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Abstract. Bounded IND-CCA security (IND-qCCA) is a notion similar
to the traditional IND-CCA security, except the adversary is restricted
to a constant number q of decryption/decapsulation queries. We show in
this work that IND-qCCA is easily obtained from any passively secure
PKE in the (Q)ROM. That is, simply adding a confirmation hash or
computing the key as the hash of the plaintext and ciphertext holds an
IND-qCCA KEM. In particular, there is no need for derandomization
or re-encryption as in the Fujisaki-Okamoto (FO) transform [15]. This
makes the decapsulation process of such IND-qCCA KEM much more
efficient than its FO-derived counterpart. In addition, IND-qCCA KEMs
could be used in the recently proposed KEMTLS protocol [29] that re-
quires IND-1CCA ephemeral key-exchange mechanisms or in TLS 1.3.
Then, using similar proof techniques, we show that CPA-secure KEMs
are sufficient for the TLS 1.3 handshake to be secure, solving an open
problem in the ROM. In turn, this implies that the PRF-ODH assump-
tion used to prove the security of TLS 1.3 is not necessary and can be
replaced by the CDH assumption in the ROM. We also highlight and
briefly discuss several use cases of IND-1CCA KEMs in protocols and
ratcheting primitives.

1 Introduction

As the NIST standardization process for post-quantum (PQ) public-key cryp-
tography progresses, studying how these new PQ schemes could be integrated
into existing protocols has become a hot topic. In particular, the newly adopted
TLS 1.3 in its standard form is already “PQ-obsolete” in the sense that only
traditional Diffie-Hellman (DH) key-exchange is supported. Indeed, as most PQ
schemes come into the form of Key-Encapsulation Mechanisms (KEMs) and not
Key-Exchange (KEX) such as DH, TLS 1.3 needs modifications to be quantum-
resistant.

Several implementations of PQ TLS 1.3 have already been experimented, the
most well-known one surely being the OQS-OpenSSL project [1]. This library
implements a TLS handshake that supports KEMs and hybrid cryptography (i.e.
the final shared secret is a combination of a DH secret and a KEM secret/key).
The changes compared to the standard version of the TLS 1.3 handshake are
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minimal. That is, the client (resp. server) DH share is replaced by a public-key
(resp. a ciphertext encapsulated under the public-key), and the shared secret is
the key encapsulated in the ciphertext. Several works have analysed the perfor-
mance and implementation challenges of OQS-OpenSSL (e.g. [9,25]).

More recently, based on the observation that (PQ) KEM public-
keys/ciphertexts are usually more compact than (PQ) public-keys/signatures,
Schwabe et al. [29] proposed KEMTLS as a variant of the TLS 1.3 handshake.
The main difference between both protocols is that KEMTLS uses a KEM for
(implicit) server authentication instead of a signature. This reduces the overall
bandwidth of the handshake and the computation time on the server-side. Thus,
two KEMs are used in KEMTLS: one for establishing an ephemeral shared se-
cret and the other one to authenticate the server. While the latter needs to be
IND-CCA secure as it uses long-term keys, the authors showed that IND-1CCA
security is sufficient for the former KEM for the whole handshake to be secure.
That is, the KEM needs to be secure against an adversary that can make a unique
decapsulation query. Similarly, in the security proof of TLS 1.3 handshake by
Dowling et al. [12], DH key-exchange can be replaced by an IND-1CCA KEM
and the proof would still go through.

However, in KEMTLS or PQ implementations of TLS 1.3 (e.g. [1]), the
ephemeral KEMs are implemented with IND-CCA KEMs, which are usu-
ally obtained by applying the Fujisaki-Okamoto (FO) transform or a variant
(e.g. [15,20]) on an OW/IND-CPA public-key encryption scheme (PKE). The
FO construction re-encrypts the decrypted plaintext during decapsulation, mak-
ing it an expensive operation. This motivates the present work, which studies
whether IND-1CCA KEM can be obtained from CPA-secure PKEs through a
more efficient transform than FO (in the ROM). We reply by the affirmative by
showing that IND-1CCA KEMs with much faster decapsulation than FO-derived
IND-CCA KEM can be obtained from any CPA-secure PKE. Using similar tools,
we also study the security of the PQ TLS 1.3 handshake when the KEM used
for key exchange is only CPA-secure.

Our contributions

We show how to build an efficient IND-qCCA KEM (i.e. the adversary can
only make q decapsulation queries) from any OW-CPA PKE in the ROM. The
bound has a loose factor of 2q, making it insecure or impractical for large q.
However, such construction is sufficient to build an efficient IND-1CCA KEM
from any OW-CPA public-key encryption scheme. The transform simply sends
a confirmation hash along the ciphertext encrypting the seed. In addition, we
prove the security of this construction in the QROM as well.

Such a transform might be useful in several applications such as the KEMTLS
protocol [29] mentioned above, PQ variants of TLS 1.3 or ratcheting, as discussed
in Section 5.

Similarly, we show that deriving the key as K := H(m, ct), where m is the
seed encrypted in the ciphertext ct, holds an IND-qCCA KEM in the ROM. The
bound is worse compared to the first transform, having a ≈ q2q

H factor, where qH
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is the number of queries an adversary can make to the random oracle H. The
intuition is that any decapsulation query that returns H(m, ct) with ct 6= ct∗

does not help much the adversary to recover the real key H(m∗, ct∗) due to the
independence of RO values. However, each query to the decapsulation oracle still
leaks a little information (such as equality between decrypted values), leading
to the ≈ q2q

H factor.
Compared to the FO transform and its variants, our CPA-to-qCCA trans-

forms offer several advantages. The main one is a significant speed boost in
decapsulation, as there is no need for re-encryption. Depending on the cost of
encryption of the underlying scheme, the difference can be large. For instance,
removing the re-encryption check in the optimized version of the isogeny-based
scheme SIKE [21] cuts by more than 50% the decapsulation time (32235377
vs 73282449 cycles for SIKEp434 compressed on Ubuntu 21.04 with 2.8GHz
Intel Core i7-1165G7). Another interesting feature of our transform is that we
do not need to de-randomize the encryption (i.e. computing the random coins
for encapsulation as the hash of the message/seed), removing the need for an
additional random oracle.

We then consider the PQ TLS 1.3 handshake as it is implemented in
OQS-OpenSSL [1]. Based on the observation that the key-schedule computes
the keys as key-derivation functions (KDFs) applied on the shared secret and
(the hash of) the transcript so far (including the ciphertext), we prove that if the
KEM is OW-CPA secure, then the handshake is secure in the MultiStage model
of Dowling et al. [12]. The proof is inspired by the proof of security of our second
transform. Note that this result holds in the ROM (the KDFs/hash function
are assumed to be ROs) and the security bound is very much “non-tight”. Still,
this shows that CPA-secure KEMs are sufficient for the TLS 1.3 handshake
to be secure, solving an open problem raised by several authors (e.g. [12,25]).
Then, since one can consider DH as a KEM, this implies that TLS 1.3 is secure
as long as the computational Diffie-Hellman (CDH) problem is hard, showing
that the PRF-ODH assumption used in the original proof [12] is not necessary
(in the ROM). We note that this last result can also be derived from the fact
that DH as used in TLS 1.3 is a IND-1CCA KEM in the ROM, assuming that
CDH is hard. We prove this in Appendix C.

Finally, in Section 5, we discuss possible use cases of IND-qCCA in the con-
text of communication protocols and ratcheting primitives. In particular, we note
that IND-1CCA security is sufficient in many recent applications as the trend is
to move to forward secure schemes, which discard key pairs after one use.

Remark on IND-CPA vs IND-1CCA

We note that plain IND-CPA PQ schemes are often not IND-1CCA. In partic-
ular, it is stated in Section 4.3 of the KEMTLS paper [30]:
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“We leave as an open question to what extent non-FO-protected post-quantum
KEMs may be secure against a single decapsulation query, but at this point

IND-CCA is the safe choice.”

The answer to this question obviously depends on how the “non-FO protected”
IND-CPA PKE is used as a KEM. However, if it used in the trivial way
(i.e. m←$M, K := H(m), ct := enc(pk,m)), the resulting KEM can usually
be broken with 1 query for most of the PQ schemes. The adversary receives
K∗, ct∗ := enc(pk,m∗), queries ct∗+ δ and gets back H(m∗) with high probabil-
ity, if δ is “small”. Then, it can just compare whether H(m∗) = K∗ or not and
break IND-1CCA security. The reaction attacks (e.g. [13]) requiring thousands
of queries mentioned in the same paper [30] are key-recovery attacks, not distin-
guishing attacks. The simple distinguishing adversary given above actually gives
a good intuition of why adding a confirmation hash H ′(m, ct) along the cipher-
text as in our first transform holds a IND-qCCA KEM. In order to submit a
valid decapsulation query, the adversary must compute H ′(m, ct) with ct 6= ct∗.
Hence, the adversary itself needs to query H ′(m, ct) beforehand, thus it knows
m and the decapsulation query is (nearly) useless.

Related work

The notion of bounded IND-CCA (i.e. IND-qCCA) has been studied in several
works. Cramer et al. [8] defined IND-qCCA and showed that one can build
an IND-qCCA PKE from any CPA-secure PKE in a black-box manner in the
standard model, using one-time signatures. While this construction is valid in
the standard model and ours in the ROM only, their reduction is inefficient
compared to FO transforms, which we aim to improve. Following their work,
Peirera et al. [26] built a more efficient IND-qCCA PKE based on the CDH
assumption and Yamakawa et al. [33] proposed other constructions based on the
factoring and bilinear CDH assumptions. As far as we know, we are the first
to note that a IND-qCCA KEM can be obtained from any CPA-secure PKE
through a very simple and efficient transform in the ROM.

Starting from the original Fujisaki-Okamoto transform [14,15], many works
have been dedicated to building variants of FO with tighter security bounds in
the QROM (e.g. [20,4,23,28]). While these are CPA-to-CCA transforms, ours
guarantee qCCA security only but at a lesser computational cost.

Dowling et al. [12] proved the security of the standard TLS 1.3 handshake
in their MultiStage security model. We extend their result by showing that TLS
1.3 security still holds if the DH KEX is replaced by a CPA-secure KEM (in
the ROM). In turn, this also implies that the CDH assumption is sufficient for
proving the security of the original TLS 1.3, which was based on the PRF-ODH
assumption so far. In two more recent works, Diemert et al. [11] and Davis et
al. [10] aimed at proving a tighter security bound for TLS 1.3. Their proofs are
valid in the ROM and are based on the Strong Diffie-Hellman (SDH) assumption.
Our result on TLS 1.3 is complementary to theirs in the sense that we prove
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that TLS security holds under a weaker assumption but with a looser security
bound.

Brendel et al. [5] studied the PRF-ODH assumption. In particular, they
showed that PRF-ODH is hard if the SDH assumption holds in the ROM. The
PRF-ODH notion considered in their work is generic as the adversary can query
two types of “decapsulation” oracles multiple times. On the other hand, if we
restrict ourselves to the notion where the adversary can make a unique query
(which is sufficient for TLS 1.3 security), we show in App. C that CDH hardness
is sufficient.

Finally, following the KEMTLS paper [29], several recent works used the
notion of IND-1CCA KEM to build secure protocols (e.g. [19,31,6]), showing
the growing importance of such a notion.

2 Preliminaries

2.1 Notation

For A a randomized algorithm, we write b←$A to indicate b is set to the value
output by A. Similarly, if Ψ (resp. X ) is a distribution (resp. a set), then x←$Ψ
(resp. x←$X ) means that x is sampled uniformly at random from Ψ (resp. X ).
We denote by 1P the indicator function which returns 1 if the predicate P is
fulfilled and 0 otherwise. We write [n] the set {1, . . . , n}. For A an algorithm,
we write A ⇒ b to denote the event A outputs b. Finally, in a game, we write
abort to mean that the algorithm is stopped.

2.2 Public-Key Encryption scheme

A Public-Key Encryption (PKE) scheme is defined as follows.

Definition 1 (Public-Key Encryption). A Public-Key Encryption scheme
over a domain M is composed of three algorithms gen, enc, dec:

• (pk, sk)←$ gen(1λ): The key generation algorithm takes the security param-
eter as input and outputs the public key pk and the secret key sk.
• ct←$ enc(pk, pt): The encryption algorithm takes as inputs the public key pk

and a plaintext pt ∈M and it outputs a ciphertext ct.
• pt′ ← dec(sk, ct): The decryption procedure takes as inputs the secret key sk

and the ciphertext ct ∈ C and it outputs a plaintext pt′ ∈M∪ {⊥}.

The gen and enc are probabilistic algorithms that can be made deterministic by
adding random coins as inputs. The decryption procedure is deterministic.

Correctness. We say a PKE scheme is δ correct if for any ppt adversary A
playing the game CORR defined in Fig. 1, we have

Pr[CORRPKE(A)⇒ 1] ≤ δ(λ)

where λ is the security parameter, we omit it from now on for the sake of sim-
plicity.
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CORRPKE(A)

(pk, sk)←$ gen(1
λ

)

pt← A(pk, sk)

ct←$ enc(pk, pt)

return 1dec(sk,ct)6=pt

Fig. 1: Correctness game.

OW-ATKPKE(A)

(pk, sk)←$ gen(1
λ

)

pt∗ ←$M

ct∗ ← enc(pk, pt∗)

pt′ ← AO
ATK

(pk, ct∗)

return 1pt′=pt∗

Oracle OPCO(pt, ct)

pt′ ← dec(sk, ct)

return 1pt′=pt

ATK CPA PCA

OATK ⊥ OPCO

Fig. 2: One-Wayness games.

Plaintext Checking. We recall the notions of One-Wayness under Chosen Plain-
text Attacks (OW-CPA) and Plaintext-Checking Attacks (OW-PCA).

Definition 2 (One-Wayness and Plaintext Checking). Let M be a finite
message space, PKE a PKE scheme over M and we consider the games defined
on the left in Fig. 2 with the different oracles as defined in the table on the
right of Fig. 2. Then, PKE is OW-ATK, for ATK ∈ {CPA,PCA}, if for any ppt
adversary A we have

Advow-atk
PKE (A) = Pr [OW-ATKPKE(A)⇒ 1] = negl(λ)

where Pr [OW-ATKPKE(A)⇒ 1] is the probability that the adversary wins the
OW-ATK game.

2.3 Key Encapsulation Mechanism (KEM)

A Key Encapsulation Mechanism is defined as follows.

Definition 3 (Key Encapsulation Mechanism). A KEM over K is a tuple
of three algorithms gen, encaps, decaps:

• (pk, sk)←$ gen(1λ): The key generation algorithm takes as inputs the security
parameter and it outputs the public key pk and the secret key sk.

• ct,K ←$ encaps(pk): The encapsulation algorithm takes as inputs the public
key pk and it outputs a ciphertext ct ∈ C and a key K ∈ K.

• K ′ ← decaps(sk, ct): The decapsulation procedure takes as inputs the secret
key sk and the ciphertext ct ∈ C and it outputs a key K. If the KEM allows
explicit rejection, the output is a key K ∈ K or the rejection symbol ⊥. If
the rejection is implicit, the output is always a key K ∈ K.
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IND-(q)CCAKEM(A)

(pk, sk)←$ gen(1
λ

)

b←$ {0, 1}

ct∗, K0 ←$ encaps(pk)

K1 ←$K

b
′ ← AO

Dec
(pk, ct∗, Kb)

return 1b′=b

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries : return ⊥ // If IND-qCCA

K
′ ← decaps(sk, ct)

return K
′

Fig. 3: Indistinguishability games.

The gen and encaps are probabilistic algorithms. The randomness can be made
explicit by adding random coins as inputs. The decapsulation function is deter-
ministic.

Indistinguishability security. KEM indistinguishability is defined as follows.

Definition 4 (KEM Indistinguishability). We consider the games defined
in Fig. 3. Let K be a finite key space. A KEM scheme over K KEM =
(gen, encaps, decaps) is IND-CCA (resp. IND-qCCA) if for any ppt adversary
A (resp. any ppt A limited to q decapsulation queries) we have

Adv
ind-(q)cca
KEM (A) =

∣∣∣∣Pr [IND− (q)CCAKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl(λ)

where Pr [IND− (q)CCAKEM(A)⇒ 1] is the probability that A wins the IND-
(q)CCAKEM(A) game defined in Fig. 3.

We can also define OW-CPA for KEMs, which is similar to the equivalent notion
for PKE.

Definition 5 (KEM OW-CPA). A KEM scheme KEM =
(gen, encaps, decaps) is OW-CPA if for any ppt adversary A we have

Advow-cpa
KEM (A) = Pr

[
A(pk, ct∗)⇒ K : (pk, sk)←$ gen(1λ); (K, ct∗)←$ encaps(pk)

]
= negl(λ) ,

where the probability is taken over the randomness of the public-key generation,
encapsulation and the adversary A.

3 OW-CPA to IND-qCCA transforms

We first prove the following simple lemma.

Lemma 1. Let PKE be a PKE. Then, for any ppt OW-PCA adversary A making
at most q queries to the PCO oracle, there exists a OW-CPA adversary B s.t.

Advow−pca
PKE (A) ≤ 2q · Advow−cpa

PKE (B) .
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gen()

(pk, sk)←$ genp()

return (pk, sk)

encaps(pk)

σ←$M
ct0 ←$ encp(pk, σ)

tag← H ′(σ, ct0)

K ← H(σ)

return K, (ct0, tag)

decaps(sk, ct)

(ct′0, tag
′)← ct

σ′ ← decp(sk, ct′0)

if H ′(σ′, ct′0) 6= tag′ :

return ⊥
return H(σ′)

Fig. 4: TCH transform.

Proof. We can simply see that the PCO oracle returns 1 bit of information, thus
PKE loses at most q bits of security when a PCO oracle is available. More for-
mally, given A, one can build B as follows. It passes its input to A and simulates
the PCO oracle by sampling a response at random in {0, 1}. Then, it returns the
response of A. Its probability of success is Advow−cpa

PKE (B) ≥ 1
2qAdv

ow−pca
PKE (A), as

the probability the q responses are correct is 1
2q . ut

We consider the transform TCH given in Fig. 4. This construction takes a
PKE PKE = (genp, encp, decp) and outputs a KEM (gen, encaps, decaps). Note
that TCH is basically the REACT transform [24] without the asymmetric part
(to get a KEM instead of a PKE).

We now show that the resulting KEM is IND-qCCA assuming the underlying
PKE is OW-PCA.

Theorem 1. We consider two random oracles H,H ′ : {0, 1}∗ 7→ {0, 1}n. Let
KEM be the KEM resulting from applying the TCH transform to a δ-correct PKE.
Then, for any IND-qCCA adversary A that makes at most qH (resp. qH′) queries
to H (resp. H ′), there exists a OW-PCA adversary B s.t.

Advind−qcca
KEM (A) ≤ (q + qH′ + 1)2

2n
+ δ +

q

2n
+ (qH + qH′) · Advow−pca

PKE (B) ,

where B makes at most q queries to its plaintext-checking oracle. In addition, if
PKE is a deterministic encryption scheme, the bound becomes

Advind−qcca
KEM (A) ≤ (q + qH′ + 1)2

2n
+ δ +

q

2n
+ Advow−pca

PKE (B) .

Proof. We proceed by game hopping, the sequence of games is presented in
Fig. 5. Let LH (resp. LH′) be the list of queries (x, h) made to the RO H (resp.
H ′) s.t. H(x) = h (resp. H ′(x) = h). In addition, let the challenge ciphertext be
ct∗ = (ct∗0, h

∗), and σ∗ be s.t. encp(pk, σ∗) = ct∗0. We start with game Γ 0 which
is the IND-qCCA game, except we abort if the adversary finds a collision on H ′

(i.e. H ′(x) = H ′(x′) for x 6= x′ and (x, h), (x′, h) ∈ LH′). This happens with

prob. at most (q+qH′+1)2

2n and we have

∣∣Pr [IND− qCCAKEM(A)⇒ 1]− Pr[Γ 0(A)⇒ 1]
∣∣ ≤ (q + qH′ + 1)2

2n
.
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Γ 0−3(A)

(pk, sk)←$ gen

b←$ {0, 1}

σ
∗ ←$ {0, 1}n

ct∗0 ←$ encp(pk, σ∗)

K0 ← H(σ
∗
);h
∗ ← H

′
(σ
∗
, ct∗0)

K1 ←$K

ct∗ ← (ct∗0 , h
∗
)

b
′ ← AO

Dec
(pk, ct∗, Kb) // Γ

0
-Γ

1

b
′ ← AO

Dec2
(pk, ct∗, Kb) // Γ

2
-Γ

3

if query : abort // Γ
3

return 1b′=b

H(σ)

if ∃h s.t. (σ, h) ∈ LH :

return h

if σ = σ
∗

: query← true // Γ
3

h←$ {0, 1}n

LH ← LH ∪ {(σ, h)}
return h

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗

: // Γ
1
-Γ

3

return ⊥ // Γ
1
-Γ

3

σ
′ ← decp(sk, ct′0)

if H
′
(σ
′
, ct0) 6= h :

return ⊥

return H(σ
′
)

H ′(σ, ct)

if ∃h s.t. ((σ, ct), h) ∈ LH′ :

return h

if σ = σ
∗

: query← true // Γ
3

h←$ {0, 1}n

LH′ ← LH′ ∪ {((σ, ct), h)}

if ∃x, x′, h s.t. x 6= x
′

∧ (x, h) ∈ LH′

∧ (x
′
, h) ∈ LH′ :

abort

return h

Oracle ODec2(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗

:

return ⊥
if ∃σ s.t. ((σ, ct0), h) ∈ LH′ :

if OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 5: Sequence of games for the proof of Thm 1. OPCO is defined as in the
OW-PCA game (see Fig. 2).

Γ 1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever ct∗0 or h∗ is
queried (note that both cannot be submitted at the same time). This game is
the same as Γ 0 except if the oracle in Γ 0 does not return ⊥ on such queries. Let
bad be this event. We split this into two cases:

• ODec(ct∗0, h 6= h∗) 6= ⊥. This happens only if

H ′(dec(sk, ct∗0), ct∗0) = h 6= h∗ = H ′(σ∗, ct∗0) .

In turn, this implies that dec(sk, ct∗0) 6= σ∗ and thus it is a correctness error.
Such an error happens at most with probability δ.

• ODec(ct0 6= ct∗0, h
∗) 6= ⊥. It means that h∗ = H ′(σ∗, ct∗0) = H ′(σ′, ct0), with

σ′ ← decp(sk, ct0), which is not possible since ct0 6= ct∗0 and we assume no
collision occurs.

Therefore, overall Pr[bad] ≤ δ and

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ Pr[bad] ≤ δ .
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Γ 2 : We modify the decapsulation oracle into another oracle ODec2 as follows.
On a decapsulation query (ct0, h) (with σ′ ← dec(sk, ct0)):

1. If there is no ((∗, ct0), h) in LH′ : return ⊥. This differs from the previous
game only if h = H ′(σ′, ct0) but (σ′, ct0) was never queried to H ′. As the
RO values are uniformly distributed, this happens at most with probability
1

2n .
2. If ((σ, ct0), h) ∈ LH′ for some σ: If OPCO(σ, ct0) := 1dec(sk,ct0)=σ = 1, return
H(σ). Otherwise, return ⊥. This perfectly simulates the previous oracle as
OPCO(σ, ct0) = 1 iff σ = σ′ and we know h = H(σ = σ′, ct0).
Note that there is at most one σ s.t. ((σ, ct0), h) ∈ LH′ as we assume no
collision occurs. In particular, it means that OPCO is called at most once
every decapsulation query.

Therefore, by a union bound we get

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ q

2n
.

Γ 3 : Finally, we abort whenever A queries σ∗ to H or (σ∗, ·) to H ′. Let this event
be query. Note that A could also learn the value of H(σ∗) through a query to
ODec2. However, the latter oracle would return H(σ∗) only if A queried H ′(σ∗, ·)
before (thus triggering query).

Then, we can build a OW-PCA adversary B (shown in Fig. 6) that perfectly
simulates A’s view as long as query does not happen. More precisely, B can
simulate the decapsulation oracle using its PCO oracle. Then, on input (pk, ct∗0),
B runs A(pk, (ct∗0, h

∗),K∗), where h∗ and K∗ are picked at random. Unless query
occurs, A cannot distinguish between these random h∗,K∗ and the real ones.
Finally, if query occurs, B can recover σ∗ with probability 1

qH+qH′
by sampling

a random σ from S = {σ : (σ, ∗) ∈ LAH ∨ ((σ, ∗), ∗) ∈ LH′}, where LAH is the set
of queries to H made by A. Thus,

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ Pr[query] ≤ (qH + qH′) · Advow−pca
PKE (B)

where B makes q query to the PCO oracle. Note that if PKE is deterministic,
B can check whether enc(pk, σ) = ct∗0 for all σ ∈ S to find σ∗. This fails only if
there exists σ′ 6= σ∗ s.t. enc(pk, σ′) = ct∗0. In turn this implies that there exists
σ ∈ S ∪ {σ∗} that would break the correctness, but such an event is already
covered by the previous δ factor. In this case, we obtain

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ Pr[query] ≤ Advow−pca
PKE (B) .

Finally, since A cannot query σ∗ to H anymore, it cannot distinguish between
a random key and H(σ∗). Hence, Pr[Γ 3 ⇒ 1] = 1

2 . Collecting the probabilities
holds the result. ut



On IND-qCCA security in the ROM and its applications 11

BO
PCO

(pk, ct∗)

init LH ,LH′ ← ∅

h
∗ ←$ {0, 1}n

K
∗ ←$ {0, 1}n

simulate H,H
′

for A with lazy sampling:

run AH,H
′,ODec2

(pk, (ct∗, h∗), K∗)

σ
′ ←$ {σ : σ ∈ LAH ∨ (σ, ∗) ∈ LH′}

return σ
′

Oracle ODec2(ct)

if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 or h = h
∗

:

return ⊥
if ∃σ s.t. ((σ, ct), h) ∈ LH′ :

if OPCO
(σ, ct0) : return H(σ)

return ⊥

Fig. 6: B adversary for the proof of Thm 1.

Corollary 1. We consider two random oracles H,H ′ : {0, 1}∗ 7→ {0, 1}n. Let
KEM be the KEM resulting from applying the TCH transform to a δ-correct PKE.
Then, for any IND-qCCA adversary A that makes at most qH (resp. qH′) queries
to H (resp. H ′), there exists a OW-CPA adversary B s.t.

Advind−qcca
KEM (A) ≤ (q + qH′)

2

2n
+ δ +

q

2n
+ (qH + qH′ + q)2q · Advow−cpa

PKE (B) .

If PKE is deterministic, we get

Advind−qcca
KEM (A) ≤ (q + qH′)

2

2n
+ δ +

q

2n
+ 2q · Advow−cpa

PKE (B) .

In particular, in the case of IND-1CCA (i.e. q = 1), if the underlying PKE
is OW-CPA the KEM obtained from the TCH transform is IND-1CCA with a
security loss of ≈ 1 bit compared to the OW-CPA advantage (if we omit the
other negligible terms). Finally, we note that as q is a constant that does not
depend on the security parameter (e.g. n) of the PKE, if the OW-CPA advantage
of the PKE is negligible, so is the KEM IND-qCCA one. However, in practice,
we would need to take n very large to guarantee security for more than a few
queries.

3.1 Security in the QROM.

We also show that the TCH transform is secure in the Quantum Random Oracle
Model (QROM) by proving that Thm 1 holds in the QROM.

Theorem 2. We consider two quantum random oracles H,H ′ : {0, 1}∗ 7→
{0, 1}n. Let KEM be the KEM resulting from applying the TCH transform to
a PKE. Then, for any IND-qCCA adversary A that makes at most qH (resp.
qH′) quantum queries to H (resp. H ′), there exists a OW-PCA adversary B s.t.

Advind−qcca
KEM (A) ≤ δ + 2(2qH′ + qH + q) ·

√
(2(2qH′ + q))q · Advow−pca

PKE (B)

where B makes at most q queries to its plaintext-checking oracle.
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gen()

(pk, sk)←$ genp()

return (pk, sk)

encaps(pk)

σ←$M
ct←$ encp(pk, σ)

K ← H(σ, ct)

return K, ct

decaps(sk, ct)

σ′ ← decp(sk, ct)

if σ′ = ⊥ : return ⊥
return H(σ′, ct)

Fig. 7: TH transform.

Oi(LH , ct)

sort LH according to query order :

LH = ((σi, cti),Ki)i∈{1,...,|LH |}

σ′ ← decp(sk, ct)

if σ′ = ⊥ : return ⊥d

for i ∈ {1, . . . , |LH |} :

if cti = ct and σ′ = σi :

return i

return ⊥

Fig. 8: Oi oracle for the proof of Thm 3.

Proof. We provide the proof in Appendix A. ut

Corollary 2. We consider two quantum random oracles H,H ′ : {0, 1}∗ 7→
{0, 1}n. Let KEM be the KEM resulting from applying the TCH transform to
a δ-correct PKE. Then, for any IND-qCCA adversary A that makes at most qH
(resp. qH′) queries to H (resp. H ′), there exists a OW-CPA adversary B s.t.

Advind−qcca
KEM (A) ≤ δ + 2(2qH′ + qH + q) · 2q

√
((2qH′ + q))q · Advow−pca

PKE (B) .

3.2 Hashing the plaintext and ciphertext

One can also wonder what is the leakage of the decapsulation oracle in the
ROM, when the key is simply the hash of the seed and the plaintext. That is, we
consider the simple PKE to KEM transform given in Fig. 7, which we call TH.
Note that this is the same transform as the one called U⊥ in [20]. We now show
that if q is small (logarithmic in the security parameter), then TH holds a secure
IND-qCCA scheme in the ROM, given that the underlying PKE is OW-CPA.

Theorem 3. We consider a random oracle H : {0, 1}∗ 7→ {0, 1}n. Let KEM
be the KEM resulting from applying the TH transform to a PKE PKE (which
never queries H). Then, for any IND-qCCA adversary A that makes at most
qH queries to H, there exists a OW-CPA adversary B s.t.

Advind−qcca
KEM (A) ≤ qH · ((qH + 1)(qH + 2))q · Advow−cpa

PKE (B) .
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Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥

σ
′ ← decp(sk, ct)

if σ
′

= ⊥ : return ⊥

return H(σ
′
, ct)

H(σ, ct)

if ∃h s.t. ((σ, ct), h) ∈ LH :

return h

h←$ {0, 1}n

LH ← LH ∪ {((σ, ct), h)}
return h

Oracle ODec′(ct)

if ct = ct∗ : return ⊥
if more than q queries : return ⊥
if ∃K s.t. (ct, K) ∈ LK :

return K

i← Oi
(LH , ct)

if i = ⊥d : return ⊥
if i 6= ⊥ :

((σi, cti), Ki)← LH [i]

return Ki // return i-th valued returned by H
′

K ←$ {0, 1}
LK ← LK ∪ {(ct, K)}
return K

H ′(σ, ct)

if ∃h s.t. ((σ, ct), h) ∈ LH :

return h

if ∃K s.t. (ct, K) ∈ LK :

if OPCO
(σ, ct) :

LH ← LH ∪ {((σ, ct), K)}
return K

h←$ {0, 1}n

LH ← LH ∪ {((σ, ct), h)}
return h

Fig. 9: Original and modified oracles for the proof of Thm 3.

If PKE is deterministic, we get

Advind−qcca
KEM (A) ≤ δ + ((qH + 1)(qH + 2))q · Advow−cpa

PKE (B) .

Proof. We start by defining an oracle Oi(LH , ct) (see Fig. 8). This oracle re-
turns the index i s.t. ((σi, cti),Ki) ∈ LH (we first sort LH according to some
fixed order) and cti = ct and decp(sk, cti) = σi. If such a i does not exist and
decp(sk, cti) = ⊥ it returns ⊥d, otherwise it returns ⊥.

Now we show how to simulate the IND-qCCA decapsulation oracle in the
ROM, using Oi and OPCO only. The original (resp. modified) oracles ODec and
H (resp. ODec′ and H ′) are on the left (resp. right) in Fig. 9. We now prove that
any IND-qCCA adversary cannot distinguish between the real and modified
oracles.

First, we show that the outputs of the ROs H and H ′ on any query (σ, ct)
have the same distribution, given the adversary’s view. We break this into four
subcases:
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• (σ, ct) was queried before to H (resp. H ′): In this case, both H and H ′ return
the value h returned on the previous similar query. Thus, we assume from
now on that every RO query made by the adversary is unique.

• ct was never queried to the decapsulation oracle before: In this case, both H
and H ′ return a random value h and store the query/response in LH .

• ct was queried to the decapsulation oracle before: In both cases (original
and modified oracles) one can see that if the decryption of ct either fails or
σ′ = decp(sk, ct) is different from σ, then the output of the decapsulation
oracle is independent of H(σ, ct) (and H ′(σ, ct)). In both cases, the ROs
sample a fresh value (H ′ will do so because OPCO(σ, ct) will output 0 in
this case, as σ 6= σ′ or the ciphertext is not valid). Now, if ct decrypts to
σ, the original decapsulation oracle outputs H(σ, ct). In the modified game,
the decapsulation oracle outputs a random K. Indeed, as we assume (σ, ct)
was never queried to H, Oi(LH , ct) outputs ⊥. Then, the modified RO will
output the same K, as OPCO(σ, ct) will verify. In both cases, the ROs output
the same value as the decapsulation oracle.

We now show that the decapsulation oracles ODec and ODec′ are indistinguish-
able. Let ct be the queried ciphertext and σ = decp(sk, ct).

• ct = ct∗: both oracles return ⊥.
• σ = ⊥: Both oracles return ⊥, as Oi(LH , ct) returns ⊥d.
• H(σ, ct) (resp. H ′(σ, ct)) was never queried. Both oracles return a random

value if ct was never queried, or a consistent value if it was. It is straightfor-
ward to see this is the case in the original oracle. In the modified oracle, as
H ′(σ, ct) was never queried, we have Oi(LH , ct) that returns ⊥. Thus, the
decapsulation oracle returns a random K if ct was not queried or a consistent
K if it was.

• H(σ, ct) (resp. H ′(σ, ct)) was queried and it output K. Both oracles return
K. In the modified decapsulation oracle, Oi(LH , ct) will output a valid i s.t.
H ′(σi, ct) = hi and hi is returned. Thus, the answer is consistent with the
RO.

Now we can prove the theorem by game hopping as before. We define Γ 0 as the
original IND-qCCA game.

Γ 1 : We modify the original IND-qCCA game into another game Γ 1 where
the random/decapsulation oracles are the modified ones (i.e. H ′ and ODec′)
described above. As shown, both games are indistinguishable and thus

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| = 0 .

Γ 2 : We replace the challenge key by a random one, as in the previous proof.
Then, similarly, the real key is indistinguishable from a random one unless
H(σ∗, ct∗) is queried. We define this event as query and

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ Pr[query] .
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B(pk, ct∗)

init LH ,LK ← ∅
init Lq ← []

K
∗ ←$K

run AH
′′,ODec′′

(pk, ct∗, K∗)

sample random query (σ
′
, ct′) made to H

′′

return σ
′

H ′′(σ, ct)

iq ← query number

if ∃h s.t. ((σ, ct), h) ∈ LH :

return h

if ∃K s.t. (ct, K) ∈ LK :

if Lq [ct] = iq :

LH ← LH ∪ {((σ, ct), K)}
return K

h←$ {0, 1}n

LH ← LH ∪ {((σ, ct), h)}
return h

Oracle ODec′′(ct)

if ct = ct∗ : return ⊥
if more than q queries : return ⊥
if ∃K s.t. (ct, K) ∈ LK :

return K

i←$ {1, . . . , qH ,⊥,⊥d}
if i = ⊥d : return ⊥
if i 6= ⊥ :

(cti, Ki)← LH [i]

return Ki // return i-th valued returned by H
′′

K ←$ {0, 1}
LK ← LK ∪ {(ct, K)}
Lq [ct]←$ {0, . . . , qH}
return K

Fig. 10: B adversary for the proof of Thm 3.

We can upper bound this probability by the advantage of a OW-CPA adversary
B against PKE. That is, given a IND-qCCA adversary playing game Γ 2, we
build an adversary B as shown in Fig. 10. One can see that if B was simulating
A with the H ′ and ODec′ oracles (instead of its own oracles H ′′ and ODec′′), the
simulation would be perfect as long as query did not occur. Then, whenever query
would happen, B would recover σ∗ with prob. 1

qH
. Now B does not simulate the

modified oracles perfectly but instead makes some guessing in its own oracles
H ′′ and ODec′′ :

• ODec′′ : In line 5, i is picked at random instead of being the returned value of
the Oi oracle. On each query the simulation is perfect with prob. 1/(qH + 2)
and overall with probability 1

(qH+2)q , as there are at most q queries to this

oracle. In line 11, we associate a random index to each ct s.t. (ct, ∗) ∈ LK .
• H ′′: In line 5, when (ct, ∗) ∈ LK , instead of querying the plaintext-checking

oracle we check whether the corresponding sampled index Lq[ct] is equal to
the query number. If it is, we reply with K s.t. (ct,K) ∈ LK otherwise we
proceed as before (i.e. as in H ′). Let’s assume w.l.o.g that each query to
H ′′ is unique. For each ct s.t. (ct, ∗) ∈ LK , there can be at most one query
(σ, ct) s.t. OPCO(σ, ct) returns 1 (it is when σ is the decryption of ct). Here,
B guesses beforehand which query it is (or if no such query will be made)
and gets the correct answer with prob. 1

qH+1 . Note that B needs to make one

guess per query to ODec′′ (not per query to H ′′). Overall, the probability H ′′

simulates correctly H ′ is 1
(qH+1)q .
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From this we can deduce that B correctly simulates Γ 2 with probability
1

((qH+1)(qH+2))q and wins the OW-CPA game with prob. at least 1
qH
· Pr[query].

Hence,

|Pr[Γ 1 ⇒ 1]−Pr[Γ 2 ⇒ 1]| ≤ Pr[query] ≤ qH ·((qH+1)(qH+2))q ·Advow−cpa
PKE (B) .

Note that when PKE is deterministic, in order to recover σ∗, B can check which
σ′ queried is s.t. enc(pk∗, σ′) = ct∗ instead of guessing. This works as long as
the challenge seed σ∗ and queried seeds are correct. If that is not the case, one
can build an adversary that wins the correctness game defined in Fig. 1. Note
that this adversary knows which will be the correct seed as it is given sk and the
PKE is deterministic. As the correctness advantage is upper bounded by δ, we
obtain that for deterministic PKEs the last inequality becomes

|Pr[Γ 1 ⇒ 1]−Pr[Γ 2 ⇒ 1]| ≤ Pr[query] ≤ δ+((qH +1)(qH +2))q ·Advow−cpa
PKE (B) .

Finally, in game Γ 2, the challenge key is always random and thus Pr[Γ 2 ⇒ 1] =
1
2 . Collecting the probabilities holds the result. ut

4 CPA-security is sufficient for TLS 1.3 in the ROM

We show in this section that a CPA-secure KEM is sufficient for the handshake
in TLS 1.3 to be secure in the ROM. The security bound is very loose, but this
still solves an interesting open problem. TLS 1.3 only supports DH key-exchange
but it can be trivially modified to support KEMs as done in several PQ variants
of TLS (e.g.[1,7]). That is, the client runs (sk, pk)←$ gen and sends pk as its
share (instead of gx). Then, the server runs K, ct←$ encaps and sends ct as its
secret share (instead of gy). Finally, the client runs K ← decaps(sk, ct) and the
shared secret is set to K. By abuse of language, we refer to this modified protocol
as TLS 1.3 in what follows. An overview of this modified handshake is given in
Fig. 14.

4.1 IND-1CCA-MAC

In order to show that a CPA-secure KEM is sufficient for TLS 1.3 to be secure,
we first introduce an intermediary notion of security for KEMs, called IND-
1CCA-MAC. This security definition has no application and will serve only as a
useful intermediary building block for the proof.

Definition 6 (IND-1CCA-MAC). We consider the games defined in Fig. 11.
Let K be the key space, G,H1, H2, H3, H4 and HD be key-derivation functions
with images in {0, 1}n, HT be a hash function with images in {0, 1}n, and MAC a
MAC scheme. A KEM scheme KEM = (gen, encaps, decaps) is IND-1CCA-MAC
if for any ppt adversary A we have

Advind-1cca-mac
KEM (A) :=

∣∣∣∣Pr [IND− 1CCA−MACKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl(λ)
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IND-1CCA-MACKEM(A)

b←$ {0, 1}
(pk, sk)←$ gen()

ct∗, K∗ ←$ encaps(pk)

n
∗ ←$ {0, 1}n

HS∗ ← G(K
∗
)

CHTS0 ← H1(HS∗, HT (ct∗, n∗))

SHTS0 ← H2(HS∗, HT (ct∗, n∗))

dHS0 ← H3(HS∗)

(CHTS1, SHTS1, dHS1)←$ {0, 1}3n

b
′ ← AO

Dec,ODec
MAC (pk, ct∗, n∗, (CHTSb, SHTSb, dHSb))

return 1b′=b

Oracle ODec((ct, n))

if more than 1 query : return ⊥

if (ct, n) = (ct∗, n∗) : return ⊥

K
′ ← decaps(sk, ct)

if K
′

= ⊥ : return ⊥

HS′ ← G(K
′
)

CHTS← H1(HS′, HT (ct, n))

SHTS← H2(HS′, HT (ct, n))

tkc ← HD(CHTS); tks ← HD(SHTS)

return (tkc, tks)

Oracle ODec
MAC(ct, n, tag, txt)

if more than 1 query : return ⊥

if (ct, n) = (ct∗, n∗) : return ⊥

K
′ ← decaps(sk, ct)

HS′ ← G(K
′
); SHTS← H2(HS′, HT (ct, n))

fkS ← H4(SHTS)

if MAC.Vrf(fkS , txt, tag) = true :

return HS′

return ⊥

Fig. 11: IND-1CCA-MAC game.

where Pr
[
IND− 1CCA−MACbKEM(A)⇒ 1

]
is the probability that A wins the

IND-1CCA-MACbKEM(A) game defined in Fig. 11.

In this game, the adversary receives a challenge ciphertext encapsulating a key
K, a nonce n∗, and either three secrets (CHTSb,SHTSb, dHSb) derived from K
through a key schedule, or three random secrets. Jumping ahead, these three
values are computed (nearly) in the same as way as their identically named
counterparts in the modified TLS 1.3 protocol. The adversary has also access to
two oracles that it can query at most once. The first is simply a decapsulation
oracle that applies a key schedule (similar to TLS’s) on the decapsulated key
and returns two secrets tkc and tks. The second oracle takes a ciphertext (which
must be different than the challenge ciphertext), a tag, and some data. Then,
the ciphertext is decrypted to recover a secret HS′ that is passed through a key
schedule to get a MAC key fkS . Finally, the oracle checks whether tag is a valid
MAC on the data with the key fkS . If this is the case it returns HS′, otherwise it
returns an error ⊥. Informally, this last oracle outputs the root secret HS if the
adversary can forge a valid tag corresponding to the tuple (ct, n). In the TLS
proof, this will be used to argue that if a participant can send a valid tag, it
should know the root secret HS.
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4.2 OW-CPA implies IND-1CCA-MAC

First, we briefly define the notion of MAC unforgeability we will need.

Definition 7 (MAC EUF-0T). Let MAC = (MAC.Vrf,MAC.Tag) be a mes-
sage authentication code scheme (MAC). We say MAC is EUF-0T if for any ppt
adversary A,

Adveuf−0t
MAC (A) := Pr[MAC.Vrf(K,M, T ) = 1 : (M,T )←$A;K ←$K]

is negligible in the security parameter, where the probability is taken over the
sampling of the key and the randomness of the adversary.

We now prove that any OW-CPA KEM is also IND-1CCA-MAC secure in
the ROM if the MAC used is EUF-0T secure. More precisely, the KDFs
G,H1, H2, H3, H4 and HD, and the hash function HT in the IND-1CCA-MAC
games are assumed to be ROs.

Theorem 4. Let KEM = (gen, encaps, decaps) be a KEM. Let the KDFs and
the hash function in the IND-1CCA-MAC game be modelled as random oracles.
Then, for any ppt adversary A making at most qG, qH1

, qH2
, qH3

, qH4
qHD , qHT

queries to G,H1, H2, H3, H4, HD, HT respectively, there exists a OW-CPA ad-
versary B s.t.

Advind-1cca-mac
KEM (A) ≤ Adveuf−0t

MAC (B) +
3qH1

+ 4qH2
+ qH3

+ qH4
+ qHD + 1

2n

+
(qHT + 4)2

2n
+ qG(qH1

+ 2)2(qH2
+ 2)3 · Advow−cpa

KEM (C) ,

where B has approximately the same running time as A.

Proof. The first step of the proof is very similar to the proof of Theorem 3.
Indeed, one can see that the decapsulation oracle outputs secrets that are com-
puted as (a function of) Hi(HS, HT (ct, n)), where Hi and HT are ROs. Note that
the only difference is that HT is applied on (ct, n). However, as HT is a RO, this
difference will not matter much in the proof. Hence, as in Theorem 3, one can
program the ROs s.t. the decapsulation oracle ODec can be simulated without
the secret key. In a second step, we show that the adversary can also simulate
the ODec

MAC oracle with good probability. More precisely, let HS be the secret cor-
responding to the submitted ciphertext ct. Then, either H2(HS, HT (ct, n)) has
been queried by the adversary or it is very unlikely that A knows the MAC key
fkS . In the first case we can recover HS from the list of queries, and in the second
we can return ⊥ as most likely the MAC verification will fail.

We proceed with a sequence of games, which are given in detail in Fig. 12.

Γ 0 : This is the original IND-1CCA-MAC game. From now on, we as-
sume w.l.o.g. that each query to ROs are unique (i.e. they never repeat).
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Γ 0-6
KEM(A)

b←$ {0, 1}
(pk, sk)←$ gen()

ct∗, K∗ ←$ encaps(pk)

n
∗ ←$ {0, 1}n

HS∗ ← G(K
∗
)

CHTS0 ← H1(HS∗, HT (ct∗, n∗))

SHTS0 ← H2(HS∗, HT (ct∗, n∗))

dHS0 ← H3(HS∗)

(CHTS1, SHTS1, dHS1)←$ {0, 1}3n

b
′ ← AO

Dec,ODec
MAC,H1,H2 (pk, ct∗, n∗,

(CHTSb, SHTSb, dHSb)) // Γ
0
-Γ

3

b
′ ← AO

Dec′ ,ODec
MAC,H

′
1,H
′
2 (pk, ct∗, n∗,

(CHTSb, SHTSb, dHSb)) // Γ
4
-

if collision on HT : abort // Γ
1
-

if A queries Hi(HS
∗
, HT (ct∗, n∗)), i ∈ [2] or H3(HS∗) :

abort // Γ
6

if A did not query G(K
∗
) : abort // Γ

5

return 1b′=b

Oracle ODec
MAC(ct, n, tag, txt)

if more than 1 query : return ⊥

if (ct, n) = (ct∗, n∗) : return ⊥

K
′ ← decaps(sk, ct)

HS′ ← G(K
′
); SHTS← H2(HS′, HT (ct, n))

fkS ← H4(SHTS)

if SHTS = SHTSb : // Γ
2
-

abort // Γ
2
-

if MAC.Vrf(fkS , txt, tag) = true :

if A did not query H4(SHTS) : // Γ
2
-

abort // Γ
2
-

if A did not query H2(HS′, HT (ct, n)) : // Γ
3
-

abort // Γ
3
-

return HS′

return ⊥

Hj(HS, y), j ∈ {1, 2}
if @(ct, n) s.t. ((ct, n), y) ∈ LHT : // Γ

1
-

h←$ {0, 1}n; return h // Γ
1
-

usual lazy sampling

Fig. 12: Games for the proof of Thm 4. The adversary has access to all the other
ROs G,H3, H4 and HD, even if it is not explicited in the games. H ′1, H

′
2 and

ODec′ are defined in Fig. 13.

Γ 1 : We modify the previous game as follows. First, we abort if a colli-
sion on HT occurs in the game. As there are at most qHT + 4 queries to HT in

the game, a collision occurs with prob. less than
(qHT +4)2

2n . Then, on adversary’s
queries Hj(HS, y), j ∈ {1, 2}, if HT (ct, n) = y was never queried by A for
some (ct, n), we mark y as unpaired and return a random value. The only way
it differs from the previous game, is if a query Hj(HS, y) for an unpaired y is
performed by the game (i.e. not by the adversary), either before or after y was
marked as unpaired. Now, the A does not get any information about values
HT (ct, n) from the game (or oracles), except a few values Hj(HS, HT (ct, n)) (or
values that depends on these), for some HS. Note that these values completely
“hide” the result of the HT query, as Hj is a RO. Hence, the best strategy for
A to query Hj(HS, y) s.t. y is unpaired but is queried by the game at some
point, is to try random values for y. As the game makes at most 2 queries to H1

(one in the challenge part and one in the decapsulation oracle) and 3 queries to
H2 (one in the challenge part and one in each oracle), the probability that a
random unpaired y is s.t. y was the result of a HT query by the game at some
point is at most 2

2n for a H1 call, and 3
2n for a H2 call. Overall, we have

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ 2qH1
+ 2qH2

2n
.
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We note that this step ensures that on a query Hj(HS, y) one can recover a
unique tuple (ct, n) s.t. HT (ct, n) = y, or a random value is returned.

Γ 2 : We modify the original game s.t. we abort whenever the MAC verifica-
tion succeeds on the query ODec

MAC(ct, n, tag, txt) but fkS := H4(SHTS) was never
queried, where SHTS := H2(G(K), HT (ct, n)) and K := decaps(sk, ct). If that is
the case, it means the MAC key fkS := H4(SHTS) is indistinguishable from a
random value for A, but it managed to forge a valid tag. Thus, one can build
an adversary B that breaks MAC unforgeability. More formally, B samples a
pair of keys (sk, pk)←$ gen, generates a valid input for A and simulates the de-
cryption oracle with the secret key. Then, when A submits (ct, n, tag, txt) to
ODec

MAC, B outputs (txt, tag) as a forgery. We also abort if the value SHTS com-
puted in the oracle is s.t. SHTS = SHTSb. As there are no collision on HT and
(ct, n) 6= (ct∗, n∗), this happens with probability at most 1

2n . Then, we have

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ Adveuf−0t
MAC (B) +

1

2n
.

Γ 3 : We abort whenever the MAC verification succeeds on the query
ODec

MAC(ct, n, tag, txt) but H2(G(K), HT (ct, n)) was never queried, where
K := decaps(sk, ct). By the previous game, it means that the adver-
sary queried SHTS := H2(G(K), HT (ct, n)) to H4 without having queried
H2(G(K), HT (ct, n)) beforehand. If we analyse what information A has about
SHTS 6= SHTSb if it did not query H2(G(K), HT (ct, n)), we see that the only
potential “leakage” is from a decapsulation query that returns tks := HD(SHTS),
where HD is a RO perfectly hiding SHTS.

Thus, the best strategy for A to find SHTS without querying H2 is to query
random values x ∈ {0, 1}n to HD or H4 until it finds x s.t. HD(x) = tks or

H4(x) = fkS . This happens with probability at most
qHD+qH4

2n . Hence, we have

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ qHD + qH4

2n
.

Γ 4 : We program both ROs H1 and H2 s.t. we can perfectly simulate the de-
capsulation oracle with an oracle Oi

G. This follows exactly the idea of the proof
of Theorem 3. First, we introduce an oracle Oi

G in Fig. 13 that takes a list of
RO queries, a nonce n and a ciphertext ct, checks whether (G(K), HT (ct, n))
(where K is the key encapsulated in ct) was ever queried and if that is the case,
the index of the corresponding query. This is exactly the same as the oracle Oi

in the proof of Thm 3, except we query the decapsulated K to the RO G and
there is the additional nonce. Then, we can program the ROs Hj , j ∈ {1, 2} and
simulate the (1-time) decapsulation oracle as shown in Fig. 13.

The simulation works nearly as in the proof of Thm 3. Let ct be the unique
decapsulation query, K := decaps(sk, ct) and HS := G(K). For j ∈ [2], the
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Oracle ODec′(ct, n)

if (ct, n) = (ct∗, n∗) : return ⊥
if more than 1 query : return ⊥
q1 ←$ {0, . . . , qH1

}

q2 ←$ {0, . . . , qH2
}

i← Oi
(LH1

, ct, n)

if i = ⊥d : return ⊥
if i 6= ⊥ :

// get i-th valued returned by H1

((HSi, cti, ni), hi)← LH1
[i]

CHTS← hi

else :

CHTS←$ {0, 1}

L1
K ← (ct, n,CHTS)

i← Oi
(LH2

, ct, n)

if i 6= ⊥ :

// get i-th valued returned by H2

((HSi, cti, ni), hi)← LH2
[i]

SHTS← hi

else :

SHTS←$ {0, 1}

L2
K ← (ct, n, SHTS)

return (HD(CHTS), HD(SHTS))

H ′j(HS, y), j ∈ {1, 2}
if @(ct, n) s.t. ((ct, n), y) ∈ LHT :

h←$ {0, 1}n; return h

set (ct, n) s.t. ((ct, n), y) ∈ LHT
if LjK = (ct, n, h) for some h :

if HS = G(decaps(sk, ct)) :

LHj ← LHj ∪ {((HS, ct, n), h)}

return h

h←$ {0, 1}n

LHj ← LHj ∪ {((HS, ct, n), h)}

return h

Oi
G(L, n, ct)

sort L according to query order :

L = ((HSi, cti, ni), hi)i∈{1,...,|LH |}

K
′ ← decaps(sk, ct)

if K
′

= ⊥ : return ⊥d
HS′ ← G(K

′
)

for i ∈ {1, . . . , |L|} :

if (cti, ni) = (ct, n) and HS′ = HSi :

return i

return ⊥

Fig. 13: Simulation of decapsulation and random oracles with sub-oracle Oi
G for

the proof of Thm 4. Note that as we assume that each query to Hj is unique,
H ′j does not check whether a query was previously made.

simulated decapsulation oracle checks whether (G(K), HT (ct, n)) was already
queried to Hj using Oi

G, if that is the case it recovers the corresponding value,
otherwise it means Hj(HS, HT (ct, n)) was never queried by the adversary nor
the challenger, as (ct, n) 6= (ct∗, n∗). Thus it samples the hash value at random,
queries it to HD and returns it to the adversary.

The simulation of Hj is such that it is consistent with the values returned
by the simulated decapsulation oracle. First, if Hj(HS, y) is queried s.t. y is
unpaired, we can simply return a random value, this is consistent with the game.
Then, if y is not unpaired, one can recover the unique (as there are no collision)
tuple (ct, n) s.t. y = HT (ct, n). We consider from now on only queries with y
s.t. HT (ct, n) = y for some (ct, n). On a query Hj(HS, HT (ct, n)), if (ct, n) was
already queried to the decapsulation oracle, then h := Hj(HS, ct, n) was set by

ODec′ iff HS = G(K), where K := decaps(sk, ct). Hence, we return the same K
if G(decaps(sk, ct)) = HS. Otherwise we sample a random value and return it.
Note that this is the only place where the secret key sk is used anymore (except
implicitly in the Oi

G oracle). The simulation is perfect and therefore we have

|Pr[Γ 3 ⇒ 1]− Pr[Γ 4 ⇒ 1]| = 0 .
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Γ 5 : In game Γ 5, we abort whenever the adversary did not query G(K∗) (which
is equal to HS∗) but it queried H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗))
or H3(HS∗). Note that the (modified) decryption oracle never queries
H1(HS∗, HT (ct∗, n∗)), H2(HS∗, HT (ct∗, n∗)) or H3(HS∗). In addition, the chal-
lenge values given to A are either perfectly random or completely hide HS∗.
Thus, the probability that A queries HS∗ to H1, H2 or H3 is upper bounded by
qH1

+qH2
+qH3

2n and hence we have

|Pr[Γ 4 ⇒ 1]− Pr[Γ 5 ⇒ 1]| ≤ qH1
+ qH2

+ qH3

2n
.

Γ 6 : Finally, in game Γ 6 we abort whenever H1(HS∗, HT (ct∗, n∗)),
H2(HS∗, HT (ct∗, n∗)) or H3(HS∗) is queried by the adversary. Let query be this
event. By the previous game, it means that K∗ was queried to G before query
happens. Finally, as in the previous proofs, we can upper bound Pr[query] by
the advantage of a OW-CPA adversary times a constant. The challenge keys
(CHTSb,SHTSb, dHSb) are sampled at random in the reduction, as long query
does not happen both the real and random cases are perfectly indistinguishable.
We present such a OW-CPA adversary C in Fig. 21 in Appendix D. The only
challenge for C is to simulate the oracles without having access to the secret key.

• ODec′′

MAC : This oracle returns something else than ⊥ iff (HS, HT (ct, n)) was
queried to H2, where HS := G(K) and K := decaps(sk, ct). Hence, one can
simply pick a random value r←$ {0, . . . , qH2} and guess whether ODec

MAC(ct)
fails (if r = 0) or succeeds and HS is in the r-th query made to H2. In the
latter case, one can recover HS in the r-th query and return it. Overall the
simulation works with probability 1

qH2
+1 .

• ODec′′ : In this oracle, the secret-key is used only in the Oi
G sub-oracle. A

reply of Oi
G is in the set {⊥,⊥d, 1, . . . , qHj} for j ∈ [2]. Thus, one can guess

the correct reply by sampling a random value in that set, which gives a
success probability of 1

(qHj+2) . Overall, there are at most 2 calls to Oi
G (one

for j = 1 and j = 2) and therefore the probability that the simulation is
successful is 1

(qH1
+2)(qH2

+2) .

• H ′′j , j ∈ [2]: The only time the secret key is used is when there is a query

(HS, HT (ct, n)) s.t. (ct, n) was already queried to ODec′ (i.e. LjK = (ct, n, h)
for some h). In this case h is returned iff G(decaps(sk, ct)) = HS (let’s call
this Condition (1)). Recalling that queries to Hj never repeat by assumption,
there will be at most one query H ′′j (HS, HT (ct, n)) s.t. (ct, n) was queried
to the decapsulation oracle and Condition (1) is fulfilled. Hence, one can
simulate Hj by sampling an index qj ∈ {0, . . . , qHj} and returning h (if it
exists) in the qj-th query or never in case qj = 0. This successfully simulates
Hj with prob. 1

(qHj+1) . Overall, the probability that both H1 and H2 are

simulated correctly is 1
(qH1

+1)(qH2
+1) .
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The other ROs can be simulated perfectly by C using lazy sampling. Collecting
the probabilities holds that C simulates perfectly A’s view in game Γ 6 (as long
as query does not occur) with probability

p =
1

(qH2
+ 1)2(qH1

+ 2)(qH2
+ 2)(qH1

+ 1)
.

Then if query happens, K∗ will be in the list of queries made by A to G. The
adversary can guess which one it is and succeeds with probability 1

qG
. Hence, we

have

|Pr[Γ 5 ⇒ 1]−Pr[Γ 6 ⇒ 1]| ≤ Pr[query] ≤ qG(qH1
+2)2(qH2

+2)3 ·Advow−cpa
KEM (C) .

Finally, in game Γ 6, as H1(HS∗, ct∗, n∗), H2(HS∗, ct∗, n∗) or H3(HS∗) can-
not be queried anymore, the challenge keys are perfectly indistinguishable from
random for the adversary. Hence,

Pr[Γ 6 ⇒ 1] =
1

2
.

Collecting the probabilities holds the result. ut

4.3 Security of TLS 1.3 with IND-1CCA-MAC KEM

We can now use the (slightly modified) notion IND-1CCA-MAC KEM to prove
the security of the TLS 1.3 handshake in the multi-stage security model of
Günther [18]. We briefly recall the notion of MultiStage security in Appendix B.
The security of (the original) TLS 1.3 handshake was proven by Dowling et
al. [12] and we refer the reader to their work for a complete analysis of the
handshake. We will simply show that IND-1CCA-MAC KEMs, thus OW-CPA
KEMs (if the MAC is secure), can be used in place of the original snPRF-ODH
assumption for DH key-exchange.

First, we show the relevant part of the (full 1-RTT) handshake of TLS 1.3
in Fig. 14. One can see that the key schedule is nearly identical to the ones
used in the IND-1CCA-MAC game. Note that several simplifications have been
made and several steps irrelevant to our proofs are missing. In particular, we
do not see the derivation of the finals keys, which all depend on the secret dHS.
As we will show, the intermediary secrets (CHTS,SHTS, dHS) are secure (i.e.
indistinguishable from random for a Multi-Stage adversary), thus all subsequent
keys will be secure as well, assuming the KDFs are secure. Finally, we write
HKDF.Expi(HS, T2) for HKDF.Exp(HS, labeli, T2), where labeli is some string. As
we consider the KDFs HKDF.Ext and HKDF.Exp to be ROs, this denotes the
fact that the label implements oracle separation.

The security of the modified 1-RTT TLS 1.3 handshake is stated in the
following theorem.

Theorem 5. Let HKDF.Ext, HKDF.TK and HKDF.Expj , j ∈ {0, 4, 5, 6} (the
KDFs in TLS 1.3) be random oracles. Let Hash (the hash function used to com-
pute the hashed transcripts Ti) be a RO, and Sig the signature scheme used for



24 Löıs Huguenin-Dumittan, Serge Vaudenay

TLS 1.3 with KEM Handhsake

Client Server

(sk, pk)←$ gen

CH : nc ←$ {0, 1}256

+ pk

dES← HKDF(constant)

CH

K, ct←$ encaps(pk)

SH : ns ←$ {0, 1}256

+ ct

SH

K ← decaps(sk, ct)

HS← HKDF.Ext(dES,K)

CHTS← HKDF.Exp4(HS, T2)

SHTS← HKDF.Exp5(HS, T2)

dHS← HKDF.Exp0(HS, T0)

. . . . . . . . . . . . . . . . . . . (Stage 1) accept tkc ← HKDF.TK(CHTS) . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .(Stage 2) accept tks ← HKDF.TK(SHTS). . . . . . . . . . . . . . . . . . . .

. . .

fkS ← HKDF.Exp6(SHTS)

{SF} : MAC(fkS , T7)

{SF}

if MAC(fkS , T7) 6= SF : abort

. . .

Fig. 14: TLS 1.3 handshake with KEM. {. . .} indicates an encrypted message
with tkS, Ti is the hash of the transcript up to message i. For simplicity, the CH
(resp. SH) message captures both the ClientHello and ClientKeyShare (resp.
ServerHello and ServerKeyShare). Only the relevant steps for the proof are
shown. Keys in the remaining stages (3-6, not shown) are all derived from dHS.
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server authentication (not shown in Fig. 14). For any Multi-Stage ppt adversary
A there exist ppt adversaries {Bi}i∈[6] s.t.

Advmulti-stage
TLS1.3−1RTT(A) ≤ 6ts

(
Advcoll

H (B1) + tuAdv
euf−cma
Sig (B2)

+ ts

(
Advind-1cca-mac

KEM (B3) + 2 · Advprf
HKDF.Exp(B4)

+ Advprf
HKDF.Ext(B5) + Advprf

HKDF.Exp(B6)
))

.

where ts (resp. tu) is the maximal number of sessions (resp. users). Note that
for the sake of the comparison with the original bound, we keep several PRF
advantages and the collision advantage in the bound, even though they could be
replaced by negligible terms, as the KDFs and Hash are ROs.

Proof. As hinted above, the idea of the proof is simply to replace the snPRF-
ODH step of the original proof by using our IND-1CCA-MAC. Note that while
the snPRF-ODH assumption is used to replace the root secret HS by a random
one, we will be able to replace the values (CHTS,SHTS, dHS) by random ones
in one step, due to the structure of the IND-1CCA-MAC definition. From a
high-level point of view, the proof goes through because CHTS and SHTS are
computed similarly as in the TH transform (i.e. the secrets are the hashed seed
and ciphertext) and thus resist to 1 adversarial decapsulation query. Then, dHS
is used only once a MAC has been verified, which implies that an adversary
relaying a correct tag should already know the root key HS.
The proof proceeds by a sequence of games. As the first transitions are the same
as in the original proof by Dowling et al. (proof of Theorem 5.2 [12]) we do not
explain them in detail.
Γ 0 : The first game is the original Multi-Stage game.
Γ 1 : We modify the game s.t. A can only make one Test query. This brings the
6ts factor in the security bound.
Γ 2 : The game aborts if a collision on the hash function Hash occurs. We recall
that Hash is used to compute the hash of the transcripts (the values Ti in Fig. 14).
We can then split the proof into two different cases: (A) A tests a session that
does not have a contributive partner or (B) A tests a session with a contributive
partner. In case (A), one can show that the probability of A winning the game
is upper bounded by tuAdv

euf−cma
Sig (B2) for an adversary B2. Thus, we focus on

case (B).
ΓB.0 : This is the same as Γ 2 conditioned on the fact that A tests a session with
a contributive partner.
ΓB.1 : The adversary guesses which session will be the contributive partner at
the beginning of the game. As there are at most ts sessions, this incurs a loss
factor of ts in the rest of the proof.
ΓB.2 : This is the only game transition that will differ from the original proof.
Let πc be the client session that is either tested or the contributive partner of
the tested session. Similarly, let πs be the server session that is either tested or
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the contributive partner (note that a session and its contributive partner always
have opposite role). Let (ct, ns) (resp. (pk, nc)) be the SH (resp. CH) message
sent by πs (resp. πc), where ct is the ciphertext, ns (resp. nc) the nonce of the
server (resp. client) session. Note that by an abuse of notation, we assume SH
(resp. CH) includes the server’s (resp. client’s) share. Then, in this game, we
make the following changes:

1. We replace the derived secrets (CHTS,SHTS, dHS) in πs by random ones.
2. If πc receives (ct, ns) in the SH message, we replace (CHTS,SHTS, dHS) with

the same random secrets as in the previous point.

Now, we can argue that distinguishing ΓB.2 from ΓB.1 implies breaking the
IND-1CCA-MAC security of KEM. First, we notice that T2 := Hash(CH,SH) =
Hash(pk, nc, ct, ns). Hence, the KDF HKDF.Expj(·, T2), j ∈ {4, 5} can be written
as Hj(·, HT (ct, ns)), i ∈ {1, 2} where Hj and HT are ROs, if we omit the public-
key and the client nonce, which are not important in the proof. Similarly, as T0

and dES are constant, one can write HKDF.Ext(dES, ·) as G(·), HKDF.Exp0(·, T0)
as H3(·) and HKDF.Exp6(·) as H4(·), with G,H3 and H4 some ROs. Finally, one
can rename HKDF.TDK as HD, where HD is a RO. Hence, one can see that the
key-schedule becomes exactly the one of the IND-1CCA-MAC game. Now let’s
explain how the reduction will work. We split ΓB.2 into 2 cases:

• Case 1: The tested session is the client session πc. As πc can only be tested
after receiving the SH message and πs is a contributive partner, it means
that the SH message sent by πs is the same as the one received by πc. In
particular it means that we make both changes mentioned above. Then the
reduction is straightforward. The IND-1CCA-MAC adversary B3 receives
a tuple (pk∗, ct∗, n∗, (CHTSb,SHTSb, dHSb)). It simulates the tested session
πc with these values. In particular, it sends pk∗ in the CH message, it uses
n∗ as the nonce of the contributive session πs, (CHTSb,SHTSb, dHSb) as
the secrets of πs and ct∗ as the ciphertext sent in the SH generated by πs.
Finally, to simulate πc after receiving SH, we use the same challenge secrets
(CHTSb,SHTSb, dHSb). In case b = 0, this perfectly simulates ΓB.1 (the
secrets correspond to ct∗) and in case b = 1 this perfectly simulates ΓB.2.
Therefore, in Case 1 we have

AdvΓb.1

TLS1.3−1RTT(A) ≤ AdvΓb.2

TLS1.3−1RTT(A) + Advind-1cca-mac
KEM (B3) .

Note that we did not even need the oracles provided to B3 in this case.
• Case 2: The tested session is the server session πs. Again, either the SH sent

by πs is the same as the one received by πc and the reduction B3 is the same
as in Case 1, or (ct, ns) is not the same as the SH message received by πc.
In the latter case, we build the reduction B3 as follows. Again, B3 receives
a tuple (pk∗, ct∗, n∗, (CHTSb,SHTSb, dHSb)), uses pk∗ in the CH, (ct∗, n∗) as
the SH sent by πs and (CHTSb,SHTSb, dHSb) as the secrets derived by πs
after receiving CH. Then, on the modified SH = (ct′, n′s) 6= (ct∗, n∗s) sent by
A to πc, B3 queries its decryption oracle ODec to obtain the correct (tkc, tks).
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Therefore, B3 can correctly simulate πc and any Reveal queries until the
SF message, as no other secrets are needed. Then, when πc receives the SF
message, which is a tag on T7, it queries ODec

MAC(ct′, n′,SF, T7). If the tag in
SF is correct (i.e. correspond to a MAC on T7 with a key derived from the
secret encapsulated in ct′), B3 gets HS := G(decaps(sk, ct′)) and can derive
all secrets to simulate πc correctly. Otherwise, the oracle returns ⊥, which
means the MAC is not valid and B3 aborts the client session πc. Again, this
perfectly simulates πc behaviour. Hence, the adversary can simulate perfectly
A’s view in game ΓB1 in case b = 0 or game ΓB.2 in case b = 1, and we
obtain

AdvΓb.1

TLS1.3−1RTT(A) ≤ AdvΓb.2

TLS1.3−1RTT(A) + Advind-1cca-mac
KEM (B3) .

ΓB.3 : Note that from the previous game, all “main” secrets in the tested session
are random and independent of any session (except the partnered session in case
πc is the tested session and received the correct SH from A). Hence, one can
replace the relevant transport keys (tkc, tks) by random values (i.e. the ones in
the πs session, and, in case πc received the correct SH, the ones in πc as well).
Overall this step transition is correct if HKDF.TK is a PRF.
ΓB.4 : We replace the relevant master secret MS by a random value. Again the
transition is correct if the KDF is a PRF.
ΓB.5 : Finally, all the remaining keys are replaced by random values in the tested
session (and in the partnered session if πc the received the correct SH). Again,
this is correct if the KDF used is a PRF. Then, all keys in the tested session are
random and independent of values in any other session (except the partnered
session as mentioned before). Hence, A cannot win as the tested keys are always
random. This concludes the proof. ut

Similarly, one can prove the security of the modified TLS 1.3 PSK-(EC)DHE
0-RTT handshake. Note that in our case the key-exchange will be done with
KEMs, but we keep the “-(EC)DHE” in the name for consistency with the
original protocol. We state this in the following informal theorem.

Theorem 6. The modified TLS 1.3 handshake in the pre-shared key (optional)
0-RTT mode with key-exchange (i.e. TLS 1.3 PSK-(EC)-DHE 0-RTT) is secure
in the MultiStage model if the underlying KEM is OW-CPA (and signature,
MAC, etc. are secure), in the sense of Dowling et al. [12].

Proof. The only step in the original proof involving the KEMs can be dealt with
a similar reduction from IND-1CCA-MAC as in the proof of Theorem 5. ut

Corollary 3. The original TLS 1.3 handshake is MultiStage secure in the ROM
if the CDH problem is hard (and the signature, MAC, etc. are secure). Stronger
assumptions used in previous proofs (e.g. PRF-ODH [12]) are not necessary.

Proof. This simply follows from the fact that DH can be described as a KEM
(sk, pk) := (x, gx), (K, ct) := (pky, gy) and decaps(sk, ct) := ctx. Integrating this
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KEM in our modified TLS 1.3 handshake exactly holds the standard TLS 1.3
handshake. Finally, this KEM is OW-CPA as long as the CDH problem is hard,
thus by Theorems 4 and 5, the handshake is secure. One can also directly show
that DH as used in TLS 1.3 is a IND-1CCA KEM. We provide such a proof in
App. C. ut

Remarks. Note that due to non-tightness of the bound in Theorem 4, the overall
bound for TLS security is very much non-tight. This is clearly not sufficient to
guarantee security in practice, and we leave as an interesting open question
the improvement of the bounds. In addition, we leave security in the QROM
as future work. As we extensively use the programming property of ROs, new
QROM techniques such as the compressed oracles by Zhandry [35] might be of
use in such a proof.

5 Impact

The transforms introduced in Section 3 produce IND-qCCA KEMs without any
derandomization and re-encryption steps. Thus, using IND-1CCA ephemeral
KEMs obtained through these transforms could speed up the decapsulation pro-
cess in several protocols.

KEMTLS. As discussed in the introduction, improving the KEMTLS pro-
tocol [29] was the main motivation of this work. In particular, a more efficient
decapsulation in the ephemeral KEM would decrease overall latency and compu-
tation on the client-side. In particular, this could be of interest for less powerful
clients like IoT devices, which would not need to perform re-encryption. Overall,
the efficiency gain in practice would obviously depend on the ephemeral KEM
used, as encryption is expensive in some schemes while it is not in others. For
instance, using KEMTLS with a modified version of SIKE (i.e. obtained through
our transform instead of the FO one) would reduce probably significantly the
handshake latency and computation cost on the client-side.

The same remarks apply to the very recent variants of KEMTLS with pre-
distributed keys proposed by Günther et al. [19] and Schwabe et al. [31].

Note also that following a similar proof as the one in Section 4, we conjecture
that one should be able to prove that CPA-security of the ephemeral KEM should
suffice for KEMTLS to be secure in the ROM (but at the expense of a non-tight
security bound, as in the TLS case).

TLS 1.3. TLS 1.3 only supports ephemeral DH as a key-exchange. In turn,
in the original security proof [12], the snPRF-ODH assumption is used for the
key-exchange security. The snPRF-ODH assumption can be seen as a variant
of the hashed Diffie-Hellman assumption with a 1-time “decapsulation” oracle.
More precisely, an adversary is given (g, gu, gv) and either y0 := PRF(guv, ad∗)
or a random y1, where ad∗ is some auxiliary data chosen by the adversary. Then,
the adversary must distinguish between y0 and y1 with the help of one query to
an oracle O((x, ad) 6= (gu, ad∗)) := PRF(xv, ad).
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One can notice that snPRF-ODH security is very close to IND-1CCA security
transposed to DH key-exchange. Actually, one can show that IND-1CCA KEM
is sufficient for the PQ TLS 1.3 handshake to hold. Indeed, instead of using our
IND-1CCA-MAC assumption in the proof, one can use the decapsulation oracle
of the IND-1CCA adversary to recover the key if needed. One can check the
transition between games B.1 and B.2 in the proof of KEMTLS security [29] for
more details.

Therefore, using IND-1CCA KEMs in the PQ TLS 1.3 handshake seems a
sound idea, as in this case the security bound will offer better guarantees than
with a OW-CPA KEM. In addition, the handshake would be faster using IND-
1CCA KEMs generated by our transforms instead of the slower IND-CCA KEMs
derived with FO.

Finally, by Corollary 3, we now know that the snPRF-ODH assumption is
not necessary in the ROM for TLS 1.3 to be secure (even though the security
bound is very much non-tight), but CDH is sufficient. Alternatively, as shown
in App. C, DH as used in TLS 1.3 is actually an IND-1CCA KEM (≈ snPRF-
ODH) in the ROM if CDH holds. This gives a tighter security bound compared
to Corollary 3.

Ratcheting. IND-1CCA security is also a property used (often implicitly) in
several works on ratcheting. For instance, Jost et al. [22] build a healable and
key-updating public-key encryption scheme based on a one time IND-CCA2 PKE
(with authenticated data). The latter primitive can easily be made out of an
IND-1CCA KEM using KEM/DEM techniques. Another paper by Poettering
et al. [27] introduces a construction of unidirectional ratcheted key exchange
(URKE) that is based (implicitly) on IND-1CCA KEMs, as noticed by Balli et
al. [2].

In another recent paper, Brendel et al. [6] propose an alternative to the Signal
handshake based on KEMs and designated verifier signature schemes. They first
define a core protocol that uses two KEMs in the same vein as KEMTLS: one
with long-term keys for implicit authentication of one of the parties and another
one with ephemeral keys for guaranteeing forward security. Again, the latter one
requires only IND-1CCA security for the handshake to be secure. Similarly, in
the full Signal-like handshake built upon the core protocol (called SPQR), three
KEMs are used and one requires only IND-1CCA security.

Concerns over key-reuse. The main security risk of using an IND-
1CCA KEM instead of its IND-CCA counterpart is the vulnerability to key-
reuse/misuse attacks. Indeed, if a system/protocol is misimplemented s.t. the
IND-1CCA KEM is used with a “static” public key instead of an ephemeral one,
an adversary might be able to recover the secret key after several decryption
queries. In KEMTLS, this risk is mitigated by the use of an IND-CCA KEM in
addition to the ephemeral one (which can be IND-1CCA). In particular, the final
shared key is derived from shares of both KEMs. Thus, even if the public-key
meant to be ephemeral is reused, the final shared key should remain “secure”
(but forward security would be lost).
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In other systems (e.g. TLS 1.3), the risk of key recovery after a few reuses
could be mitigated by using hybrid cryptography. For instance, a very efficient
IND-CCA KEM could be combined with an IND-1CCA one. That would improve
the overall security and resistance against key-reuse attacks at a small cost (see
e.g. Giacon et al. [16] or Bindel et al. [3] for KEM combiners). Finally, we stress
again that if ephemeral keys were misimplemented as static ones in these systems,
the forward security property would be lost.

Conclusion. Ratcheting and several recent protocols (e.g. TLS 1.3) are aiming
at forward security, which often implies generating a new pair of public/secret
keys for each message exchanged. Informally, in many settings this means that
an adversary requesting a decryption will be able to do so only once for a given
key pair. Thus, IND-1CCA security of the underlying encryption/encapsulation
primitive might be sufficient to guarantee the security of such systems.
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ExtA,|H〉(inp)

i←$ {1, . . . , qH}

run A|H〉(inp) until i-th query |QUERYi〉

x
′ ← measure input register of |QUERYi〉

if A did not make i queries : return ⊥

return x
′

Fig. 15: Extractor Ext for the AOW2H lemma.

A Proof of Theorem 2

The proof is somewhat similar to the security proof of the QU⊥m transform of
Hofheinz et al. [20]. However, we explicitly take care of some details seemingly
not addressed in the original proof. In particular, the fact that the decapsulation
oracle also makes queries to the random oracles has to be taken into account
when applying the OW2H lemma.

First, we recall a variant of the well-known one-way to hiding lemma
(OW2H) [32] as stated by Hofheinz et al. [20].

Lemma 2 (AOW2H [20]). Let A be a quantum adversary making at most qH
queries to the QRO |H〉 : {0, 1}n 7→ {0, 1}m and outputting 0 or 1. Let Ext|H〉qH (A)
be the algorithm in Fig. 15. Then, for any algorithm F that does not use |H〉∣∣Pr[A|H〉(inp)⇒ 1|σ∗←$ {0, 1}n; inp← F(σ∗, H(σ∗))]

− Pr[A|H〉(inp)⇒ 1|(σ∗,K)←$ {0, 1}n+m; inp← F(σ∗,K)]
∣∣

≤ 2qH

√
Pr[σ∗ ← ExtA,|H〉(inp)|(σ∗,K)←$ {0, 1}n+m; inp← F(σ∗,K)] .

The beginning of the proof follows the same strategy as the classical one.
The sequence of games is shown in Fig. 16.
Γ 0 : This is the original IND-CCA game.

Γ 1 : The decapsulation oracle is modified s.t. it returns ⊥ whenever (ct∗0, ∗) is
queried to ODec (note that (ct∗0, h

∗) cannot be submitted). This game is the same
as Γ 0 except when the oracle in Γ 0 does not return ⊥ on such queries. Now,
let’s assume ODec(ct∗0, h 6= h∗) 6= ⊥. This happens only if

H ′(dec(sk, ct∗0), ct∗0) = h 6= h∗ = H ′(σ∗, ct∗0) .

In turn, this implies that dec(sk, ct∗0) 6= σ∗ and thus the challenge ciphertext in
the IND-CCA game would trigger a correctness error. Such an error happens at
most with probability δ. Therefore, overall

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ δ .
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Γ 0−2, Υ, Υ ′(A)

H
′
6=ct∗0

←$ {polynomials of deg. 2(q + 2qH′ )} // Υ
′

(pk, sk)←$ gen()

b←$ {0, 1}

σ
∗ ←$ {0, 1}n

K0 ← H(σ
∗
); ct∗0 ←$ encp(pk, σ∗)

h
∗ ← H

′
(σ
∗
, ct∗0)

K0 ←$ {0, 1}n;h
∗ ←$ {0, 1}n // Γ

2
,Υ ,Υ

′

K1 ←$ {0, 1}n

ct∗ ← (ct∗0 , h
∗
)

b
′ ← AO

Dec,|H〉,|H′〉
(pk, ct∗, Kb) // Γ

0
-Γ

1

b
′ ← A

ODec,|H〉,|H′
ct∗0
,H′6=ct∗0

〉
(pk, ct∗, Kb) // Γ

2

return 1b′=b // Γ
0
-Γ

2

σ
′ ←$ ExtA

ODec,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, ct∗, Kb) // Υ

σ
′ ←$ ExtA

ODec2,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, ct∗, Kb) // Υ
′

return 1σ′=σ∗ // Υ -Υ
′

H ′(σ, ct)

use a standard QRO to reply // Γ
0
-Γ

1

use two QROs H
′
ct∗0
, H
′
6=ct∗0

: // Γ
2
, Υ, Υ

′

if ct = ct∗ : return H
′
ct∗0

(σ) // Γ
2
, Υ, Υ

′

return H
′
6=ct∗0

(σ, ct) // Γ
2
, Υ, Υ

′

Oracle ODec(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 : // Γ
1
-Γ

2
,Υ

return ⊥ // Γ
1
-Γ

2
,Υ

σ
′ ← decp(sk, ct′0)

if H
′
(σ
′
, ct0) 6= h :

return ⊥

return H(σ
′
)

Oracle ODec2(ct)

if ct = ct∗ : return ⊥
if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 :

return ⊥

if ∃(σ, ct0) ∈ Roots(H′6=ct∗0
(X)− h)

s.t. OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 16: Sequence of games for Thm 2.

Γ 2 : We replace the challenge key K∗ and tag h∗ by random values. As the key
is now always random we have

Pr[Γ 2 ⇒ 1] =
1

2
.

We can consider H ′ as the combination of two ROs H ′ct∗0 , H
′
6=ct∗0

s.t.

H ′(σ, ct) :=

{
H ′ct∗0 (σ), if ct = ct∗0
H ′6=ct∗0

(σ, ct), if ct 6= ct∗0

since all values of H ′ are uniformly and independently distributed. Moreover,
one can simulate any quantum query to H ′ by 2 calls to the quantum random
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F(σ∗, (K∗, h∗))

(pk, sk)←$ gen()

ct∗0 ←$ encp(pk, σ∗)

ct∗ ← (ct∗0 , h
∗
)

return (pk, ct∗, K∗)

Fig. 17: F function for applying the AOW2H lemma in the proof of Thm 2.

oracle |H ′ct∗0 , H
′
6=ct∗0
〉. Thus, from now on, we assume the adversary can make 2qH′

queries to this quantum RO.
Then, by the OW2H lemma (Lemma 2) applied on |H,H ′ct∗0 〉 with F as in

Fig. 17, we have

Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1] ≤ 2(2qH′ + qH + q) ·
√

Pr[Υ ⇒ 1]

where Υ is the same game as Γ 2, except that we measure the input register
of a random quantum query made to |H,H ′ct∗0 〉 (by the adversary or the

decapsulation oracle) and outputs 1 iff this is equal to the challenge seed σ∗.
Note that the number of queries made to H ′ct∗0 throughout the game is at most

2qH′ , as the decapsulation oracle never queries H ′(∗, ct∗0) for tag verification
(a decapsulation query (ct∗0, ∗) immediately returns ⊥). However, there can be
at most q + qH queries to H, as the decapsulation oracle might query H on a
successful query.

Υ ′ : We modify Υ as follows. We replace H ′6=ct∗0
by a random polynomial of degree

2(q + 2qH′) over the field F2n (i.e. on a query m, we evaluate H ′6=ct∗0
(m)). By

Zhandry et al. [34], this is indistinguishable from a random oracle for adversaries
making at most q+2qH′ quantum queries to H ′6=ct∗0

, which is the case here. Then,
we replace the decryption check in the decapsulation oracle by verifying whether
a correct ciphertext is in the roots of the polynomial. More precisely, on a query
ODec2((ct0, h)), we compute the list of roots of H ′6=ct∗0

(X)−h and check whether

there is a σ s.t. (ct0, σ) is in the list and decp(sk, ct0) = σ. If that is the case, we
output H(σ), otherwise we output ⊥. We show that both oracles are equivalent:

• On a query (ct0, h) s.t. ct0 = ct∗0 both oracles output ⊥.
• ODec2((ct0, h)) outputs H(σ): That means that H ′6=ct∗0

(σ, ct0) = h and

decp(sk, ct0) = σ. Thus, the oracle ODec would also output H(σ).
• ODec2((ct0, h)) outputs ⊥: Let σ := decp(sk, ct0). The oracle returning ⊥

means that (σ, ct0) is not in the roots of H ′6=ct∗0
(X)−h, thus H ′6=ct∗0

(σ, ct0) 6= h

or σ = ⊥. Hence, the original oracle ODec would also return ⊥.

Thus, AODec

and AODec2

have identical behaviour. In particular, the queries made
to |H,H ′ct∗0 〉 are the same (for fixed randomness). Hence, we have

Pr[Υ ⇒ 1] = Pr[Υ ′ ⇒ 1] .
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BO
PCO

(pk, ct∗0)

h
∗ ←$ {0, 1}n

K
∗ ←$ {0, 1}n

simulate H,H
′
ct∗0
, H
′
6=ct∗0

for A with random polynomials:

σ
′ ←$ ExtA

ODec2,|H〉,|H′
ct∗0
,H′6=ct∗0

〉

(pk, (ct∗0 , h
∗
), K

∗
)

return σ
′

Oracle ODec2(ct)

if more than q queries :

return ⊥
(ct0, h)← ct

if ct0 = ct∗0 :

return ⊥

L ← {(σ, ct′) : (σ, ct′) ∈ Roots(H′6=ct∗0
− h)

∧ ct′ = ct0}
(σ, ct0)←$L

if OPCO
(σ, ct0) :

return H(σ)

return ⊥

Fig. 18: B adversary for the proof of Thm 2.

We note that ODec2 makes no query to H ′6=ct∗0
, contrary to the original decapsu-

lation oracle ODec, which makes “classical” queries to H ′6=ct∗0
to verify the tag.

However, this has no impact on Pr[Υ ′ ⇒ 1] as the extractor measures only a
random query made to |H,H ′ct∗0 〉 (and not to |H ′6=ct∗0

〉).
Finally, one can build an OW-PCA adversary B s.t. 1

(2(2qH′+q))
q Pr[Υ ′ ⇒ 1] ≤

Advow−pca
PKE (B). The adversary B is given in Fig. 18. In particular, B can perfectly

simulate ExtA
ODec2

as the modified decapsulation oracle only requires a plaintext-
checking oracle. However, in order to limit the number of queries to OPCO, B
makes some guessing. I.e. after computing the list of roots, it picks one (σ, ct0)
at random and checks whether OPCO(σ, ct0) holds or not. The probability to
pick the correct root (if it exists) is 1

2(2qH′+q)
as H ′6=ct∗0

is a polynomial of degree

2(2qH′ + q). Hence, overall the simulation is perfect with probability at least
1

(2(2qH′+q))
q and B recovers σ∗ with probability Pr[Υ ′ ⇒ 1], thus

Pr[Υ ′ ⇒ 1] ≤ (2(2qH′ + q))qAdvow−pca
PKE (B) .

In addition, B makes at most q queries to the plaintext-checking oracle. Collect-
ing the probabilities holds the result. ut

B MultiStage security

We briefly recall in this section the notion of MultiStage security as defined by
Dowling et al. [12]. We refer the reader to their work for further details and
discussion.
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B.1 MultiStage syntax

Each protocol has a set of properties encoded in a tuple
(M,AUTH,FS,USE,REPLAY) which respectively indicates the number of
stages in the protocol, the stage at which a key becomes (unilaterally or
mutually) authenticated, which keys are forward secret, which keys are meant
to be used internally/externally to the protocol and finally which stage is
“replayable”.

Then, we denote by U the set of honest participants and each session is defined
as π = (U, V, n) ∈ U × U × N, which denotes the n-th session of participant U
with intended partner session V . In addition, each participant can have a long-
term secret such as a secret-key or pre-shared secret. Then, each session has a
list of properties:

• id ∈ U : the identity of the session owner.
• pid ∈ U ∪ {∗}: the identity of the intended partner.
• role ∈ {initiator, responder}: the role of the session (e.g. client/server for

TLS).
• auth ∈ AUTH: the intended authentication type.
• pssid ∈ {0, 1}∗ ∪ {⊥}: the identifier of the pre-shared secret, when any.
• stexec ∈ {running, accepted, rejected}M : indicates whether the session is run-

ning the i-th stage, has accepted or rejected the i-th key.
• stage ∈ {0, . . . ,M}: the current stage.
• sid ∈ ({0, 1}∗ ∪ {⊥})M : indicates the session identifer in each stage.
• cid ∈ ({0, 1}∗ ∪ {⊥})M : indicates the contributive identifer in each stage.
• key ∈ ({0, 1}∗ ∪ {⊥})M : indicates the key established in each stage. The key
keyi is set only when the key was accepted in stage i.

• stkey ∈ {fresh, revealed}M : indicates the state of a session key in each stage.
• tested ∈ {true, false}M : testedi indicates whether keyi has been tested.
• corrupted ∈ {0, . . . ,M,∞}M : indicates which stage the session was in when

a Corrupt query was issued by the adversary (0 if it was before the session
started and ∞ if no party involved is corrupted).

We say two sessions π and π′ are partnered if π.sid = π′.sid 6= ⊥ and π.role 6=
π′.role. Similarly, two sessions are contributive partners if π.cid = π′.cid 6= ⊥ and
π.role 6= π′.role.

B.2 MultiStage adversarial model

In the MultiStage security model, the adversary is able to create sessions and
make the send/receive messages. In addition, it can also reveal sessions keys and
corrupt long-term secrets. Finally, it can issue test queries, which return a real
or random session key and the adversary must distinguish between both cases.
More precisely, the oracles are defined as follows.

• NewSession(U, V, role): returns a new session π with owner V , role role and
intended partner session V . If U is corrupted, π.corrupted← 0 is set.
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• Send(π,m): sends a message m on behalf of session π. If a key is accepted
during the processing of this query, the process is stopped and accepted is
returned to the adversary, who can then test the key before it is used. In order
to continue the process, the adversary can query Send(π, continue). On key
acceptance at stage i, if there exists a partnered session π′ s.t. π′.testedi =
true, then π.testedi ← true is set. If keyi is an internal key, we furthermore
set π.keyi ← π′.keyi.

• Reveal(π, i): returns π.keyi if it exists and ⊥ otherwise. Then, π.stkeyi ←
revealed is set.

• Corrupt(U) or Corrupt(U, V, pssid): reveals the long-term or pre-shared secret,
respectively. It also marks U (resp. (U, V, pssid)) as corrupted and sets the
corresponding labels in each session π with π.id = U as corrupted. See [12]
for more details on each case and the handling of flags depending on the
forward-security level required.

• Test(π, i): tests the session key at stage i. This oracle depends on a random
bit b (the goal for A is to guess b). If πst.exec,i 6= accepted or π.testedi = true,
it returns ⊥. If stage i is internal and there exists a partnered session π′ s.t.
π′stexec,i 6= accepted, we set a lost flag to true. Other flags are set depending
on the level of authentication (see [12] for more details). Then, π.testedi is
set to true. If b = 0, a key K is sampled at random and if b = 1 K is set
to the real key π.keyi. If the session key is internal, π.keyi is replaced by K
(thus K will be used for any future use of π.keyi in the protocol). If the key
is external, the oracle simply returns K. Finally, if there exists a partnered
session π′ s.t. π′ has accepted the key at stage i, we set π′.testedi to true
and if the key is internal we set π′.keyi ← π.keyi.

B.3 MultiStage game

We can now describe the game that defines MultiStage security.

Definition 8. Let KE be a key-exchange with properties
(M,AUTH,FS,USE,REPLAY). For any ppt adversary A playing the fol-
lowing game MultiStageKE(A):

Setup: The random bit b←$ {0, 1} is sampled, the lost flag is set to false
and in a public-key variant, long-term (pkU , skU ) are generated for all U ∈ U .

Query: The adversary A receives the public-keys and can call every oracle
defined above.

Guess: The adversary outputs a guess b′.
Finalize: The lost flag is set to true if there exists π, π′ s.t. π.sidi = π′.sidi,

π.stkeyi = revealed and π′.testedi = true. The game outputs 1 iff b′ = b and
lost = false.

we define the MultiStage advantage of A as

Advmulti-stage
KE (A) = Pr[MultiStageKE(A)⇒ 1]− 1

2
.
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Then, we say KE is MultiStage secure if for any ppt A the advantage
Advmulti-stage

KE (A) is negligible in the security parameter.

B.4 TLS 1.3 in the MultiStage model

We describe the parameters of the TLS 1.3 full 1-RTT handshake relevant to our
proof in the MultiStage model. The number of stages is M = 6, forward-secrecy
is required (i.e. FS = 1), the handshake traffic keys are used internally while
other keys are external (i.e. USE = (internal : {1, 2}, external : {3, 4, 5, 6})). The
first stages of our modified TLS 1.3 1-RTT handshake are shown in Fig. 14, for
a detailed description of all the keys and stages, we refer the reader to Fig.1 in
Downing et al. [12].

The session identifiers are set when a key is accepted in a given stage, they
include a label and the transcript up to this point:

sid1 = (“CHTS”,CH,CKS,SH,SKS)

sid2 = (“SHTS”,CH,CKS,SH,SKS)

sid3 = (“CATS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid4 = (“SATS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid5 = (“EMS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF)

sid6 = (“RMS”,CH,CKS,SH,SKS,EE,CR∗,SCRT,SCV,SF,CCRT∗,CCV∗,CF)

where ∗ marks elements used only in the mutual authentication mode. The con-
tributive identifiers are the same as the sid except in stage 1 and 2. That is,
cidi = sidi, i ∈ {3, 4, 5, 6}. In stages 1 and 2, a client (resp. server) session sets
cid1 = (“CHTS”,CH,CKS), cid2 = (“SHTS”,CH,CKS) upon sending (resp.
receiving) the CH (+ CKS) messages, then they set cid1 = sid1 and cid2 = sid2

upon receiving (resp. sending) the SH and SKS messages.
Now, as a client session only accepts the first stage key after receiving the

SH message, a contributive partner of a tested client session will have the same
cid1 = sid1. Hence it means the client and server sent and received the same
messages in the first stage. On the other hand, a server session accepts the first
stage key (and thus can be tested) after receiving the CH,CKS messages only.
Hence, in this case it guarantees that the client and server sessions got the same
client messages but not necessarily that the server messages are the same.

C Hashed DH is IND-1CCA

We prove here that Diffie-Hellman with hashed key as used in TLS 1.3 is a
IND-1CCA KEM in the ROM, if the CDH assumption holds.

Theorem 7. Let DH be the Hashed Diffie-Hellman key-exchange modelled as a
KEM, Z∗p be the associated group for a safe prime p, and g be a generator of a
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Γ 0−2(A)

(g
a
, a)←$ gen

β ←$ {0, 1}

(g
b
, g
ab

)←$ encaps(ga)

K0 ← H(g
ab

)

K1 ←$ {0, 1}n

β
′ ← AO

Dec
(g
a
, g
b
, Kβ)

if query : abort // Γ
2

return 1β′=β

H(σ)

if σ = g
ab

: query← true // Γ
2

if ∃h s.t. (σ, h) ∈ LH :

return h

h←$ {0, 1}n

LH ← LH ∪ {(σ, h)}
return h

Oracle ODec(gx ∈ G)

if g
x

= g
b

: abort

if more than 1 query :

return ⊥

σ
′ ← (g

x
)
a

if σ
′

= g
ab

: abort // Γ
1
-Γ

2

return H(σ
′
)

Fig. 19: Sequence of games for the proof of Thm 7.

subgroup G of Z∗p s.t. the order of G is prime. In addition, let the hash function
H be modelled as a RO. Then, for all ppt adversaries A making at most qH
queries to the RO, there exists a CDH solver B s.t.

Advind-1cca
DH (A) ≤ qH(qH + 1) · Advcdh

G (B) ,

where B runs approximately in the same time as A.

Proof. The idea of the proof is similar to the previous ones. First, we notice that
(contrary to PQ schemes), the only ciphertext that decrypts to the challenge
key in DH in a group of prime order is the challenge ciphertext. Since the lat-
ter cannot be queried to the decapsulation oracle, in the IND-1CCA game the
adversary can only recover one RO value associated to another key. Since the
RO is perfectly hiding, this does not give much information to the adversary.
Then, in the CDH reduction B, one can simulate the decapsulation oracle for A
by always returning a random value. The only issue is if the corresponding value
correspond to a query to the RO. However, as this happens at most once, B can
guess whether it will happen and at which query (e.g. by sampling a value i in
{0, . . . , qH}). If the guess is correct the simulation is perfect. Finally, A can only
distinguish the real and random keys if it queries the CDH solution to the RO.

Formally, we proceed with a short sequence of games presented in Fig. 19.
We assume w.l.o.g. that each query A makes to the RO H is unique.

Γ 0 : This is the IND-1CCA game with DH expressed as a KEM. I.e. we identify
the public-key with ga, the secret-key with a, the challenge ciphertext with gb
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B(g, ga, gb)

K ←$K
KDec ← ⊥
LH ← ∅
i←$ {0, . . . , qH + 1}

b
′ ← AO

Dec,H
(g
a
, g
b
, K)

σ ←$LH
return σ

H(σ)

h←$ {0, 1}n

if i-th query :

if KDec 6= ⊥ : h← KDec

else : KDec ← h

LH ← LH ∪ {σ}
return h

Oracle ODec(gx ∈ G)

if more than 1 query :

return ⊥
if KDec = ⊥ :

KDec ←$ {0, 1}n

return KDec

Fig. 20: CDH adversary B for the proof of Thm 7. We assume all queries to H
are fresh (e.g. we do not check whether an identical previous query was made in
H).

and the key as H(gab). Also, we assume the decapsulation oracle only accepts
elements of the subgroup G as inputs. Note that w.l.o.g the game aborts if the
adversary queries the challenge ciphertext to the decapsulation oracle.

Γ 1 : This is the same as Γ 0, except we abort if on input gx, the decapsulation
oracle computes gax s.t. gax = gab. Now, since G is a subgroup of prime order
of Z∗p, this happens iff x = b ⇒ gx = gb. Since decapsulation queries on the

challenge ciphertext gb are disallowed, Γ 0 and Γ 1 are identical.

Γ 2 : As in other proofs, we abort if the challenge seed gab is queried by the
adversary to the RO. We call this event query. We have

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ Pr[query] .

We give in Fig. 20 a CDH adversary B s.t. B wins with probability at least
1

qH+1 Pr[query]. Note that in Γ 2, as long as query does not happen, the decap-
sulation oracle and the random oracle H always return fresh values sampled
uniformly at random unless:

1. The decapsulation oracle returns H(gab). However, by the condition enforced
since Γ 1, this cannot happen.

2. The decapsulation oracle returns H(gax) for some x, and H(gax) is later
queried by A, or the other way around. Let i be s.t. H(gax) was the i-th
query made to H by the adversary and let i = 0 if no such case happen. If
i > 0, then the i-th query to H must return the same value as the result of
the decapsulation oracle. In our reduction, we let B guess i in advance and
thus the simulation is perfect with probability 1

qH+1 .

Hence, if B guessed the correct i, the simulation of game Γ 2 is perfect and if
query happens, B can recover gab in the list of queries made to H. However, as
it cannot check which value is correct, it outputs a random query made to H
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and succeeds with prob. 1
qH

. Overall, we have

Advcdh
G (B) ≥ 1

qH(qH + 1)
Pr[query] .

Collecting the probabilities concludes the proof. ut

Remark. In the proof, for simplicity, we used the fact that DH is performed in
a subgroup of prime order. We note that it is always the case in TLS 1.3 (the
list of supported groups is given in RFC 7919 [17]).

D C adversary for the proof of Thm 4

C(pk, ct∗)
init LH ,LK ← ∅
q1 ←$ {0, 1, . . . , qH1

}; q2 ←$ {0, 1, . . . , qH2
}

n
∗ ←$ {0, 1}n

(CHTS∗, SHTS∗, dHS∗)←$ {0, 1}3n

run AO
Dec′′ ,ODec′′

MAC ,H
′′
1 ,H
′′
2 ,G,H3,H4,HD

(pk, ct∗, n∗, (CHTS∗, SHTS∗, dHS∗))

sample random query K made to G

return K

H ′′j (HS, y), j ∈ [2]

if @(ct, n) s.t. ((ct, n), y) ∈ LHT :

h←$ {0, 1}n; return h

set (ct, n) s.t. ((ct, n), y) ∈ LHT
iq ← query number

if ∃h s.t. ((HS, ct, n), h) ∈ LHj :

return h

if LjK = (ct, n, h) for some h :

if iq = qj :

LHj ← LHj ∪ {((HS, ct, n), h)}

return h

h←$ {0, 1}n

LHj ← LHj ∪ {((HS, ct, n), h)}

return h

Oracle ODec′′
MAC (ct, n, tag, txt)

if more than 1 query : return ⊥

if (ct, n) = (ct∗, n∗) : return ⊥
r ←$ {0, . . . , qH2

}

if r = 0 : return ⊥
if less than r queries have been made to H2 :

abort

get r-th query (HS, ct, n) made to H2

return HS

Oracle ODec′′(ct, n)

if (ct, n) = (ct∗, n∗) : return ⊥
if more than 1 query : return ⊥
q1 ←$ {0, . . . , qH1

}

q2 ←$ {0, . . . , qH2
}

i←$ {1, . . . , qH1
,⊥,⊥d}

if i = ⊥d : return ⊥
if i 6= ⊥ :

((HSi, cti, ni), hi)← LH1
[i]

CHTS← hi

else :

CHTS←$ {0, 1}

L1
K ← (ct, n,CHTS)

i←$ {1, . . . , qH2
,⊥,⊥d}

if i 6= ⊥ :

((HSi, cti, ni), hi)← LH2
[i]

SHTS← hi

else :

SHTS←$ {0, 1}

L2
K ← (ct, n, SHTS)

return (HD(CHTS), HD(SHTS))

Fig. 21: C adversary for the proof of Thm 4.
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