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B. Schrefler, E. Oñate and M. Papadrakakis(Eds)

ON IN-SITU VISUALIZATION FOR STRONGLY COUPLED
PARTITIONED FLUID-STRUCTURE INTERACTION

OLIVER FERNANDES∗, DAVID S. BLOM†, STEFFEN FREY∗,
ALEXANDER H. VAN ZUIJLEN†, HESTER BIJL† AND THOMAS ERTL∗

∗VISUS
University of Stuttgart

Allmandring 19, 70569 Stuttgart, Germany
e-mail: info@visus.uni-stuttgart.de, web page: http://www.visus.uni-stuttgart.de

†Delft University of Technology, Faculty of Aerospace Engineering
Kluyverweg 2, 2629HT Delft, The Netherlands

e-mail: d.s.blom@tudelft.nl, web page: http://www.lr.tudelft.nl

Key words: in-situ visualization, fluid-structure interaction, multi-physics

Abstract. We present an integrated in-situ visualization approach for partitioned
multi-physics simulation of fluid-structure interaction. The simulation itself is treated
as a black box and only the information at the fluid-structure interface is considered,
and communicated between the fluid and solid solvers with a separate coupling tool.
The visualization of the interface data is performed in conjunction with the fluid solver.
Furthermore, we present new visualization techniques for the analysis of the interrelation
of the two solvers , with emphasis on the involved error due to discretization in space and
time and the reconstruction. Our visualization approach also enables the investigation of
these errors with respect of their mutual influence on the two simulation codes and their
space-time discretization. For efficient interactive visualization, we employ the concept
of explorable spatiotemporal images, which also enables finite-time temporal navigation
in an in-situ context. We demonstrate our overall approach and its utility by means of
a fluid-structure simulation using OpenFOAM that is coupled by the preCICE software
layer.

1 INTRODUCTION

Scientific computing and parallel visualization are at the cusp of the new era of exascale
computing. In-situ visualization plays a key role in this transition, since the involved data
rates are expected to be beyond the capabilities of future storage systems [23]. A central
difficulty with in-situ visualization in parallel computing is to conform to bandwidth
constraints. On the one hand, parallel scientific computing requires very high bandwidth,
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e.g., for the communication between different simulation processes, on the other hand,
high-resolution visualization at high frame rates is a prerequisite for successful research
and development. While many simulations are intrinsically global and require substantial
parallelization traffic, there is large potential for optimization in the visualization stage.

Since the available bandwidth typically does not allow for the transmission of the entire
data stream to dedicated visualization nodes, the data reduction has to take place directly
at the simulation nodes. In this paper, we present an approach to minimize the bandwidth
load exerted by producing a view-dependent reduced representation of the data, before
sending it to the visualization nodes.

For the scalar fields associated with the fluid, a common approach is to generate images
using volume raycasting. In more detail, rays are sent from the viewpoint through the
volume (typically one per pixel in the final image). Along each ray, scalar sample values
are taken, color and opacity are assigned to these values by means of a so-called transfer
function, and the final color of a ray (or a pixel) is generated by compositing these color
values (e.g., [16]). In a coupled fluid-structure simulation, several data sets are available
for analysis, and need to be handled by the visualization. To be able to get a concise
view of the phenomena arising from interactions between the fluid and the structure, data
from both solvers need to be integrated into the same visualization. This provides the
possibility to better explore the mutual influence of the two simulation domains.

In this paper, we introduce an integrated approach for the in-situ visualization of both
the volume stemming from the fluid solver and the structure surface. We then calculate
the deviation introduced by the relaxation step and use it to visualize the the magnitude
of the displacement on the representation generated for the structure. This enables the
examination of how the quasi-Newton step impacts the calculation of the next time step
for the different locations of the fluid-structure interface.

2 RELATED WORK

In case an incompressible flow is considered, sub-cycling of the fluid and solid solvers is
necessary in order to minimize the introduced error at the fluid-structure interface due to
the partitioning. Different coupling techniques can be applied, such as Aitken’s method
[19], vector extrapolation [20], Interface-GMRES(R) [27, 26] , and the interface quasi-
Newton inverse least squares (IQN-ILS) technique [9, 8]. The IQN-ILS technique [9] is an
efficient [10, 8] and robust black-box coupling algorithm for which convergence theorems
are available in [17], and is consequently used in this contribution.

For in-situ visualization, typically reduced representations of the original data are gen-
erated, usually resulting in both reduced cost for storage/transfer as well as for rendering
in comparison to the original. For this purpose, image-based or view-dependent tech-
niques are often used as they allow for high compression rates while still maintaining
high quality for a certain range of view configurations. Image-based rendering infers new
images from existing ones, e.g., with changed lighting or camera configuration [36]. A
number of techniques has been proposed to construct such different representations from
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multiple views, like view-dependent texture maps [7], warping [24], light fields [21], etc.
Other techniques use multiple images to synthesize new surface-based views of volume
data (e.g., [4, 3]). Such techniques allow the adaptation of color and lighting parameters
[18], or transfer functions [35].

Shade et al. [30] introduced LDIs (Layered Depth Images) that represent one camera
view with multiple pixels along each line of sight. Reconstruction of geometric surfaces
from LDIs has been discussed by Frey et al. [14]. In volume rendering, layer-based rep-
resentations have been used to defer operations such as lighting and volume classifica-
tion [29]. Such representations have also proven effective to cache results [22] or certain
volumetric properties along view rays that can be later reused for efficient transfer func-
tion exploration. Also for deferred transfer function exploration, Tikhanova et al. [32]
convert a small number of volume renderings to a multi-layered image representation.
In another work, [33] use an intermediate volume data representation which encodes the
distribution of samples along each ray. Shareef et al. [31] use image-based modeling to
render unstructured grids based on parallel sampling rays and 2D texture slicing.

Frey et al. [15] propose Volumetric Depth Images (VDI) for view-dependent volume
visualization as an extension of the Layered Depth Image (LDI) approach. Instead of
only saving for each view ray of one camera configuration the depth and color values for
a set of surfaces, as in LDIs, VDIs store so-called supersegments, each consisting of a
depth range as well as composited color and opacity. On this basis, Fernandes et al. [13]
introduce space-time VDIs (STVDIs) that provide an efficient space-time representation
of VDI streams by exploiting inter-ray and inter-frame coherence, while still maintaining
spatiotemporal flexibility. STVDIs provide the technical foundation for the approach
proposed in the paper at hand and is outlined in more detail in Sec. 4.

3 SIMULATION SETUP

3.1 Fluid solver

The flow is governed by the incompressible Navier-Stokes equations. Therefore, the
governing equations for the fluid are given by the balance of momentum

ρf
∂vf

∂t
+ ρf

(
∇vf

)
vf = ∇ · σf , (1)

and the balance of mass, which reduces to a divergence free constraint on the velocity
field due to incompressibility:

∇ · vf = 0 in Ωf , (2)

where the velocity field is denoted by vf , the pressure field is denoted by pf , and ρf

represents the density. A Newtonian fluid is considered, which leads to the constitutive
equation for the stress tensor σf

σf = −pfI + ρfνf
(
∇vf +∇vf T

)
, (3)
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for a given kinematic viscosity νf .
The foam-extend-3.1 package1 is used for the simulations, a fork of the well known

OpenFOAM package2. A coupled solution algorithm [5] is employed, instead of the well
known PISO pressure-velocity coupling technique. Here, the continuity and momentum
equation are solved in a fully coupled implicit manner, instead of a segregated approach.
A second order backward differencing scheme (BDF2) is used to integrate the governing
equations in time. The fluid mesh is deformed with radial basis function interpolation
[6].

3.2 Structure solver

The configuration of the structure domain is described by the displacement us. An
elastic and compressible structure is assumed, and the governing equation is given by the
balance of momentum

ρs
∂vs

∂t
+ ρs (∇vs)vs = ∇ · σs + ρsg in Ωs. (4)

Equation (4) is modified to use the total Lagrangian description, i.e. with respect to the
initial reference state Γs, resulting in

ρs
∂2us

∂t2
= ∇ ·

(
JσsF−T

)
+ ρsg in Ωs, (5)

where the deformation gradient tensor F is defined as F = I +∇us, and the Jacobian J
is the determinant of the deformation gradient tensor F . By applying the constitutive law
for the St. Venant-Kirchhoff material, the Cauchy stress tensor σs is found by applying

σs =
1

J
F (λs (trE) I + 2µsE)F T , (6)

with E = 1
2

(
F TF − I

)
, and the shear modulus µs [1].

The structure solver is also implemented within the foam-extend-3.1 framework for
ease of implementation. Therefore, a finite volume discretization is used instead of a
finite element approach.

3.3 Fluid-structure interaction

With regards to the fluid-structure interaction problem, the fluid solver and solid solver
are considered as black boxes. In other words, only the input and output information is
accessible. Whether a compressible or incompressible, viscous or inviscid flow is considered
does not influence the used methodology described in this paper. Also, different models

1http://www.extend-project.de/
2http://www.openfoam.org/

4

547



O. Fernandes, D. S. Blom, S. Frey, A. H. van Zuijlen, H. Bijl and T. Ertl

for the solid domain can be applied, since only the input and output information from
the fluid solver and solid solver is considered to be accessible.

Therefore, at each time step the response of the fluid solver Ff is defined as

y = Ff (x) , (7)

where x denotes the displacement of the fluid-structure interface, and y denotes the
force acting on the fluid-structure interface. The response of the structure solver Fs is
consequently defined as

x = Fs (y) . (8)

Typically, at every time step the fixed point equation

x = Fs ◦ Ff (x) (9)

must be satisfied, which can also be written as the interface residual R

R (x) = Fs ◦ Ff (x)− x, (10)

which is solved with a minimization or optimization procedure aimed to find the optimal
solution x� such that

x� = argmin
x

||R (x)||2 . (11)

At the fluid-structure interaction Γf s, the balance of stresses is enforced through

σfn = σsn on Γf s, (12)

with the unit vector n normal to the fluid-structure interface Γf s, and the stress tensors
σf and σs. Also, the no-slip condition is imposed at the fluid-structure interface so that
the velocities vf and vs must be equal:

vf = vs on Γf s. (13)

As mentioned in the introduction, standard approaches used to solve the strongly
coupled fluid-structure interaction problem are the Gauss-Seidel method [12], fixed under-
relaxation [2], Aitken under-relaxation [28], and the IQN-ILS method [9, 11]. Here, the
IQN-ILS method is used to solve the interface problem.

4 IN-SITU VISUALIZATION OF COUPLED FLUID-STRUCTURE IN-
TERACTION

In this paper, we use a typical in-situ visualization setup consisting of a parallel sim-
ulation environment with integrated visualization. The fluid simulation nodes generate
the data, employing domain decomposition for parallel execution. On each compute node
a reduced representation of the density scalar field is produced and prepared to be sent
to the visualization nodes. Finally, the visualization nodes generate images from these
reduced representations interactively upon user request. In this section, we first briefly
outline the underlying VDI and STVDI [15, 13] (Sec. 4.1), and on this basis outline our
approach for the visualization of interaction properties (Sec. 4.2).
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4.1 Space-Time Volumetric Depth Images

A volumetric depth image (VDI) is a representation of a three-dimensional scalar
dataset after applying a color transfer function [15]. It is generated internally from the
data volume as viewed from a specific vantage point, but can be actually explored in full
3D, for all parts of the simulation data which were in the original view frustum. Being
generated from a specific view point allows the user to choose more intuitively which parts
of the volume he wants to investigate, and restrict data retrieval to the chosen subset.

Volumetric Depth Images Data Structure. A VDI is produced by ray casting the
dataset along rays aimed at the region of interest within the dataset. In the following, we
assume that rays are uniformly seeded on a two dimensional grid with the size X × Y .
Along each ray rxy, where xy denotes its position on the regular grid, a number of Z
samples are taken (typically spaced equidistantly), from front to back. The color transfer
function is then applied to associate a scalar value with a user-defined color and opacity.
Strictly speaking, a sample depicts the value belonging to a value of a distinct point in
space in the volume. However, in the context of raycasting and a limited sampling rate,
it can also be seen as representing a certain volume around this point. Conceptually, this
is the extension of a pixel in image space to object space.

Storing each segment individually would produce a resampled representation R of the
size X × Y × Z for the volume covered by the rays. Instead, to reduce the size of
such a representation, samples having similar color are merged along a ray into so-called
supersegments. This can be done efficiently on-the-fly during while tracing the ray along
Z. For these supersegments, the starting and ending parameter value on the ray rxy are
stored, as well as the merged color. This produces a list Lxy of supersegments for each ray,
each with variable length, depending on how the algorithm was able to find mergeable
samples. As a result, the size of the VDI representation R has been reduced considerably
with respect to the original data, with only minimal loss (depending on the similarity
metric), to a set of X × Y lists each containing |Lxy| elements.

Space-Time Clustering. VDIs already reduce the data required to represent the
simulation data of interest considerably. This can further be improved upon by exploiting
coherency of data across rays, and if considering additional consecutive timesteps, even
time. To achieve this, the supersegments for all rays are grouped to form so called space-
time regions. Similar to the merging of segments into supersegments for VDIs, this is
done by comparing the color of neighboring supersegments ,where neighboring means in
adjacent rays or the same ray from an adjacent timestep. In detail, adjacent supersegments
that are considered similar by a user defined color metric are assigned the same region id.
A representative average color is calculated for an entire region and used in the following.

At this point, already a huge data reduction has been achieved, since the color data,
originally stored per supersegment, only needs to be stored per region. Note that the
loss in quality due to this can be controlled by the user by changing the parameters in
the similarity metric. To also reduce the data which needs to be stored to represent
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the locations of supersegments, we employ an algorithm which recalculates and sorts the
geometrical data such that it can efficiently be encoded to a stream by an entropy encoder
such as the zlib scheme. For more details on this algorithm, refer to the related work [13].

Rendering. On the visualization node, the stream is again decoded using the reverse
process explained in Sec. 4.1. All supersegments in a region receive the region’s color.
The reconstructed VDI representation is now used to define frustums. For each super-
segment a frustum is constructed by using the starting and ending point in depth along
the generating ray, and using the distance between rays as width and height. These frus-
tums then cover the entire original viewing volume, and are a good approximation to the
original simulation data. Unlike a ray cast, these new representation can be built from
comparably sparse data and be rendered at much higher speeds (see [15] for details).

4.2 Structural Data and Visualization of Interaction Properties

Many nodes computing the fluid domain solution also produce data for the structure, in
form of their boundary. This boundary can be directly converted into a renderable mesh.
Being only a two dimensional quantity described as a set of points and and a connecting
topology, the structure surface description needs far less data to be transferred, and
hence does not any special processing to reduce bandwidth load. To display information
concerning the interaction at the coupling boundary of the fluid and the structure solver,
we use the fluid solver boundary to define a surface representation of the structure.
On this surface, boundary related data can be displayed, which becomes interesting if the
data has a non-uniform distribution on the 2D manifold of the structure surface.

As an example of a data varying across the surface, the deformation of the structure
could be examined. The deformation consists of several factors involving both solvers and
the coupling mechanism. With many different factors involved, approximations have to
be made to accommodate both the numerics and the physics.
As mentioned in Sec. 3.3, a coupling scheme needs to be applied to the structure solvers
solution, in order to be able to simulate an incompressible flow without suffering from
instabilities due to the added mass effect.
The displacement introduced has an impact on the fluid solvers next iteration. To judge
the deviation introduced by relaxation, we now consider the displacement of the surface
before and after the relaxation step, and display the magnitude of the displacement vector
for the surface of the structure.

5 RESULTS

We demonstrate the integration of our technique in a distributed simulation setup, as
already outlined briefly in 4 and 4.2.

The test case, originally proposed in [34], consists of a two-dimensional incompressible
laminar flow around a fixed cylinder with an attached flexible cantilever. In [34], three
different scenarios are presented with different fluid to structure density ratios. Here, the
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fluid to structure ratio is set to ρf/ρs = 1, resulting in a strong coupling between the fluid
and the structure. The reader is referred to [34] for further details on this fluid-structure
interaction problem. An overview of the geometry is given by Figure 3.

In detail, the simulation outputs new time steps of the simulation in certain intervals
(e.g., every 1000 time steps). This output is then directly fed to the VDI generation and
spatiotemporal encoding/compression pipeline. This condensed representation is then
communicated to our visualization node, that generates images from this representation.
The table 2 shows the compression ratios determined during the simulation using the
space-time VDI method. A good compression ratio of around 20% was achieved on
average. The data sizes are compared to the output as written out for restarts by the
solver.

(a) Timestep 0.1 (b) Timestep 3.3

Figure 1: Volume rendering of the pressure in cylinder flap testcase. The yellow color on
the flap shows the distribution of the correction made by relaxation.

For the evaluation of the deviation visualization, we compared the output for the
structure including the deviation, using several timesteps. The static parts of the structure
(the cylinder) have not been displayed to reduce visual clutter. One can clearly see the
spatial distrubution across the moveable surface, as shown in Fig. 1.

Timestep Size (kBytes) Ratio CPU Time (s)

0.1 22 6.7% 4.2
1.4 53 16.3% 4.3
3.3 63 19.2% 4.3

Figure 2: The STVDI algorithm achieves a good compression ratio for different timesteps
(simulation time). The timings refer to the slowest process performing the algorithm for
a given timestep. Original data size: 326kByte.
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Figure 3: Geometry of the cylinder with an attached flap benchmark originally proposed
in [34]. The figure shows a channel flow with a fixed cylinder and a flexible flap attached
to the cylinder [25].

6 CONCLUSION

In this paper, we presented an integrated in-situ visualization approach for partitioned
multi-physics simulation of fluid-structure interaction. In this context, we introduced
new visualization techniques for the analysis of the interrelation of the two solvers, with
emphasis on the involved error due to discretization in space and time. We showed that
considerable compression can be gained by clustering in space-time and rearranging data
for entropy encoding. For this, we employed the concept of explorable spatiotemporal
images. Our visualization approach also enables the investigation of errors on the coupling
interface due to a quasi-Newton relaxation step. We evaluated our overall approach with a
fluid-structure simulation using an OpenFOAM implementation which allows for coupling
by the preCICE software layer.

This method can also be extended to other metrics arising in the context of coupled
systems, for example displaying coupling-layer internal interpolation error as part of the
fluid-structure visualization. Further, the internal properties of the structure itself, as
calculated in the structure solver, could be included to achieve a concise visualization.
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