards the
whole cache, and hence, the TS algorithm still has low cache
hit ratio. This explains why the delay of the TS algorithm
does not drop after the mean update arrival time is greater
than 100 s. However, in the BS algorithm, the IR has enough
update information for the client to invalidate its cache even
though the disconnection time is larger than w - L. As a re-
sult, the query delay drops as the mean update arrival time
increases.

In our client model, the client generates new queries after
an exponentially distributed think time or disconnection time.
As the query delay drops, the next query may arrive earlier
and be served earlier. Thus, the server can serve more queries
within an IR interval. Since three algorithms have different
query delays, they have different throughput. As shown in
figure 6(b), our algorithm has the highest throughput, whereas
the TS algorithm has the lowest, and the BS algorithm in the
middle.

4.2.3. The effects of the mean think time

Figure 7 shows the effects of the mean think time on the per-
formance of the TS algorithm, the BS algorithm, and our al-
gorithm. Without considering client disconnections, the BS
algorithm and the TS algorithm have similar performance
when the database size is small. In our client model, each
client generates queries according to the mean think time
and the client disconnection time. The generated queries are
served one by one. If the queried data is in the local cache,
the client can serve the query locally; otherwise, the client has

to request the data from the server. Since the broadcast band-
width is fixed, the server can only transmit a limited amount
of data during one IR interval, and then it can only serve a
maximum number («) of queries during one IR interval. If
the server receives more than o queries during one IR inter-
val, some queries will be delayed to the next IR interval. As
shown in figure 7(a), the query delay of the TS (and BS) algo-
rithm grows larger than the IR interval when the mean think
time drops below 50 s.

Although the server can only serve a maximum number
() of client requests during one IR interval, the throughput
(the number of queries served per IR interval) may be larger
than « since some of the queries can be served by access-
ing the local cache. Since our algorithm has higher cache hit
ratio than the TS algorithm and the BS algorithm, our algo-
rithm can serve more queries locally, and the clients send less
requests to the server. As a result, our algorithm has higher
throughput than the BS algorithm and the TS algorithm when
the mean think time is very low. For example, as shown in fig-
ure 7, when the query update time reduces from 25 s to 0, the
number of requests in the TS algorithm is larger than «, and
some queries cannot be served. As a result, the throughput of
the TS algorithm remains at about 32 whereas the throughput
of our algorithm increases from about 72 to about 105. When
the mean think time is high, the broadcast channel has enough
bandwidth to serve the client requests, and hence three algo-
rithms have similar throughput.

4.2.4. The effects of the database size

Figure 8 shows the effects of the database size on the per-
formance of the TS algorithm, the BS algorithm, and our al-
gorithm. As can be seen, the throughput and the query de-
lay of the TS algorithm and our algorithm do not change too
much as the database size changes. However, the performance
of the BS algorithm is significantly affected by the database
size. When the database has more than 50000 data items, the
query delay of the BS algorithms grows significantly, and the
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throughput drops to almost 0 as the database grows to 90000
data items. In the BS algorithm, the IR includes the update
information of the whole database and the IR size grows as
the database size increases. As the database size increases
to 90000 data items, almost all of the downlink bandwidth
are used to broadcast the IR, and hence, the query delay in-
creases significantly and the throughput drops to almost 0. In
the TS algorithm and our algorithm, the IR size is related to
the number of updates in the previous w IR interval. In our
model, the number of updates is not related to the database
size, and hence the database size does not affect the perfor-
mance of our algorithm and the IR algorithm.

4.2.5. The effects of the client disconnection time

Figure 9 shows the effects of the client disconnection time.
In the BS algorithm and our algorithm, the client keeps the
valid cache items even though it has been disconnected for
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a long time. Thus, the query delay of the BS algorithm and
our algorithm do not change too much as the client discon-
nection time changes. Since a client generates less queries
when the mean disconnection time increases, the throughput
of both algorithms drops as the mean disconnection time in-
creases.

In the TS algorithm, when the disconnection time is less
then w - L seconds, clients can still validate their cache by us-
ing the IR since the IR includes the update history of the pre-
vious w - L seconds. However, if a client disconnects longer
than w - L seconds, it has to discard the whole cache. Since
the client disconnection time is exponentially distributed, the
cache hit ratio of the TS algorithm drops as the disconnec-
tion time grows until w - L = 200 s. Since the query delay
increases as the cache hit ratio drops, the query delay of the
TS algorithm grows to almost 20 s as the disconnection time
increases to 200 s.
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4.2.6. The number of uplink requests

As shown in figure 10, our algorithm has the lowest uplink
cost, whereas the TS algorithm has the highest uplink cost
and the BS algorithm is in the middle. This can be explained
by the fact that three algorithms have different cache miss
rates. Note that a client only sends a uplink request when
a cache miss occurs. Generally speaking, as the mean update
arrival time increases, the cache miss ratio drops and the num-
ber of uplink requests decreases. However, the decrease trend
of three algorithms are different. In the TS algorithm, the
number of uplink requests does not increase when the mean
update arrival time grows above 100 s, which corresponds to
the trend in figure 5. In the BS algorithm, since the client
can obtain enough information form the IR to invalidate their
caches even after a long disconnection, the cache miss ratio
decreases as the mean update arrival time increases. This ex-
plains why the number of uplink requests in the BS algorithm
continues to drop as the mean update arrival time increases.
Note that the size of the uplink request in our algorithm may
be large. However, compared to the header overhead and the
delay resulted from competing for the reverse control chan-
nel, this overhead is very small.

4.2.7. The broadcast overhead

In our algorithm, the id list Lpcast can be implemented more
efficiently. For example, since the id is long (32 bits), the
most significant bit can be used to represent whether the real
data of this item will be broadcasted. Only when the IR does
not include the id of the data item in Ly, it is broadcasted
in Lpcase. Certainly, the client needs to re-construct the Lpcast
after it has received the IR. Let T represent the average
time that the server uses to broadcast the UIRs and the nec-
essary Lpcast (except those already in the IR) within one IR
interval (7y;r is O in the IR algorithm). Let Tj, represent the
average time that the server spends on broadcasting the IRs
within one IR interval. The broadcast overhead percentage is
(Tir + Tuir)/L. Figure 11 compares the broadcast overhead
of our algorithm to the IR algorithm and the simple replicate
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algorithm, which simply replicates the IR 4(m = 5) times
within each IR interval (i.e., the broadcast interval L changes
to 20/(4 + 1) = 4 s). As can be seen, the simple replicate
approach has the highest broadcast overhead and the TS al-
gorithm has the lowest broadcast overhead. Due to the use
of UIR, the broadcast overhead of our algorithm is slightly
higher than the TS algorithm, but far lower than the simple
replicate algorithm. For example, when 7, = 0.3 s, in the
simple replicate approach, the server cannot answer clients’
queries since all available bandwidth are used to broadcast
IRs. However, in our algorithm, the broadcast overhead is
only about 20%, which is similar to that of the TS algo-
rithm.

4.2.8. The effects of client failures and the parameter cnt,,
In figure 12, n represents the number of client failures. When
aclient is (non-voluntarily) disconnected longer than the lease
time, it is counted as a failure, and hence n can be very large.
When a client fails, the counter value may not be accurate
until the lease of the client expires. However, if the lease
time? is relatively small compared to the failure time, this will
not be a big issue. Since we evaluate the performance when
the system becomes stable, failure itself does not have too
much effect on the cache hit ratio. However, failure combined
with cnt, may significantly change the cache hit ratio.

In figure 12(a), cnt, = 20. The n = 80 approach,
n = 90 approach have similar cache hit ratio to the TS ap-
proach, whereas the n = 0 approach, n = 10 approach,
and the n = 50 approach have similar cache hit ratio. In
the n = 80 approach and the n = 90 approach, most data
items have counters smaller than cnt,. As a result, updated
data items will not be broadcasted and clients cannot prefetch
data.

3 In this paper, we do not evaluate the effect of lease time on the cache hit
ratio in case of client failures. Since the effect strongly depends on the
characteristics of the workload, we will further evaluate it when we get real
workloads.
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Figure 12(b) shows an approach in which cnt, is adap-
tive to the amount of available bandwidth and the number of
clients. In this approach, the updated data items in the previ-
ous IR interval are sorted based on the counter value and the
server broadcasts as much updated items as possible. With
this modification, the cache hit ratio of the proposed algo-
rithm is much higher than the TS algorithm.

5. Conclusions

IR-based cache invalidation has received considerable atten-
tion due to its scalability. However, IR-based approach suf-
fers from long query latency and cannot efficiently utilize
the broadcast bandwidth. In this paper, we proposed tech-
niques to deal with these problems. In the proposed algo-
rithm, a small fraction of the essential information related to
cache invalidation is replicated several times within an IR in-
terval, and hence a client can answer a query without wait-
ing until the next IR. Moreover, the server uses counters to
identify the hot data items and broadcasts the updated hot
data items, whereas the clients intelligently retrieve the data
items which will be accessed in the near future. As a result,
most unnecessary unlink requests and downlink broadcasts
can be avoided. We evaluated the performance of the pro-
posed techniques and addressed various kinds of failures such
as server failures, client failures, and disconnections. Sim-
ulation results showed that our algorithm can cut the query
delay by a factor of 5, and increase the throughput by a fac-
tor of 3.5 compared to the TS algorithm and the BS algo-
rithm.
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Appendix. The stateless server approach

In this approach, the server does not have CIRs. To maintain
counter accuracy, the server asks clients to report their cached
data items, and hence recalculates the counter periodically.
More specifically, if the server suspects that the counter of a
data item is not accurate, it uses the following scheme to get
the accurate value. When the suspected data item is updated,
the server resets its counter to 0 and does not broadcast this
data item. However, the server still adds the data item id to the
IR for the next w IR windows. If a client is interested in the
suspected data item, it needs to send a request to the server.
The server sends out the data and increases the counter.

When a client sends a request to the server, it attaches in-
formation about the cached data items that will be replaced.
For each replaced data item, the client attaches the timestamp
of the last IR that it used to invalidate the data item. The server
updates the counter for each received data item id based on
the associated timestamp and the time when the server starts
to check the counter accuracy of the data item. For example,
if the server receives a replaced data item id whose associ-
ated (the last IR) timestamp is smaller than the time when the
server starts to check the accuracy of the data item, the server
will not decrease the counter of the data item. Otherwise, the
server decreases the counter.

Although the stateless server approach does not need to
maintain CIRs, it has several disadvantages. First, it is diffi-
cult for the server to decide when to start the process of check-
ing counter accuracy; however, the decision may significantly
affect the performance. Second, the server needs to main-
tain information about when it starts the process of checking
counter accuracy, and the client needs to associate an extra
timestamp for each data item id when it sends a request to the
server. Third, during handoff or long disconnection, the client
needs to notify the server about its cached data, which may
consume a large amount of uplink bandwidth. Due to these
disadvantages, we did not further evaluate the performance of
the stateless server approach.
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