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ON INCONSISTENT BAYES ESTIMATES 

IN THE DISCRETE CASE 


BYDAVIDFREEDMAN'AND PERSI DIACONIS~ 

University of California, Berkeley and Stanford University 
Consider sampling from an unknown probability distribution on the 

integers. With a tail-free prior, the posterior distribution is consistent. With 
a mixture of a tail-free prior and a point mass, however, the posterior may be 
inconsistent. This is likewise true for a countable mixture of tail-free priors. 
Similar results are given for Dirichlet priors. 

1. Introduction. Dirichlet and tail free priors on the set of all probabilities were 
introduced to insure consistency of the corresponding Bayes estimates. The examples in 
this paper show that taking mixtures of such priors can lead to inconsistent estimators. 
We proceed to definitions and a historical review. 

Let I be the positive integers. The parameter space A is the set of all probabilities on 
I. Write A(i) for the mass which A assigns to i E I. Let X" be product measure on I", 
making the coordinates Xi independent with common distribution A. Consider estimating 
X from the data XI ,  . . .,X,, in a Bayesian framework. 

A prior p is a probability on A; it induces a probability P, on A x I"by the rule 

This P, is the joint distribution of the parameter A and the data XI, X2, . , for someone 
holding the prior opinion p. The posterior p'"' on A is the conditional distribution of A 
given XI, ,Xn, computed from P,: 

a * ,

p("' = P,{A I XI, . . a ,  X n )= 
P,{A and XI, Xn)  

Pjt{Xl, a Xn)9 ' 

To avoid trivial complications, we suppose throughout that p assigns positive mass to all 
weakly open subsets of A, so P,(X1, .,Xn]> 0. The notation may be perplexing: P,(X1, 

a * ,  Xn)  is a random variable whose value on the set {XI  = i,, . . a ,  X, = in)  is the P, 
probability of that set. 

The pair (A, p) is consistent if p'"' +6x weakly as n +03, with A"-probability one; 6x is 
a point mass a t  A. The prior p is consistent if ( A ,  p) is consistent for all A. Informally, a 
Bayesian with the prior p who samples repeatedly from A will discover that fact. 

Consistency has been investigated by Doob (1949), LeCam (1953), Freedman (1963), 
Schwartz (1965) and others. Doob (1949) showed that (A, p) is consistent for p-almost all 
A. LeCam (1953) and Schwartz (1965) proved consistency under stiong regularity condi- 
tions, typically including the requirement that A be a finite-dimensional Euclidean space, 
ruling out nonparametric problems like the one considered here. When I is replaced by a 
finite set, Freedman (1963) proves that (A, p) is consistent if and only if X is in the support 
of the prior p and gives counterexamples to show that infinite-dimensional problems are 
basically different. For example, there is a prior p on A which puts positive mass in every 
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neighborhood of Gl14-the geometric distribution on I with parameter l/4. However, for 
almost all iid sequences drawn from GlI4, the posterior converges to a point mass a t  GZl4. 
Freedman (1965) showed that this behavior is generic: almost all pairs (A, p) are incon- 
sistent in the sense of category. To insure consistency, Freedman (1963) introduced the 
class of Dirichlet and tail-free priors on A. For such priors ( A ,  p) i\s consistent for all X. 

Dirichlet and tail-free priors have seen increasing use in recent years. Ferguson (1974) 
contains a review of the literature. Antoniak (1974) has discussed the need for mixtures 
of Dirichlet priors in routine problems. Good (1978), Dalal (1978), and Dalal and Hall 
(1980) suggest mixtures of Dirichlet priors as a rich family, dense in the set of priors, for 
routine use. The examples below suggest that caution is called for: countable mixtures of 
Dirichlet or tail free priors can lead to inconsistency. On the other hand, finite mixtures 
of consistent priors are consistent, and finite mixtures of Dirichlet priors are dense in the 
class of all priors. Diaconis and Freedman (1983) show that mixtures of Dirichlet priors 
can lead to inconsistent estimators in the problem of estimating a location parameter in 
a continuous setting. In general, it is not known when (A, p) is consistent, or when p is 
consistent for all A. 

Define p to be tail-free if the following random variables, called cuts, are independent 
under p: 

X(l), X(2)/[1 - X(1)1, X(3)/[1 - X(1) - X(2)1, . - .  . 
Informally, X is chosen from p by "stick-breaking:" start with a stick of unit length, break 
off a random length for X(1). Independently break off a piece X(2) from the remaining 
piece of length 1- X(l), etc. Dirichlet priors are tail free, the cuts having appropriate beta 
distributions. See Freedman (1963) or Ferguson (1974) for further details. The tail free 
prior with uniform cuts is consistent for any A. Our first result shows that a mixture of 
this prior and a point mass can be inconsistent. 

PROPOSITION1. Let v be tail-free with all cuts uniformly distributed over [0,11.Let 1 
> E > 0. There are distinct probabilities O and #J i n  A such that the prior 

makes (0, p) inconsistent: p(") - 6 ,  with Om probability one. 

In this example, if a Bayesian with prior p observes a sample from 8, the posterior piles 
up near the "foil" #J # 8. By construction, O and #J agree a t  all but finitely many places. 
However they are long-tailed-indeed both have infinite entropy. The prior v, while 
supported on all of A ,  concentrates on short-tailed probabilities. When sampling from O 
the "evidence" from the tail of the distribution overwhelms the evidence from the center 
of the distribution, causing convergence to 4. More specifically, under Om, the maximum 
M, of XI, X2, . . ., Xn is SO large that it cannot reasonably come from X's on which v 
concentrates. This tilts the balance to 4. The construction in Proposition 1 is like that 
used by Bahadur (1958, 1971) to get inconsistent maximum likelihood estimators. 

The prior used in Proposition 1 is an  infinite dimensional version of a prior used by 
Bayesians to test hypotheses: a mixture of a point mass and a continuous prior. For 
example, when considering a sample from a multinomial distribution with unknown 
parameter vector A, to test if X = 4, some Bayesians use a 50-50 mixture of a uniform 
prior and a point mass a t  4. The test is based on the posterior mass a t  4. For discussion, 
see Jeffreys (1967, Chapter 5). 

Approximating 6, by a sequence of tail-free priors p, leads to the next result. 

PROPOSITION There are tail-free priors pi and probabilities 0, #J in  A such that setting 2. 
p = pj/j(j  + I ) ,  the pair (0, p) is inconsistent: p("' -6, with Om probability one. 

The inconsistent prior in Proposition 2 is a mixture of consistent priors. In Section 5, 
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it is shown that mixtures of Dirichlet priors can be inconsistent. Some positive results are 
also given: a mixture of Dirichlet pfiors is consistent if the mass of the parameter measures 
is uniformly bounded. 

Tom Ferguson has told us about a nice example of inconsistency when I is the unit 
interval. Let X be Lebesgue measure on I. Let the prior p = Yz D (A)+ l/z 6X. If the sampling 
is done from any continuous distribution, the posterior converges to point mass a t  A. The 
basic reason is that D(X) concentrates on discrete (densely supported) distribu-
tions. 

2. Some estimates. The same 4 and 8 can be used in both proposition, as follows. 
Let 

+(i)  = O(i) = l/i(log i)2 for i = 10, 11. . .. 
Choose +( i )  > 0 and O(i) > 0 for i = 1, . . a ,  9 so z E 1  4 ( i )  = O(i) = 1. It  is required 
that +( i )  # O(i) for some i = 1, a * ,  

relative entropy. 

Some facts about 0 and 4 will now be developed. The estimates are crude, but sufficient. 
The first result shows that Mn = max(X1, ,Xn)  is around en, with high #"-probability. 

LEMMA1. If n r 25, then 

except on a set of Om-probability a t  most l/n3. 

PROOF.Clearly, 

1 1 


log(t + 1) 
5 Om{Xjr t )  5 

log(t - 1) 
for t e 10. 

If n r 25, then exp(n/3 log n) r 11, so 

6'" Mn < -1 + exp -i (3 tgn)\ 5 (i -*r 55. 
Also, for n r 25, 

The next lemma shows that 4" cannot be too much smaller than Om. 

LEMMA2. If n 2 1, 

$"{XI, . . . , X,) > exp(-n3)#"{Xl, . . . , Xn]  

except on a set of 0"-probability at  most l/n2. 

PROOF.Clearly, 

is, relative to O", the sum of n independent, identically distributed random variables whose 
common mean is less than one, by condition (1). Now use Markov's inequality. 1 

in the sense of 6'be close to 4Also required is that 9. 
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The next lemma puts a floor under Om(X1, X,].a ,  

LEMMA3. If n r 3, 


Om(X1, X,) > exp(-n4)
a ,  

except on a set of 0"-probability a t  most 2/n2. 

PROOF. Let f j = - log O(Xj). If t 2 10, say, then 

log i + 2 log log i r t 

Now n r 3 makes n3 10, SO 

Omitj< n3 for j = 1, n ]  > (1 - 2n-3)n > 1 - 2n-2.a * . ,  

a ,But t j< n3 for j = 1, n entails Cj"=lt< n4, i.e., Om(Xl, .,X,) > exp(- n4). 0 

LEMMA4. If n r 3, 

$"(XI, . .,X,) > exp(- 2n4) 

except on a set of 0"-probability at most 3/n2. 

PROOF. Combine Lemmas 2 and 3. 0 

Turn now to properties of the tail-free priors. The next result shows that tail-free 
priors with uniform cuts concentrate on short-tailed probabilities. It is the only estimate 
needed on tail-free priors. 

LEMMA 5. Suppose v is tail-free, and past some index &, the cuts are uniformly 
distributed over [0, 11. Then 

PROOF. If k I k,,, the assertion is trivial. If k > &, then 

h(k) = [I  - h(1) - ' ' - ~(&)l(n)~kl,,+l[l- cj(h)]]ck(A) 

where CJ is the cut at index j. 0 

LEMMA6. Let v be as in Lemma 5. If n r 25 and M, > exp -
then3 1; (4 

NOTE. As Lemma 1shows, M, > exp(n/4 log n)  except on a set of 0"-probability at 
most 1/n3. 
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PROOF. FOCUSon the big M, and use Lemma 5: 

3. The first construction. Proposition 1 will now be proved. Fix a weak neighbor- 
hood N of the foil 4. I t  must be shown that p(,)(N) - 1  with Om-probability one, where * 
= ~ 6 ,+ ( 1- E ) V  and v is tail-free with uniform cuts. Now 

P,(N and XI ,  .. . , Xn)
p(,)(N) = P,(NI XI, . . a ,  X,) = 

PfilXl, Xnl . 
The numerator is 

E ~ " { X I ,. - . ,Xn) + (1  - e)P,(N and X I ,  - .., X,). 

The denominator is 

I t  suffices to show that as n +m, with Om-probability one, 

Let n r 25. Except for a set of Om-probability a t  most 3/n2, 

by Lemma 4;except for another set of Om-probability a t  most l /n3,  

by Lemma 5, with ko= 0. Clearly, 

4. The second construction. The objects to be chosen are 

Nk, a weak neighborhood of 4 shrinking to 4 ,  

$kt a finite set of strings of positive integers of length k, with Om{ S k )> 1 - 1/k2, 

pk ,  a tail-free prior whose cuts are, from index k + 1 on, uniformly distributed and 


pk +6 ,  rapidly as k +m. 

The Nk may be chosen arbitrarily, subject to the given conditions; Sk may also be 
chosen arbitrarily, subject to the conditions given. The choice of pk is inductive. Fix k r 
1, and suppose p, chosen for j < k; this is vacuous if k = 1. Now choose pk SO close to 6 ,  
that the following conditions are satisfied: 

(3)  P,,(NjIXl, . - . ,X j ]> 1 - ( l / j )  on Sj for j 5 k 

Condition (3 )is feasible because Sj  is finite; for any string xl, . - .  , x,, the numerator and 
denominator of 

P,,{Nj and XI  = xl, - , X, = xj) 

PPk{X1= X l ,  . - - ,x, = x,) 


are both nearly 4-1 XI = xl, . - ,Xj = xj ) because 4 E N, and pk is nearly 6,. Likewise for 
(4).To get pk near 6 ,  from the point of view of (3 )and (4) ,make the first k cuts in pk 

practically equal to the corresponding cuts in 4 ; the remaining cuts are to be uniformly 
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distributed over [0, 11.The first k cuts can have continuous, strictly positive densities: but 
these densities will be highly concentrated. 

This completes the construction, and Proposition 2 must now be proven. It is helpful 
to rewrite (3), interchanging j and k: 

(5) PJNk 1 XI ,  . . . X k )> 1 - (1112) on Sk for all j r k. 

The following two observations will be helpful: 

(6) 	 For k r 1000, simultaneously for all j < k, 

except on a set Qk of Om-probability at  most l/k3. 

(7) 	 For k r 3, 4"{Xl , .. . ,Xk) > exp(-2k4) except on a set Rk of Om-probability a t  most 
3/k2. 

Relation (6) follows from Lemmas 1and 6, with k for n and pj for v. Let Qkbe the event 
that Mk 5 exp(k/4 log k). As Lemma 1shows, Om(Qk) Il/k3. Off Qk, by Lemma 6, 

provided k is large; 1000 will do. This completes the proof of (6), and relation (7) is just 
Lemma 4. 

The next step is to estimate the ratio 

P, (N  and X I ,  . . . , X k )
P , (NIXi7  Xk] = 

p p ( x l , " ' ,  xk) 

for N = Nk7and k r 1000. As will be seen, this ratio exceeds (k - l ) / (k  + 1)except on a 
set of Om-probability at  most 3/k2. Since Nk shrinks to 6, ,  the proposition follows. 

The denominator in (8) is ak + bk, where 

1 
, Xk), bk = Cjm=k j(j-pfijIxl, . - .+ 

Likewise, the numerator is ab + bh, where 

ah = Cp:,' 
j(j 
-1 

+ 1) 
P,,(Nk and X I ,  . . . ,  Xk), 

1
bh = Cj"=k  -P,,(Nh and X I ,  .. . , X k ) .

j ( j  + 1) 

The terms ak and a b are negligible: 

(9) On Sk - Qk - R k ,  a set of Om-probability a t  least 1-5/12', 

. xkl<i& P,,{Nk and X I ,  . . . 

Indeed, by (4) and (7), on Sk- Rk 

1 	 1 1 
k(k + 1) 

P,,.(Nk and X I ,  . . . , Xk) > 2 k(k+xP(-2k4). 

BY (6), except on Q k ,  



INCONSISTENT BAYES ESTIMATES 

Since Om(Qk] < l/k3 and Om(Rk] < 3/k2, the proof of (9) is complete. 
In particular, ah <bk/k on Sk- . - Rk, SO 

a; + bb bb k b'k 
P,(Nklxi, x,,] =- >->--. - a ,  

ah + bk ak + bk k + 1 bk 

6.  Dirichlet priors. This section indicates the modifications needed to obtain 
Propositions 1and 2 for Dirichlet priors. A Dirichlet prior jt is characterized by a measure 
a on the positive integers, of arbitrary finite mass 11 a 1 1 .  The expected value of jt is a/ 11 a 11 
in the sense 

S h(i)jt(dh) = ll a I I .  , 

The Dirichlet is a tail-free prior with independent beta cuts: 

The variability of jt around its expected value decreases as 11 a 11 increases. For example, 
the variance of X(i) under p is 

Dirichlet examples for Propositions 1 and 2 may be constructed as follows: For 
Proposition 1, choose a ( i )  = 2-', with 0 and 4 as given in Section 2. The argument is 
essentially as given in Section 3; 'Lemma 5 follows from (10). 

For the second construction, a sequence of a's is needed; index them by j so aj(i) is the 
mass that the j th  measure a assigns to the integer i. Again, 8 and I$ are as given in Section 
2. Let 11 a, 11 be large and aj(i)/II a, 11 = +(i)  for i = 1, 2, . .,j .  For i >j, let aj(i)/II a, 11 = 
2-'. The rest of the argument is as given in Section 4. 

The examples just presented have parameter measures with exponential tails. This is 
not crucial. Let u be Dirichlet with parameter a, where a ( i )  = l / i2 is the mass assigned to 
the integer i r 1.To  get the analogue of Proposition 1, take 

8(i) = +(i)  = l/i(log i)(log log i)2 for all large i. 

Assume (1) is satisfied. Let XI, X2, . . . be independent with common distribution 8 and 
Mn = max(X1, . ..,X,]. As before, 

I t  will be seen that ( l /n)  log log M, is asymptotically distributed as 1/V, where V has an 
exponential distribution. Thus, M, is of size exp[exp(n/V)]. On the other hand, with high 
probability, 

+"(X1, . . .,X,] r +(M,)l.' r 1/Mk2 >> I1 a IIIMi 

by an argument to be sketched. The main idea is that flm(X, > t ]  = l/log log t as t + 03, 

in the sense that the ratio converges to one. So Xj can be replaced for present purposes 
by exp[exp(l/Uj)], the Uj being independent and uniformly distributed over [0, 11. Let 
U(l,, . . . , U(,, be the order statistics. As usual, these can be realized as 

Vl/S, (Vl + Vz)/S, .. . , (Vl + v2 + .. . + Vn)/S 

where Vl, V2, + ' ,  V,, Vn+l are independent exponential random variables with sum S. 
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Now S = =n and in effect Mn is e~p[exp( l /U(~ , ) ]  exp[exp(S/Vl)], explaining the assertion 
about (l/n)log log Mn. Also 

with high probability. Now 25, log d(Xj) behaves like C&lexp(l/U,) and with high 
probability is bounded above by -1.1 log d(M,,), that is, 

as required. The argument just sketched gives p'"' -+ 6, in 8" probability. We do not know 
if the convergence is a.e. A similar modification gives the analogue of Proposition 2, again 
in probability. 

To  get inconsistent behavior with a mixture of Dirichlet priors, the masses of the 
parameter measures must tend to infinity. On the other hand, if the masses stay bounded, 
the Bayes' estimates are consistent. A sharp version of this result will now be presented. 
For simplicity, discrete mixtures and discrete data are colisidered first. 

Let X and A'  be probabilities on the positive integers. Let 

(12) I A - A'  I '  = Cgl [h(i) - X'(i)I2. 

Let p be Dirichlet with parameter a ,  abbreviated p = =(a) .  Let 11 a 11 be the mass of a, 
a n d & =  a/IIaII, SO 

J ~ ( i ) p ( d h )= &(i). 

The next two bounds are straightforward. 

LEMMA7. If p = =(a) ,  then $ I X - & 1 'p(dh) I111+ 11 a 11 .  

PROOF. Use (10) and (11). O 

LEMMA8. If p = D ( a  + P), then 

PROOF. Plainly, 

The p-integral of the first term may be estimated by Lemma 7, and is a t  most 211 + 
11 a + p 11 5 211 + 11 P 1 1 .  For the second term, 

because Ci a2( i )5 11 a 11 ', and likewise for P. Of course 11 a + P 11 r 11 a 11 + 11 P 11 '. 11 

PROPOSITION3. For each j, let ajbe a measure on the positive integers with finite mass 
11 a 11 5F <w. Suppose that ajassigns positive mass a, ( i )  to each positive integer i. Let a (  j )  
> 0 with z ja ( j )  = 1. Let pj = D(aj)  and p = C j  a(j)p, .  Let 0 be any probability on the 
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positive integers. Then (19,p )  is consistent. Indeed, let X I ,  X2, . be independent with 
common distribution 8. Let d, be the empirical distribution 

where 6, is point mass at x. Then 

Thus, the posterior concentrates near the empirical. 

PROOF.By Bayes' rule, 

p ( n )  = Cj ~ , p ) ~ '  

where the weights wj sum to 1 but are data-dependent: 

wj = a( j )P, , (A and X I ,  . . ., XnJ /Cja ( j )P , , j (Aand X I ,  ..., X,]. 

Thus, 

As usual, 

Now use Lemma 8 on each summand, with a, for a and nd, for p. O 

The argument extends to continuous mixtures of Dirichlet priors defined for general 
spaces: if 11 a .  11 is bounded the mixture is consistent. Continuous mixtures are easily 
handled by standard arguments: j is replaced by a general index and a by a general 
probability. Continuous data are harder to handle, because the L2 norm on probabilities 
defined in (12)does not generalize. One way to proceed is by discretization. Suppose the 
observation space I is a general separable measure space. Let d = UF=l Ai be a partition 
of I. Let 

I A - A' I ./ = (CP"=l[X(Ai)- A'(Ai)]2]1'2. 

This defines a semi-norm on the probabilities, and (14) holds with I I replaced by I I ,+ 
The argument is completed by considering a generating sequence of partitions d 

REMARK. While the class of finite mixtures of Dirichlet priors D ( a )  is dense in all 
priors, the class of mixtures with 11 a 11 I. F is not dense. 
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