EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 1, 2021, 149-163
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On Independent Transversal Dominating Sets in Graphs

Daven S. Sevilleno ${ }^{1, *}$, Ferdinand P. Jamil ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics, College of Liberal Arts, Sciences and Education, University of San Agustin, 5000 Iloilo City Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

A set $S \subseteq V(G)$ is an independent transversal dominating set of a graph G if S is a dominating set of G and intersects every maximum independent set of G. An independent transversal dominating set which is a total dominating set is an independent transversal total dominating set. The minimum cardinality $\gamma_{i t}(G)$ (resp. $\gamma_{i t t}(G)$) of an independent transversal dominating set (resp. independent transversal total dominating set) of G is the independent transversal domination number (resp. independent transversal total domination number) of G. In this paper, we show that for every positive integers a and b with $5 \leq a \leq b \leq 2 a-2$, there exists a connected graph G for which $\gamma_{i t}(G)=a$ and $\gamma_{i t t}(G)=b$. We also study these two concepts in graphs which are the join, corona or composition of graphs. 2020 Mathematics Subject Classifications: 05C22, 05C69, 05C776 Key Words and Phrases: Independent transversal dominating set, Independent transversal total dominating set, Independent transversal domination number, Independent transversal total domination number

1. Introduction

Throughout this paper, by a graph $G=(V(G), E(G))$ is meant a finite, simple and connected graph with $V(G)$ and $E(G)$ being the vertex set and edge set, respectively. For $S \subseteq V(G),|S|$ is the cardinality of S. In particular, $|V(G)|$ is called the order of G. All basic terminologies used here are adapted from [4].

Given two graphs G and H with disjoint vertex sets,

- the union of G and H, denoted $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$;

[^0]http://www.ejpam.com 149 (c) 2021 EJPAM All rights reserved.

- the join of G and H is the graph $G+H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\} ;$
- the corona of G and H is the graph $G \circ H$ obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the $i^{t h}$ vertex of G to every vertex in the $i^{t h}$ copy of H; and
- the composition $G[H]$ of G and H is the graph with $V(G[H])=V(G) \times V(H)$ and $(u, v)\left(u^{\prime}, v^{\prime}\right) \in E(G[H])$ if and only if either $u u^{\prime} \in E(G)$ or $u=u^{\prime}$ and $v v^{\prime} \in E(H)$.

For corona of graphs $G \circ H$, if $H=K_{1}$, we write $G \circ H=\operatorname{cor}(G)$. It is customary to denote by H^{v} that copy of H whose vertices are joined with the vertex v of G. Similarly, we also write u^{v} to denote that copy of $u \in V(H)$ in H^{v}.

For vertices u and v of G, a $u-v$ geodesic is any shortest $u-v$ path. The distance between u and v is the length of a $u-v$ geodesic, and is denoted by $d_{G}(u, v)$. The eccentricity of v, denoted by $e(v)$, is given by $e(v)=\max \left\{d_{G}(u, v): u \in V(G)\right\}$. The diameter of G, denoted by $\operatorname{diam}(G)$, is defined by $\operatorname{diam}(G)=\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$. Any geodesic of length $\operatorname{diam}(G)$ is called diametral path of G.

Vertices u and v of a graph G are neighbors if $u v \in E(G)$. The open neighborhood of v refers to the set $N_{G}(v)$ consisting of all neighbors of v. The closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $S \subseteq V(G), N_{G}(S)=\cup_{v \in S} N_{G}(v)$ and $N_{G}[S]=$ $\cup_{v \in S} N_{G}[v]$. A subset $S \subseteq V(G)$ is a dominating set of G if $N_{G}[S]=V(G)$. The minimum cardinality $\gamma(G)$ of a dominating set in G is the domination number of G. We refer to $[1,2,5,7,9,11,14,16,19]$ for the history, fundamental concepts and the subsequent developments of domination in graphs as well as its various applications.

Provided G has no isolated vertices, a dominating set S is a total dominating set of G if every vertex in S is adjacent to another vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G denoted by $\gamma_{t}(G)$. References [$6,8,12]$ are excellent studies on total domination in graphs.

A subset $S \subseteq V(G)$ is an independent set of G if for every distinct vertices u and v in $S, u v \notin E(G)$. The maximum cardinality of an independent set is called the independence number of G, and is denoted by $\beta_{0}(G)$. Any independent set of cardinality $\beta_{0}(G)$ is referred to as a β_{0}-set of G. In [13], it is called a maximum independent set. It is worth noting that if G is complete, then $\{v\}$ is a β_{0}-set for all $v \in V(G)$. The symbol $X I(G)$ denotes the family of all β_{0}-sets of G, and $x i(G)=|X I(G)|$.

A subset $S \subseteq V(G)$ of G is said to be an independent transversal set of G if S intersects every β_{0}-set of G. The minimum cardinality of an independent transversal set of G is called the independent transversal number, denoted by $\beta_{0 t}(G)$. In particular, $\beta_{0 t}\left(K_{n}\right)=n$; for path $P_{n}, \beta_{0 t}\left(P_{n}\right)=1$ when n is odd and $\beta_{0 t}\left(P_{n}\right)=2$ otherwise; for cycle C_{n} on $n \geq 3$ vertices, $\beta_{0 t}\left(C_{n}\right)=2$ when n is even and $\beta_{0 t}\left(C_{n}\right)=3$ otherwise; and for the complete bipartite $K_{m, n}, \beta_{0 t}\left(K_{m, n}\right)=1$ if $m \neq n$, and $\beta_{0 t}\left(K_{m, n}\right)=2$ otherwise..

An independent transversal set of G is an independent transversal dominating set or (ITD-set) if S is a dominating set of G. The minimum cardinality of an $I T D$-set of G is called the independent transversal domination number of G and is denoted by $\gamma_{i t}(G)$. An

ITD-set S of G with $|S|=\gamma_{i t}(G)$ is called a $\gamma_{i t}$-set. The study on independent transversal domination in graphs was initiated by I. Hamid [10] in 2012. It was studied further by Yero et al. [17, 18, 20] in 2016, 2017 and 2021, and by Ozeki et al. [3] in 2018.

Provided G has no isolated vertex, a subset $S \subseteq V(G)$ is an independent transversal total dominating set or (ITTD-set) if S is both an $I T D$-set and a total dominating set of G. We denote by $\gamma_{i t t}(G)$ the minimum cardinality of an ITTD-set of G, and is called the independent transversal total domination number of G. In [17], Cabrera Martinez et al. made a good introduction of this concept. The authors prove that the complexity of the decision problem associated to the computation of the value of $\gamma_{i t t}(G)$ is NP-complete, under the assumption that the independence number is known.

Henceforth, all discussions of total domination or independent transversal total domination are always with respect to graphs without isolated vertices.

For graphs G of order $n \geq 2, \gamma_{i t}(G) \leq \gamma_{i t t}(G)$.

2. Preliminaries and Known Results

Observation 1. (i) For the complete bipartite $K_{m, n}, \gamma_{i t}\left(K_{m, n}\right)=\gamma_{i t t}\left(K_{m, n}\right)=2$.
(ii) For any path P_{n} of order $n \geq 2$, we have
(a) $[10] \gamma_{i t}\left(P_{n}\right)= \begin{cases}2 & \text { if } n=2,3, \\ 3 & \text { if } n=6, \\ \left\lceil\frac{n}{3}\right\rceil \text { otherwise, }\end{cases}$ and
(b) $\gamma_{i t t}\left(P_{n}\right)=\left\{\begin{array}{l}3 \text { if } n=4, \\ \frac{n}{2}+1 \text { if } n \equiv 2(\bmod 4), \\ \left\lceil\frac{n}{2}\right\rceil, \text { otherwise }\end{array}\right.$
(iii) For any cycle C_{n} of order $n \geq 3$, we have
(a) $[10] \gamma_{i t}\left(C_{n}\right)=\left\{\begin{array}{l}3 \text { if } n=3,5, \\ \left\lceil\frac{n}{3}\right\rceil \text { otherwise, }\end{array}\right.$ and
(b) $\gamma_{i t t}\left(C_{n}\right)=\left\{\begin{array}{l}3 \text { if } n=3, \\ \frac{n}{2}+1 \text { if } n \equiv 2(\bmod 4), \\ \left\lceil\frac{n}{2}\right\rceil, \text { otherwise. }\end{array}\right.$

Theorem 1. For any graph G, we have
(i) $[10] \gamma(G) \leq \gamma_{i t}(G) \leq \gamma(G)+\delta(G)$; and
(ii) $[17] \gamma_{t}(G) \leq \gamma_{i t t}(G) \leq \gamma_{t}(G)+\delta(G)$.

Corollary 1. Let G be a graph.
(i) [10] If G has an isolated vertex, then $\gamma_{i t}(G)=\gamma(G)$.
(ii) If G has K_{2} as a component, then $\gamma_{i t t}(G)=\gamma_{t}(G)$.

If follows from Observation 1 that if $G=P_{3 n-2}$, then $\gamma_{i t}(G)=\gamma(G)=n$. Thus, the following corollary is clear.

Corollary 2. For all positive integers n, there exists a connected graph G for which $\gamma(G)=\gamma_{i t}(G)=n$.

Observation 2. Let G be a connected graph of order n. Then
(i) $\gamma_{i t}(G)=n$ if and only if $G=K_{n}$. Provided $n \geq 2, \gamma_{i t t}(G)=n$ if and only if $G=K_{n}$.
(ii) For $n \geq 3$,
(a) $\gamma_{i t}(G)=n-1$ if and only if $G=P_{3}$.
(b) $\gamma_{\text {itt }}(G)=n-1$ if and only if $G=P_{3}$ or $G=P_{4}$.
(iii) $\gamma_{i t}(G)=2$ if and only if either $G=K_{2}$ or G has a dominating set $\{u, v\}$ such that every β_{0}-set contains u or v.
(iv) $\gamma_{i t t}(G)=2$ if and only if either $G=K_{2}$ or G has a total dominating set $\{u, v\}$ such that every β_{0}-set contains either u or v.
(v) $\gamma_{i t}(G)=1$ if and only if $n=1$.

In Observation 2(iii), a β_{0}-set may contain both u and v. Consider, for example, the graph $G=K_{n-1}+v$ for $n \geq 2$.

3. Realization Problems

Theorem 2. [20] For every positive integers a, b, c such that $c \geq 2$ and $a \leq b \leq a+c$, there exists a graph G such that $\delta(G)=c, \gamma(G)=a$ and $\gamma_{i t}(G)=b$.

Theorem 3. [17] For any two positive integers a and b such that $2 \leq a \leq \frac{2 b}{3}$, there is a graph of order b such that $\gamma_{i t t}(G)=a$.

Theorem 4. For any positive integers a and b with $3 \leq a \leq b$ there exists a connected graph G for which $\gamma_{t}(G)=a$ and $\gamma_{i t t}(G)=b$.

Proof. We consider the following cases:
Case 1: Suppose that $a=b$. If $a=b=3$, then we choose $G=C_{5}$. Suppose that $a=b \geq 4$. If $a \equiv 0,2(\bmod 4)$, then choose $G=P_{2 a}$. If $a \equiv 1,3(\bmod 4)$, then choose $G=P_{2 a-1}$. In any case, $\gamma_{t}(G)=\gamma_{i t t}(G)=a$.

Figure 1: Graph $G=C_{a} \circ\left\{K_{n} \cup K_{n}\right\}$ with $a \geq 3$
Case 2: Suppose that $a<b$. The $b=a+n$ for some positive integer n. Consider the corona $G=C_{a} \circ\left\{K_{n} \cup K_{n}\right\}$ as shown in Figure 1. For convenience, write $\left(K_{n} \cup K_{n}\right)^{v}=$ $K_{n}^{v} \cup K_{n}^{v}$. Clearly, $V\left(C_{a}\right)$ is a γ_{t}-set of G so that $\gamma_{t}(G)=a$. Let $v \in V\left(C_{a}\right)$ and define $S=V\left(C_{a}\right) \cup V\left(K_{n}^{v}\right)$. Then, S is a total dominating set of G. Now a β_{0}-set M of G is of the form $M=\cup_{v \in V\left(C_{a}\right)}\left\{a^{v}, b^{v}\right\}$, where a^{v} and b^{v} belong to different components of $K_{n}^{v} \cup K_{n}^{v}$. Then $M \cap S \neq \varnothing$. Thus, S is an ITTD-set of G. Thus, $\gamma_{i t t}(G) \leq|S|=a+n=b$. Let $T \subseteq V(G)$ be a total dominating set with $|T|<b$. Then $V\left(K_{n}^{v}\right) \backslash T \neq \varnothing$ for all $v \in V\left(C_{a}\right)$. For each $v \in V\left(C_{a}\right)$, pick $a^{v}, b^{v} \in V\left(K_{n}^{v} \cup K_{n}^{v}\right) \backslash T$ such tha a^{v} and b^{v} are from different components. Then $M=\left\{a^{v}, b^{v}: v \in V(G)\right\}$ is a maximum independent set of G. Since $M \cap T=\varnothing, T$ is not an $I T T D$-set of G. Since T is arbitrary, $\gamma_{i t t}(G)=b$.

Theorem 5. For every positive integers n, a and b with $5 \leq a \leq b \leq 2 a-2$, there exists a connected graph G for which $\gamma_{i t}(G)=a$ and $\gamma_{i t t}(G)=b$.

Proof. For $k \geq 2$, denote by $G(k)$ the graph given in Figure 2.

Figure 2: Graph $G(k)$
Suppose that $a=b$. Take the graph G as in Figure 3 obtained from the graph $G(a-1)$ by adding the path $\left[x_{a-1}, x_{a}, x_{a+1}, x_{a+2}, x^{a+2}\right]$. Observe that $\left\{x_{2}, x_{3}, \ldots, x_{a-1}, x_{a+2}\right\}$ is a

Figure 3: Graph G with $\gamma_{i t}(G)=\gamma_{i t t}(G)$
γ-set of G and every maximum independent set of G contains either x_{a+2} or x^{a+2}. Thus,
the set $D=\left\{x_{2}, x_{3}, \ldots, x_{a-1}, x_{a+2}, x^{a+2}\right\}$ is a $\gamma_{i t}$-set of G. Note that $\left[x_{2}, x_{3}, \ldots, x_{a-1}\right]$ is a path of length at least 2. Hence D is also a $\gamma_{i t t}$-set of G. Therefore $\gamma_{i t}(G)=\gamma_{i t t}(G)=$ $(a-2)+2=a$.

Suppose now that $a<b$. Then $b=a+k$ for some positive integer $1 \leq k \leq a-2$. For $k=1$, consider the graph G in Figure 4 obtained from $G(a-2)$ by adding the paths $\left[x_{a-2+3 j}, x_{a-1+3 j}, x_{a+3 j}, x_{a+1+3 j}, x^{a+1+3 j}\right]$ where $j=0,1$. By a similar argument

Figure 4: Graph G with $\gamma_{i t t}(G)=\gamma_{i t}(G)+1$
$D=\left\{x_{2}, x_{3}, \ldots, x_{a-2}, x_{a+1}, x_{a+4}, x^{a+4}\right\}$ is a $\gamma_{i t}$-set of G. This implies that $\gamma_{i t}(G)=(a-$ $3)+3=a$. It also follows that $D \cup\left\{x^{a+1}\right\}$ is a $\gamma_{i t t}$-set of G. Thus, $\gamma_{i t t}(G)=a+1=b$.

For $2 \leq k \leq a-4$, consider the graph G in Figure 5 obtained from $G(a-k-1)$ by adding $(k+1)$ paths $\left[x_{a-k-1+3 j}, x_{a-k+3 j}, x_{a-k+1+3 j}, x_{a-k+2+3 j}, x^{a-k+2+3 j}\right](j=0,1, \cdots, k-1)$ and $\left[x_{a+2 k}, x_{a+2 k+1}, x_{a+2 k+2}, x_{a+2 k+3}, x_{a+2 k+4}, x_{a+2 k+5}\right]$. Then $D=\left\{x_{2}, x_{3}, \ldots, x_{a-k-1}\right\} \cup$

Figure 5: $\operatorname{Graph} G$ with $\gamma_{i t t}(G)=\gamma_{i t}+k$, where $2 \leq k \leq a-4$
$\left\{x_{a-k+2+3 j}: j \in\{0,1,2, \ldots, k-1\}\right\} \cup\left\{x_{a+2 k+2}, x_{a+2 k+4}\right\}$ is a $\gamma_{i t}$-set of G. On the other hand, $D \cup\left\{x^{a-k+2+3 j}: j \in\{0,1,2, \ldots, k-1\}\right\} \cup\left\{x_{a+2 k+3}\right\}$ is a $\gamma_{i t t}$-set of G. Thus, $\gamma_{i t}(G)=(a-k-2)+k+2=a$ and $\gamma_{i t t}(G)=a+k=b$.

For $k=a-3$, consider the graph G in Figure 6 obtained from $G(2)$, by adding $(a-2)$ paths $\left[x_{2}, x_{3}, x_{4}, x^{4}\right],\left[x_{4+3 j}, x_{5+3 j}, x_{6+3 j}, x_{7+3 j}, x^{7+3 j}\right], j=0,1,2, \ldots, a-5$, and $\left[x_{a+2 k-2}, x_{a+2 k-1}, x_{a+2 k}, x_{a+2 k+1}, x_{a+2 k+2}, x_{a+2 k+3}\right]$. Then $D=\left\{x_{2}\right\} \cup\left\{x_{4+3 j} \mid j=0,1,2, \ldots\right.$, $a-4\} \cup\left\{x_{a+2 k+1}, x_{a+2 k+2}\right\}$ is a $\gamma_{i t}$-set of G. On the other hand, $D \cup\left\{x_{3}\right\} \cup\left\{x^{4+3 j} \mid j=\right.$ $0,1,2, \ldots, a-4\}$ is a $\gamma_{i t t}$-set of G. Thus, $\gamma_{i t}(G)=1+a-3+2=a$, and $\gamma_{i t t}(G)=$ $a+(a-3)=a+k$.

Now, for $k=a-2$, consider the graph G as in Figure 7 obtained by adding ($a-2$) P_{5} paths $\left[x_{2+3 j}, x_{3+3 j}, x_{4+3 j}, x_{5+3 j}, x^{5+3 j}\right], j=0,1, \ldots, a-3$, to the path $G(2)$. Then $D=\left\{x_{3 a-4}, x^{3 a-4}, x_{2+3 j}: j \in\{0,1,2, \ldots, a-3\}\right\}$ is a $\gamma_{i t}$-set of G, and $D \cup\left\{x^{2+3 j}: j \in\right.$ $\{0,1,2, \ldots, a-3\}\}$ forms a $\gamma_{i t t}$-set of G. Therefore, $\gamma_{i t}(G)=2+(a-2)$ and $\gamma_{i t t}(G)=$ $a+(a-2)=b$.

Figure 6: $\operatorname{Graph} G$ with $\gamma_{i t t}(G)=\gamma_{i t}(G)+a-3$

Figure 7: Graph G with $\gamma_{i t t}(G)=\gamma_{i t}(G)+a-2$

4. On join of graphs

For an independent subset $D \subseteq V(G+H)$, either $D \subseteq V(G)$ or $D \subseteq V(H)$. In particular, if $\beta_{0}(H)<\beta_{0}(G)$, then D is a β_{0}-set of $G+H$ if and only if $D \subseteq V(G)$ and is a β_{0}-set of G.

Proposition 1. Let G and H be connected graphs with $\beta_{0}(H)<\beta_{0}(G)$. Then $D \subseteq$ $V(G+H)$ is an independent transversal (total) dominating set of $G+H$ if and only if one of the following holds:
(i) $D \subseteq V(G)$ and D is an independent transversal (total) dominating set of G;
(ii) $D \cap V(G)$ is an independent transversal set of G and $D \cap V(H) \neq \varnothing$.

Proof. Let $D \subseteq V(G+H)$. Assume that D is an independent transversal (total) dominating set of $G+H$. In view of the preceding remark, $D \cap V(G) \neq \varnothing$. Suppose that $D \subseteq V(G)$. Then D is a (total) dominating set of G. Let $M \subseteq V(G)$ be a β_{0} set of G. Then M is a β_{0}-set of $G+H$. Thus, $D \cap M \neq \varnothing$. This shows that D is an independent transversal (total) dominating set of G. Suppose that D intersects both $V(G)$ and $V(H)$, and let $M \subseteq V(G)$ be a β_{0}-set of G. Since M is a β_{0}-set of $G+H$, $M \cap(D \cap V(G))=M \cap D \neq \varnothing$. Thus, $D \cap V(G)$ is an independent transversal set of G.

Conversely, since (total) dominating sets of G are (total) dominating sets of $G+H$, in view of the preceding remark, if (i) holds for $D \subseteq V(G)$, then D is an independent transversal (total) dominating set of $G+H$. Suppose that ($i i$) holds for D. Then D is a (total) dominating set of $G+H$. Let $M \subseteq V(G+H)$ be a β_{0}-set of $G+H$. Then $M \subseteq V(G)$ and is a β_{0}-set of G. Thus, $D \cap M=(D \cap V(G)) \cap M \neq \varnothing$. This shows that D is an independent transversal (total) dominating of $G+H$.

Proposition 2. Let G and H be connected graphs with $\beta_{0}(G)=\beta_{0}(H)$. Then $D \subseteq$ $V(G+H)$ is an independent transversal (total) dominating set of $G+H$ if and only if $D \cap V(G)$ and $D \cap V(H)$ are independent transversal sets of G and H, respectively.

Proof. Let $D \subseteq V(G+H)$. Suppose that D is an $I T D$-set of $G+H$. We claim that D intersects both $V(G)$ and $V(H)$ so that D is in fact an $I T T D$-set of $G+H$. Suppose not, say $D \subseteq V(G)$. Pick a β_{0}-set $M \subseteq V(H)$ of H. Since M is a β_{0}-set of $G+H, D \cap M \neq \varnothing$, which is impossible.

Now, for all β_{0}-sets $M \subseteq V(G)$ of G, M is a β_{0}-set of $G+H$ so that $(D \cap V(G)) \cap M=$ $D \cap M \neq \varnothing$. This means that $D \cap V(G)$ is an independent transversal set of G. Similarly, $D \cap V(H)$ is an independent transversal set of H.

Conversely, suppose that $D \cap V(G)$ and $D \cap V(H)$ are independent transversal sets of G and H, respectively. Then D is a total dominating set of $G+H$. Let $M \subseteq V(G+H)$ be a β_{0}-set of $G+H$. Either $M \subseteq V(G)$ and is a β_{0}-set of G or $M \subseteq V(H)$ and is a β_{0}-set of H. Either case yields $D \cap M \neq \varnothing$. Thus, D is an independent transversal (total) dominating set of $G+H$.

Corollary 3. Let G and H be connected graphs with $\beta_{0}(H) \leq \beta_{0}(G)$. Then the following hold:
(i) If $\beta_{0}(H)=\beta_{0}(G)$, then $\gamma_{i t}(G+H)=\gamma_{i t t}(G+H)=\beta_{0 t}(G)+\beta_{0 t}(H)$.
(ii) If $\beta_{0}(H)<\beta_{0}(G)$ and $\beta_{0 t}(G)<\gamma_{i t}(G)$, then $\gamma_{i t}(G+H)=\gamma_{i t t}(G+H)=1+\beta_{0 t}(G)$.
(iii) If $\beta_{0}(H)<\beta_{0}(G)$ and $\beta_{0 t}(G)=\gamma_{i t}(G)=\gamma_{i t t}(G)$, then $\gamma_{i t}(G+H)=\gamma_{i t t}(G+H)=$ $\gamma_{i t}(G)$.
(iv) If $\beta_{0}(H)<\beta_{0}(G)$ and $\beta_{0 t}(G)=\gamma_{i t}(G)<\gamma_{i t t}(G)$, then $\gamma_{i t}(G+H)=\gamma_{i t}(G)$ and $\gamma_{i t t}(G+H)=1+\beta_{0 t}(G)$.

Proof. The case where $\beta_{0}(G)=\beta_{0}(H)$ is immediate from Proposition 2. Assume that $\beta_{0}(G)>\beta_{0}(H)$. It follows from Proposition 1 that $\gamma_{i t}(G+H)=\min \left\{\gamma_{i t}(G), 1+\beta_{0 t}(G)\right\}$. Suppose that $\gamma_{i t}(G)>\beta_{0 t}(G)$. Then $\gamma_{i t}(G+H)=1+\beta_{0 t}(G)$ and any $\gamma_{i t}$-set of $G+H$ is a total dominating set of $G+H$. Thus, $\gamma_{i t t}(G+H)=1+\beta_{0 t}(G)$. Suppose that $\gamma_{i t}(G)=\beta_{0 t}(G)$. If $\gamma_{i t}(G)=\gamma_{i t t}(G)$, then $\gamma_{i t t}(G+H)=\gamma_{i t}(G+H)=\gamma_{i t}(G)$. Suppose that $\gamma_{i t}(G)<\gamma_{i t t}(G)$. Then $1+\beta_{0 t}(G) \leq \gamma_{i t t}(G)$. In view of Proposition 1, $\gamma_{i t t}(G+H)=$ $1+\beta_{0 t}(G)$.

Example 1. (1) For positive integers m, n and p with $p>\max \{m, n\}$,

$$
\gamma_{i t}\left(K_{m, p}+K_{n, p}\right)=\gamma_{i t t}\left(K_{m, p}+K_{n, p}\right)=2
$$

(2) For the fan F_{n} on $n+1 \geq 3$ vertices,

$$
\gamma_{i t}\left(F_{n}\right)=\left\{\begin{array}{l}
2, \text { if } n=4 \text { or } n \text { is odd; } \\
3, \text { if } n \text { is even and } n \neq 4,
\end{array} \quad \text { and } \gamma_{i t t}\left(F_{n}\right)=\left\{\begin{array}{l}
2, \text { if } n \text { is odd } \\
3, \text { if } n \text { is even }
\end{array}\right.\right.
$$

(3) For the wheel W_{n} on $n+1$ vertices,

$$
\begin{gathered}
\gamma_{i t}\left(W_{n}\right)=\left\{\begin{array}{l}
2, \text { if } n=4 ; \\
3, \text { if } n \in\{3,5,7,9\} \text { or } n \text { is even and } n \neq 4 ; \quad \text { and } \\
4, \text { otherwise, }
\end{array}\right. \\
\gamma_{i t t}\left(W_{n}\right)=\left\{\begin{array}{l}
2, \text { if } n=4 ; \\
3, \text { if } n \in\{3,5\} \text { or } n \text { is even and } n \neq 4 ; \\
4, \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

(4) For all positive integers $n \geq 2$ and $p \geq 2, \gamma_{i t}\left(K_{n, n}+K_{p}\right)=\gamma_{i t t}\left(K_{n, n}+K_{p}\right)=2$.

5. On corona of graphs

It is worth noting that $G \circ H$ is composed of the joins $H^{v}+v=H^{v}+\langle v\rangle, v \in V(G)$, joined together by the edges of G. Thus,

$$
V(G \circ H)=V(G) \cup\left(\cup_{v \in V(G)} V\left(H^{v}\right)\right)=\cup_{v \in V(G)} V\left(H^{v}+v\right) .
$$

Theorem 6. [5] Let G be a connected graph and H any graph. Then $S \subseteq V(G \circ H)$ is a dominating set of $G \circ H$ if and only if $S \cap V\left(H^{v}+v\right)$ is a dominating set of $H^{v}+v$ for each $v \in V(G)$.

Observation 3. Let G be a nontrivial connected graph of order n, and let p be a positive integer. Then

$$
\gamma_{i t}\left(G \circ K_{p}\right)=\left\{\begin{array}{l}
n, \text { if } p=1 ; \\
n+p, \text { if } p \geq 2,
\end{array} \quad \text { and } \quad \gamma_{i t t}\left(G \circ K_{p}\right)=n+p .\right.
$$

A sharp bound for $\gamma_{i t}(G \circ H)$ is provided in [20]
Theorem 7. [20] Let G be a graph of order $n \geq 2$. Then for any graph H such that $\beta_{0}(H) \geq 2$,

$$
n-1+d_{\beta}(H) \leq \gamma_{i t}(G \circ H) \leq n+d_{\beta}(H),
$$

where $d_{\beta}(H)$ is the largest number of pairwise disjoint β_{0}-sets of H. Moreover, if there is a $d_{\beta}(H)$-set which is a dominating set in H, then $\gamma_{i t}(G \circ H)=n-1+d_{\beta}(H)$.

Observe that $d_{\beta}(H) \leq \beta_{0 t}(H)$ for any graph H. In what follows, we determine $\gamma_{i t}(G \circ$ $H)$ in terms of $\beta_{0 t}(H)$.

Lemma 1. Let G be a connected graph and H a noncomplete graph. Then a subset $S \subseteq V(G \circ H)$ is a β_{0}-set of $G \circ H$ if and only if $S=\cup_{v \in V(G)} S_{v}$, where $S_{v} \subseteq V\left(H^{v}\right)$ is a β_{0}-set of H^{v} for each $v \in V(G)$.

Proposition 3. Let G and H be nontrivial connected graphs with H noncomplete. Then $S \subseteq V(G \circ H)$ is an ITD-set of $G \circ H$ if and only if $S=A \cup\left(\cup_{v \in V(G)} S_{v}\right)$, where $A \subseteq V(G)$ and $S_{v} \subseteq V\left(H^{v}\right)$ for all $v \in V(G)$ satisfying the following:
(i) For each $v \in V(G) \backslash A, S_{v}$ is a dominating set of H^{v}.
(ii) There exists $v \in V(G)$ for which S_{v} is an independent transversal set of H^{v}.

Proof. Assume that $S \subseteq V(G \circ H)$ is an ITD-set of $G \circ H$. Then $S=A \cup\left(\cup_{v \in V(G)} S_{v}\right)$, where $A=S \cap V(G)$ and $S_{v}=S \cap V\left(H^{v}\right)$ for all $v \in V(G)$. Statement (i) follows immediately from Theorem 6 . To prove (ii), suppose that for each $v \in V(G)$ there exists a β_{0}-set M_{v} of H^{v} for which $S_{v} \cap M_{v}=\varnothing$. By Lemma $1, M=\cup_{v \in V(G)} M_{v}$ is a β_{0}-set of $G \circ H$. Since S is an independent transversal set of $G \circ H, \cup_{v \in V(G)}\left(S_{v} \cap M_{v}\right)=S \cap M \neq \varnothing$, which is impossible. This proves (ii).

Conversely, assume that (i) and (ii) hold for S. By condition (i) and the fact that $S \cap V\left(H^{v}+v\right)$ is a dominating set in $H^{v}+v$ whenever $v \in A, S$ is a dominating set of $G \circ H$. Let $M \subseteq V(G \circ H)$ be a β_{0}-set of $G \circ H$. By $(i i)$, there exists $v \in V(G)$ for which S_{v} is an independent transversal set of H^{v}. Since $M_{v}=M \cap V\left(H^{v}\right)$ is a β_{0}-set of H^{v}, $S_{v} \cap M_{v} \neq \varnothing$. Thus, $S \cap M \neq \varnothing$. Therefore, S is an $I T D$-set of $G \circ H$.

In view of Proposition 3, the following assertion is clear.
Proposition 4. Let G and H be nontrivial connected graphs with H noncomplete. Then $S \subseteq V(G \circ H)$ is an independent transversal total dominating set of $G \circ H$ if and only if $S=A \cup_{v \in V(G)} S_{v}$, where $A \subseteq V(G)$ and $S_{v} \subseteq V\left(H^{v}\right)$ for all $v \in V(G)$ satisfying the following:
(i) For each $v \in V(G) \backslash A$, S_{v} is a total dominating set of H^{v}.
(ii) For each $v \in A, S_{v} \neq \varnothing$ or $N_{G}(v) \cap S \neq \varnothing$.
(iii) There exists $v \in V(G)$ for which S_{v} is an independent transversal set of H^{v}.

Corollary 4. Let G and H be nontrivial connected graphs, where G is of order n and H noncomplete. Then

$$
\begin{equation*}
\gamma_{i t}(G \circ H)=n-1+\min \left\{\gamma_{i t}(H), 1+\beta_{0 t}(H)\right\}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{i t t}(G \circ H)=n-1+\min \left\{\gamma_{i t t}(H), 1+\beta_{0 t}(H)\right\} . \tag{2}
\end{equation*}
$$

Proof. Let $v \in V(G)$ and let $B_{1}, B_{2} \subseteq V\left(H^{v}\right)$ be a $\gamma_{i t}$-set and a $\beta_{0 t}$-set of H^{v}, respectively. Put $S_{1}=(V(G) \backslash\{v\}) \cup B_{1}$ and $S_{2}=V(G) \cup B_{2}$. By Proposition 3, both S_{1} and S_{2} are $I T D$-sets of $G \circ H$. Thus, $\gamma_{i t}(G \circ H) \leq \min \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\}=n-1+\min \left\{\gamma_{i t}(H), 1+\right.$ $\left.\beta_{0 t}(H)\right\}$.

Let $S=A \cup\left(\cup_{v \in V(G)} S_{v}\right) \subseteq V(G \circ H)$ where $A \subseteq V(G)$ be a $\gamma_{i t}$-set of $G \circ H$. By Proposition $3,\left|S_{w}\right| \geq 1$ for all $w \in V(G) \backslash A$ and there exists $v \in V(G)$ for which S_{v} is an independent transversal set of H^{v}. We consider two cases:

Case 1: Suppose that $v \in A$. Then

$$
\begin{aligned}
\gamma_{i t}(G \circ H)=|S| & =|A|+\sum_{w \in V(G)}\left|S_{w}\right| \\
& \geq n+\left|S_{v}\right| \\
& \geq n-1+\min \left\{\gamma_{i t}(H), 1+\beta_{0 t}(H)\right\} .
\end{aligned}
$$

Case 2: Suppose that $v \notin A$. Then S_{v} is an $I T D$-set of H^{v}. Thus,

$$
\begin{aligned}
\gamma_{i t}(G \circ H)=|S| & =|A|+\sum_{w \in V(G)}\left|S_{w}\right| \\
& \geq n-1+\left|S_{v}\right| \\
& \geq n-1+\min \left\{\gamma_{i t}(H), 1+\beta_{0 t}(H)\right\}
\end{aligned}
$$

This proves Equation 1.
Similar arguments will prove Equation 2.

6. On composition of graphs

For a subset $C \subseteq V(G[H])$, we can always write $C=\cup_{x \in A}\left(\{x\} \times A_{x}\right)$ for some $A \subseteq V(G)$ and $A_{x}=\{y \in V(H):(x, y) \in A\}$.

Theorem 8. [15] Let G and H be connected graphs, and $C=\cup_{x \in S}\left(\{x\} \times S_{x}\right) \subseteq V(G[H])$. Then C is a dominating set of $G[H]$ if and only if one of the following holds:
(i) S is a total dominating set of G;
(ii) S is a dominating set of G and S_{x} is a dominating set of H for each $x \in S \backslash N_{G}(S)$.

Lemma 2. Let G and H be nontrivial connected graphs, and $C=\cup_{x \in S}\left(\{x\} \times S_{x}\right) \subseteq$ $V(G[H])$. Then C is an (maximum) independent set of $G[H]$ if and only if S is an (maximum) independent set of G and S_{x} is an (maximum) independent set of H for each $x \in S$.

Proposition 5. Let G and H be nontrivial connected graphs, and $C=\cup_{x \in S}\left(\{x\} \times S_{x}\right) \subseteq$ $V(G[H])$. Then C is an independent transversal dominating set of $G[H]$ if and only if each of the following holds:
(i) One of the following holds:
(a) S is an ITTD-set of G.
(b) S is an ITD-set of G and S_{x} is a dominating set of H for each $x \in S \backslash N_{G}(S)$.
(ii) For every pair of β_{0}-sets A and B of G and H, respectively, there exists $x \in S \cap A$ for which $B \cap S_{x} \neq \varnothing$.

Proof. Suppose that conditions (i) and (ii) hold for S. Condition (i) implies that C is a dominating set of $G[H]$ by Theorem 8 . Let $D=\cup_{x \in A}\left(\{x\} \times A_{x}\right) \subseteq V(G[H])$ be a β_{0}-set of $G[H]$. By Lemma $2, A$ is a β_{0}-set of G and A_{x} is a β_{0}-set of H for each $x \in A$. Since S is an $I T D$-set of $G, S \cap A \neq \varnothing$. By condition(ii), there exists $x \in S \cap A$ for which $S_{x} \cap A_{x} \neq \varnothing$. Let $y \in S_{x} \cap A_{x}$. Then $(x, y) \in C \cap D$. Since D is arbitrary, C is an $I T D$-set of $G[H]$.

Conversely, assume that C is an $I T D$-set of $G[H]$. By Theorem 8 , since C is a dominating set of $G[H], S$ is a dominating set of G and S_{x} a dominating set of H for each $x \in S \backslash N_{G}(S)$ or S is a total dominating set of G. Let $A \subseteq V(G)$ be a β_{0}-set of G and $B \subseteq V(H)$ a β_{0}-set of H. Since $C^{*}=\cup_{x \in A}(\{x\} \times B)$ is a β_{0}-set of $G[H], C \cap C^{*} \neq \varnothing$. Let $(x, y) \in C \cap C^{*}$. Then $x \in S \cap A$. So far, we have shown that S is an $I T D$-set of G, thus (i) holds. Moreover, $y \in S_{x} \cap B$ so that $S_{x} \cap B \neq \varnothing$. This proves (ii).

It should be noted that if $S \cap A=\{x\}$ (singleton) in Theorem $5(i i)$, then S_{x} is an independent transversal set of H.

Consider $G=P_{5}\left[P_{4}\right]$. Write $P_{5}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ and $P_{4}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$. Then $C=\left\{\left(x_{2}, y_{2}\right),\left(x_{3}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{4}, y_{2}\right)\right\}$ is a $\gamma_{i t}$-set of G. Put $S=\left\{x_{2}, x_{3}, x_{4}\right\}$ and $A=$ $\left\{x_{1}, x_{3}, x_{5}\right\}$. Then S is a $\gamma_{i t t}$-set of P_{5} and A is the unique β_{0}-set of P_{5}. Further, $S \cap A=$ $\left\{x_{3}\right\}$ and $S_{x_{3}}=\left\{y_{1}, y_{2}\right\}$ is an independent transversal set of P_{4}.

The following is immediate from Proposition 5.
Proposition 6. Let G and H be nontrivial connected graphs, and $C=\cup_{x \in S}\left(\{x\} \times S_{x}\right) \subseteq$ $V(G[H])$. Then C is an independent transversal total dominating set of $G[H]$ if and only if each of the following holds:
(i) S is an independent transversal total dominating set of G.
(ii) For every pair of maximum independent sets A and B of G and H, respectively, there exists $x \in S \cap A$ for which $B \cap S_{x} \neq \varnothing$.

Given an $I T D$-set (resp. $I T T D$-set) $S \subseteq V(G)$ of G, define $M_{G}(S)$ (resp. $M_{G}^{t}(S)$) to be any subset of S of minimum cardinality such that for each $x \in M_{G}(S)$ (resp. $\left.x \in M_{G}^{t}(S)\right), x \in M$ for some $M \in X I(G)$, and put

$$
\begin{gathered}
\eta(G)=\min \left\{\left|M_{G}(S)\right|: S \text { is an } \gamma_{i t} \text {-set of } G\right\}, \text { and } \\
\eta_{t}(G)=\min \left\{\left|M_{G}^{t}(S)\right|: S \text { is a } \gamma_{i t t} \text {-set of } G\right\} .
\end{gathered}
$$

Corollary 5. For all nontrivial connected graphs G and positive integers $p \geq 2$,

$$
\gamma_{i t}\left(G\left[K_{p}\right]\right) \leq(p-1) \eta(G)+\gamma_{i t}(G),
$$

and

$$
\gamma_{i t t}\left(G\left[K_{p}\right]\right) \leq(p-1) \eta_{t}(G)+\gamma_{i t t}(G) .
$$

Equality in each is attained if $X I(G)$ consists of pairwise disjoint β_{0}-sets of G.
Proof. Let $S \subseteq V(G)$ be a $\gamma_{i t}$-set of G for which $\left|M_{G}(S)\right|=\eta(G)$, and let $y \in V\left(K_{p}\right)$. Define

$$
C=\left[\cup_{x \in M_{G}(S)}\left(\{x\} \times V\left(K_{p}\right)\right)\right] \cup\left[\cup_{x \in S \backslash M_{G}(S)}\{(x, y)\}\right] .
$$

By Proposition 5, C is an $I T D$-set of $G\left[K_{p}\right]$. Consequently,

$$
\gamma_{i t}\left(G\left[K_{p}\right]\right) \leq|C|=p \cdot \eta(G)+\left(\gamma_{i t}(G)-\eta(G)\right)=(p-1) \eta(G)+\gamma_{i t}(G) .
$$

Now suppose that $X I(G)$ consists of pairwise disjoint β_{0}-sets of G. Then $\left|M_{G}(S)\right|=$ $\eta(G)=x i(G)$ for all ITD-sets S of G. Let $\left.C=\cup_{x \in S}\left(\{x\} \times S_{x}\right\}\right)$ be a $\gamma_{i t}$-set of $G\left[K_{p}\right]$. In view of Proposition 5, S is an $I T D$-set of G. Write

$$
C=\left(\cup_{x \in M_{G}(S)}\left(\{x\} \times S_{x}\right)\right) \cup\left(\cup_{x \in S \backslash M_{G}(S)}\left(\{x\} \times S_{x}\right)\right),
$$

and we claim that $S_{x}=V\left(K_{p}\right)$ for all $x \in M_{G}(S)$. Let $x \in M_{G}(S)$, and let $y \in V\left(K_{p}\right)$. Pick a β_{0}-set $A \subseteq V(G)$ of G for which $x \in S \cap A$. By Proposition $5(i i)$, since $\{y\}$ is a β_{0}-set of K_{p}, there exists $u \in S \cap A$, consequently $u \in M_{G}(S)$, such that $S_{u}=\{y\}$. By the minimality of the cardinality of $M_{G}(S), x=u$ so that $y \in S_{x}$. Accordingly, $S_{x}=V\left(K_{p}\right)$. Thus,

$$
\gamma_{i t}\left(G \circ K_{p}\right)=|C| \geq p \cdot \eta(G)+(|S|-\eta(G)) \geq(p-1) \eta(G)+\gamma_{i t}(G) .
$$

Similar arguments will prove the desired results for $\gamma_{i t t}\left(G \circ K_{p}\right)$.
If, in particular, $G=K_{1, n}$ on $n+1$ vertices, then $\eta(G)=1, \gamma_{i t}(G)=\gamma_{i t t}(G)=2$, and $\gamma_{i t}\left(G\left[K_{p}\right]\right)=\gamma_{i t t}\left(G\left[K_{p}\right]\right)=p+1$.

Acknowledgements

The authors would like to thank the referees for reviewing the initial paper and for the invaluable comments and suggestions that eventually led to this much improved version of the work. This research is funded by the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOSTASTHRDP), Philippines.

References

[1] C. Berge. Theory of Graphs and its Applications. Methuen, London, 1962.
[2] J.A. Bondy and Geng hau Fan. A sufficient condition for dominating cycles. Discrete Math, 67(2):205-208, 1987.
[3] C. Brausee, K. Ozekie M. A. Henning, I. Schiermeyere, and E. Vumar. On upper bounds for the independent transversal domination number. Discrete Applied Mathematics, 236:66-72, 2018.
[4] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[5] S.R. Canoy and C.E. Go. Domination in the corona and join of Graphs. International Mathematical Forum, 6(16):763-771, 2011.
[6] E. Cockayne, R.M. Dawes, and S.T. Hedetniemi. Total domination in graphs. Networks, 10(3):211-219, 2006.
[7] E.J. Cockayne and S.T. Hedetniemi. Towards a Theory of Domination in Graphs. Networks, 7(3):247-261, 1997.
[8] W.J. Desormeauxe, T.W. Haynes, and M.A. Henning. An extremal problem for total domination stable graphs upon edge removal. Discrete Appl. Math, 159:1048-1052, 2011.
[9] Allan Frendrupe, Michael A. Henningbe, Bert Randerathe, and Preben Dahl Vestergaard. An upper bound on the domination number of a graph with minimum degree 2. Discrete Mathematics, 309:639-646, 2009.
[10] I.S. Hamid. Independent transversal domination in graphs. Discussiones Mathematicae, Graph Theory, 32:5-17, 2012.
[11] T.W. Haynese, S.T. Hedetniemi, and P.J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York, 1998.
[12] M. Henning and A. Yeo. Total domination in graphs. Springer, New York, 2013.
[13] Min-Jen Jou and G. J. Chang. The number of maximum independent sets in graphs. Taiwanese Journal of Mathematics, 4(4):685-695, 2000.
[14] R.P. Malalay and F.P. Jamil. On disjunctive domination in graphs. Quaestiones Mathematicae, 43(2):149-168, 2020.
[15] E. Maravillae, R.T. Isla, and S.R. Canoy Jr. Fair Domination in the Join, Corona and Composition of Graphs. Applied Mathematical Sciences, 8(93):4609-4620.
[16] S.L.N. Marohombsar and F.P. Jamil. On 2-point set dominating sets in graphs. Advances and Applications in Discrete Mathematics, 21(2):139-162, 2019.
[17] A.Cabrera Martineze, J.M. Sigarreta Almira, and I.G. Yero. On the independence transversal total domination number of graphs. Discrete Aplied Mathematics, 219:6573, 2017.
[18] A.Cabrera Martineze, I. Peterine, and I.G. Yero. Independent Transversal total domination versus total domination in trees. Discussiones Mathematicae Graph Theory, 41:213-224, 2021.
[19] O. Ore. Theory of Graphs. Amer. Math. Soc., Prividence, RI, 38:206-212, 1962.
[20] V. Samodivkine, H.A. Ahanger, and I.G. Yero. Independent transversal dominating sets in graphs: complexity and structural properties. Filomat, 30(2):293-303, 2016.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v14i1.3904
 Email addresses: daven.sevilleno@g.msuiit.edu.ph (D. Sevilleno), ferdinand.jamil@g.msuiit.edu.ph (F. Jamil)

