
On Indexing Mobile Objects

George Kollios Dimitrios Gunopulos

Polytechnic University University of California, Riverside

gkollios@milos.poly.edu dg@cs.ucr.edu

Vassilis J. Tsotras

University of California, Riverside

tsotras@cs.ucr.edu

Abstract

We show how to index mobile objects in one and two di-
mensions using efficient dynamic external memory data
structures. The problem is motivated by real life appli-

cations in traffic monitoring, intelligent navigation and
mobile communications domains. For the l-dimensional

case, we give (i) a dynamic, external memory algo-
rithm with guaranteed worst case performance and lin-
ear space and (ii) a practical approximation algorithm
also in the dynamic, external memory setting, which
has linear space and expected logarithmic query time.
We also give an algorithm with guaranteed logarithmic
query time for a restricted version of the problem. We
present extensions of our techniques to two dimensions.

In addition we give a lower bound on the number of
I/O’s needed to answer the d-dimensional problem. Ini-
tial experimental results and comparisons to traditional
indexing approaches are also included.

1 Introduction

Traditional database management systems assume that
data stored in the database remain constant until ex-
plicitly changed through an update. While this model
serves well many applications where data changes in dis-
crete steps, it is not appropriate for applications with
continuously changing data. One such application is a
“motion” database that stores the location of mobile ob-
jects (e.g. cars). Since objects change location continu-
ously, one would have to update the database at every
unit of time. This is clearly an inefficient and infeasi-
ble solution considering the prohibitively large update
overhead.

A better approach is to abstract each object’s loca-

Permission to make digital or hard copies or all or part of this work fin

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or cornmerrial advantage and that
copies hear this notice and the full citation on the tirst page. TO copy
otherwise, to republish, to post on servers or to redistribute to lists.

requires prior specific permission and/or a fee.

PODS ‘99 Philadelphia PA
Copyright ACM 1999 I-581 13-062-7/99/05...$5.00

tion as a function of time f(t), and update the database
only when the parameters of f change (for example
when the speed or the direction of a car changes). Us-
ing f(t) the “motion” database can compute the lo-
cation of the mobile object at any time in the future.
While this approach minimizes the update overhead,
it introduces a variety of novel problems (such as the
need for appropriate data models, query languages and
query processing and optimization techniques) since the
database is not directly storing data values but func-
tions to compute these values. Motion database prob-
lems have recently attracted the interest of the research
community: ([33, 36, 371) present the Moving Objects
Spatio-Temporal (MOST) model and a language (FTL)
for querying the current and future locations of mobile
objects; ([15]) proposes a model that tracks and queries
the history (past routes) of mobile objects, based on
new spatio-temporal data types. Another spatiotem-
poral model appears in 1111. Spatio-temporal queries
about mobile objects have important applications in
traffic monitoring, intelligent navigation and mobile com-
munications domains. For example in databases that
track cars in a highway system, we can detect future
congestion areas. In mobile communications we can al-
locate more bandwidth for areas where high concentra-
tion of mobile phones is approaching. There is already
a GIS system [4] that supports tracking and querying
of mobile objects.

In this paper we focus on the problem of indexing
mobile objects. In particular we examine how to effi-
ciently address range queries over the object locations
into the future. An example of such a spatio-temporal
query is: “Report all the objects that will be inside a
query region P after 10 minutes from now”. Note that
the answer to this query is tentative in the sense that it
is computed based on the current knowledge stored in
the database about the mobile objects’ location func-
tions. In the near future this knowledge may change,
which implies that the same query could have a different
answer. As the number of mobile objects in the appli-
cations we consider (traffic monitoring, mobile commu-

261

nications, etc.) can be rather large we are interested in
external memory solutions.

While in general an object could move anywhere in
the 3-dimensional space using some rather complex mo-
tion, we limit our treatment to objects moving in l- and
2-dimensional spac.es and whose location is described

by a linear function of time. There is a strong mo-
tivation for such an approach based on the real-world
applications we have in mind: straight lines are usually
the faster way to get from one point to another; cars
move in networks of highways which can be approxi-
mated by connected straight line segments on a plane;
this is also true for routes taken by airplanes or ships.
In addition, solving these simpler l- and 2-dimensional
problems may provi.de intuition for addressing the more
difficult problem of indexing general multidimensional
functions.

2 Problem Description

We consider a database that keeps track of mobile ob-
jects moving in one and two dimensions. We model
the objects as points that move with a constant veloc-
ity starting from a specific location at a specific time
instant. Using this information we can compute the
location of an object at any time in the future for as
long as its movement characteristics remain the same.
In one dirnension, an object started from location ya at
time to with a velocity ZJ (V can be positive or negative)

will be in location ys + w(t - to) at time t > tn. Simi-
larly for objects moving in two dimensions. Objects are

responsible to update their motion information, every
time when their speed or direction changes. Also, we
assume that the objects can move inside a finite terrain
(a line segment in one dimension or a rectangle in two).
Thus when an object has reached the limits, it has to
issue an update (either because it is deleted or it is re-
flected). Finally, we allow to insert a new object or to
delete an old one, e.g. the system is dynamic.

We would like to itnswer efficiently proximity queries
among the mobile objects. In particular, we are in-
teresting to answering queries of the form: “Report
the objects that reside inside the interval [yiq, ysq] (or
the rectangle [+,zQ] x [ye, ysgJ in two dimensions)
at the time instants between time tl, and tsg, (where
t now 5 tl, < tzq), given the current motion informa-
tion of all objects”. We call this type ‘of queries the
one dimensional MOR query for objects moving in one
dimension and the two dimensional MOR query for ob-
jects moving in two dimensions.

We consider the problem in the standard external
memory model of computation[3]. In this model each
disk access (an I/O) transmits in a single operation B
units of data. We call B the page capacity. We measure
the efficiency of an algorithm in terms of the number of

I/O’s to perform an operation. If N is the number of the
mobile objects and K is the number of objects reported
by the MOR query, then the minEmum number of pages
to store the database is n = [$] and the minimum

number of I/O’s to report the answer is k = r$$]. We
say that an algorithm uses linear space, if it uses O(n)
disk pages, and that it uses logarithmic time to answer
a query if it needs to execute O(logB n + Ic) I/O%. Not’s
that log, n is for the external memory model different
than log, n since B is not a constant but a pro’blem
variable.

In the next section we consider the problem of in-
dexing mobile objects on a line. First we present two
geometric representations of the problem (sections 3.1,
3.2) and discuss why storing the trajectories of mobile
objects as lines in traditional indexing methods (1ik:e R-
trees) does not work. We then give a lower bound on the
static version of the problem by reducing it to simplex
range searching in two dimensions (section 3.3). We
also give a dynamic external memory algorithm .with
matching upper bound that is based on partition trees
[27] (section 3.4). Unfortunately this algorithm is not
practical because it has a large hidden constant fac-
tor. Accordingly we turn our attention into algorithms
designed to use linear space and to work well in the av-

erage case. We present two approaches, a simple one
based on kd-trees and a more sophisticated one based.
on B-l--trees (section 3.5). Our experimental resiults.

(section 5) show that the B+-trees based approach out-
performs the Icd-tree and the simple R-tree approach.
In section 3.6, we impose the restriction that we can
only answer queries within a fixed time window in the
future. For this setting we present a data structure with
logarithmic query time. The space requirement of our
method varies between linear and quadratic, depending
on the size of the time window and the distribution of
the velocities of the mobile objects.

In section 4 we extend the previous results for two
versions of the 2-dimensional case. In the first version
we make the assumption, motivated from practice, that
the objects move on a network of l-dimensional routes
(we call this version, the 1.5-dimensional problem). In
the second version the objects are allowed to move arbi-
trarily on a plane (the general 2-dimensional problem).

3 Indexing in one dimension

We begin with the simpler problem of objects moving on
an l-dimensional line. We partition the mobile objects
into two categories, the objects with low speed 1) :Y 0
and the objects with speed between a minimum u,in
and maximum speed v,,, . We consider here the “mov-

ing” objects, eg. the objects with speed greater than
urnin, We discuss the case of slowly moving objects in
section 3.6.

262

4

4

Tii

Figure 1: Trajectories and query in (t, y) plane.

We assume that the objects move on the y-axis be-

tween 0 and ymaz and that an object can update its
motion information whenever it changes. We treat an
update as a deletion of the old information and an in-
sertion of the new one. Next we give different geo-

metric representations of the problem and for each one
we discuss access structures to efficiently address MOR
queries.

3.1 Space-time representation

In this representation we plot the trajectories of the
mobile objects as lines in the time-location (t, y) plane.
The equation of each line is y(t) = wt + a where 21 is
the slope (the velocity in our case) and a is the inter-
cept, that can be computed by the motion information.
Figure 1 shows a number of trajectories in the plane.

The query is expressed as a 2-dimensional interval
[(ye, ye), (TV,&)]. The answer is the set of objects
that correspond to lines that intersect the query rect-
angle.

While the space-time representation is quite intu-
itive, it leads to indexing long lines, a situation that
causes significant shortcomings to traditional indexing
techniques.

One way is to index the lines using a Spatial Access
Method (SAM). Then each line is approximated by a
minimum bounding rectangle (MBR) which is then in-
dexed using an R-tree[20] or an R*-tree[8]. However,
this approach is problematic because: (i) an MBR as-
signs to the moving object a much larger area than a
line has, (ii) since objects retain their trajectory until
being updated, all lines in figure 1 extend to “infinity”,
i.e. a common ending on the time dimension. Mapping
a line segment as a point in four dimensions, by taking
the coordinates of the end points, will also not work.
Even if we partition the time dimension in time inter-
vals (“sessions”) of length AT (as in [35]) and index the
part of each trajectory that falls in the current session,
we still have segments with a common endpoint (the
end time of the current session). Another shortcoming
is that the SAM can only address queries until the end
of the current session.

A different approach is to decompose the data space
into disjoint cells and store with each cell the set of
lines that intersect it. Indexes that follow this approach
are the R+-tree[Sl], the cell-tree[l9] and the PMR-
quadtree[30]. The main drawback for these methods
is that every line will have many copies; this becomes
worse in our environment since lines are large. Storing
many copies affects both the update performance (when
an object changes its trajectory, its previous route has
to be deleted from all cells it was contained), as well as
space. ’

In [23] a method is proposed to index line segments
based on the dual transformation. The use of dual
transformation to index mobile objects is also proposed
in [37]. In the next section we consider this approach
in our setting, namely using the dual transformation to
index mobile objects.

3.2 The dual space-time representation.

Duality is a powerful and useful transform frequently
used in the computational geometry literature; in gen-
eral it maps a hyper-plane h from Rd to a point in Rd
and vice-versa. The duality transform is useful because
it allows to formulate a problem in a more intuitive
manner.

In our case we can map a line from the primal plane
(t, y) to a point in the dual plane. There is no unique
duality transform, but a class of transforms with sim-
ilar properties. Sometimes one transform is more con-
venient than another.

Consider a dual plane where one axis represents the
slope of an object’s trajectory and the other axis its
intercept. Thus the line with equation y(t) = vt + a is
represented by the point (~,a) in the dual space (this
is called the Hough-X transform in 1231). While the
values of v are between --2rmaz and v,,,, the values of
the intercept are depended on the current time. If the
current time is t,,, then the range for a is [-v,,, x

t nour, ymas -t hum x klJ1.
The query is transformed in a polygon in the dual

space. We can express this polygon using a linear con-
straint query [18].

Proposition 1 The one dimensional MOR quey is ex-
pressed in the dual Hough-X plane as follows:

l For v > 0 the query is : Q = Cl A C2 A C3 A C4,
where: Cl = v 1 urnin, C2 = v 5 v,,,, C3 =
aftz*w>yl, andC4=a+tlqvIyzq.

l For u < 0 the query is : Q = D1 A 02 A D3 A D4,
where: D1 = v 5 -vmin, 02 = v 2 -urnax, D3 =
a f tl,v 2 ~1~ and D4 = a + tzPv < yzq.

‘[35] USES a method based on the PMR-quadtree; their experiments
show that even for a small number of mobile objects (50K) the number
of copies can become quite large (about 250 copies/object).

263

Figure 2: Query in the dual Hough-X plane.

Since the query is different for positive and nega-
tive slopes, we can use two structures to store the dual
points. It is easy to see that the range of the u’s values

is now [--%,, X bow, Ymax - Gnin X tnow].
However since time is monotonically increasing, the

values of the intercept are not bounded. If the value
of the maximum speed is significant, the values of the
intercept can become very large and this potentially
can be a problem (i.e., representing unbounded ranges
of real numbers).

To solve this problem we use our assumption that

when an object crosses a border it issues an update

(i.e. it is deleted or reflected). Combining this as-

sumption with the minimal speed, we can assure that
all objects have updated their motion information at
least once durmg the last TpeTiod time instants, where

Tperiod = e. We can then use two distinct index
structures. The first index stores all objects that have
issued their last updlate in the period [O,Tpe+d]. The
second index stores objects that have issued their last
update in the interval [Tperiod, ZTp.ariod]e Each object
is stored only once, either in the first or in the second
index. Before time Tperiod, all objects are stored in the

first index. However, every object that issues an update

after Tperiod is deleted from the first index and it is in-
serted in the second index. The intercept of the first
index is computed by using the line t = 0 and for the
second index using the line t = Tperiod. Thus we are
sure that the intercept will always have values between

0 and urnax x Tperiot<. To query the database we use
both indices. After time 2TpeTiod we know that the first
index is empty and alll objects are stored in the second
index, since every object have issued at least one up-
date from Tperiod to L?Tperiodm At that time we remove
the empty index and we initiate a new one with time

period [2T&riody STperiod]. We continue in the same way
and every ‘Tperiod time instants we initiate a new index
and we remove an empty one. Using this method the
intercept is bounded while the performance of the index
structures remain asymptotically the same as if we had
only one st,ructure.

Another way to represent a line y = wt + a, is to
write the equation as t = $y - 2, Then we can map

\

264

this line to a point in the dual plane with coordinates

RC = i and the b = --z (Hough-Y in [23]). Note that b is
the point where the given line intersects the line y := 0.
Note also that this transform cannot represent horizon-
tal lines (similarly, the Hough-X transform cannot rep-
resent vertical lines). However, this is not a problem

since our lines have a minimum and a maximum slope.

3.3 Lower Bounds

The dual space-time representation transforms the prob-
lem of indexing mobile objects on a line to the problem
of simplex range searching in two dimensions.

In simplex range searching we are given a set S of
2-dimensional points, and we want to answer efficiently
queries of the following form: given a set of linear con-

straints oi < b, find all the points in S that satisfy all
the constraints. Geometrically, the constraints form a
polygon on the plane, and we want to find the points
in the interior of the polygon. This problem has been
extensively studied before in the static, main-mem.ory
setting (see for example the excellent survey in [2] #and
the related work section).

The only known lower bound for simplex range search-

ing, if we want to report all the points that fall in
the query region rather than their number, is due to
Chazelle and Rosenberg ([lo]). They show that sim-
plex reporting in d-dimensions with a query time of
O(N” + K), where N is the number of points, h: is
the number of the reported points and 0 < 6 < 1, re-
quires space O(Nd(l-s)-c), for any fixed E. This result
is shown for the pointer machine model of computat,ion
[lo]. The bound holds for the static case, even if the
query region is the intersection of just two hyper-planes.
Since E can be arbitrary small, any algorithm that uses
linear space for d-dimensional simplex range searching
has worst case query time of O(N(d-l)ld + K).

Here we show that a similar bound holds for the
input-output complexity of simplex searching. Follow-
ing the approach in [34] we use the external mem,ory
pointer machine as our model of computation. This
is a generalization of the pointer machine suitable for
analyzing external memory algorithms. In this model,
a data structure is modeled as a directed graph G =
(V, E), with a source w. Each node of the graph rep-
resents a disk block and is therefore allowed to have
B data and pointer fields. The points are stored in
the nodes of G. Given a query, the algorithm traverses
G starting from w, examining the points at the nodes
it visits. The algorithm can only visit nodes that .are
neighbors of already visited nodes (with the except.ion
of the root) and, when it terminates the answer to the
query must be contained in the set of visited nodes. The
running time of the algorithm is the number of nodes it
visits.

Theorem 1 Simplex reporting in d-dimensions with a
query time of O(nb + k) I/O’s, where N is the nuinber
of points, n = N/B, K is the number of the reported

points, k = K/B, and 0 < 6 5 1, requires Q(nd(‘-‘)-‘)
disc blocks, for any fixed E.

Proof. (Sketch) To prove the lower bound we need to
show that, given 6, there exists a set of N points, and
a set of O(nd(l-a)-s-E) queries such that, each query
has @(Bnb) points, and the intersection of any pair of
query results is small. To answer a query with O(Bn’)
points, the answering algorithm must visit a(n6) nodes.
To answer this query in O(n6) I/O’s, at least a con-
stant fraction of that many blocks have a constant frac-
tion of their points in the answer of the query. But if
the set of the queries has small intersection, it follows
that to answer this set of queries in time O(ns) at least
O(d) x f2(nd(1-6)-6-‘) = S2(nd(1-a)-C) nodes have to
be visited. It remains to show that such a set of queries
exist. To do so we simply modify the existing construc-

tion by Chazelle and Rosenberg [lo] by replacing each
point in their point set by B copies. • I

A corollary of the theorem is that in the worst case
a data structure that uses linear space to answer the
2-dimensional simplex range query and thus the one
dimensional MOR query, requires O(fi+ k) I/O%. In
the next section we give a dynamic, external-memory
algorithm that achieves almost optimal query time with
linear space. As we shall see however this algorithm is
not practical so we also consider faster algorithms to
approximate the queries. Finally, we give a worst case
logarithmic query time algorithm for a restricted but
practical version of our problem.

3.4 An (Almost) Optimal Solution

Matousek ([27]) g ave an almost optimal algorithm for
simplex range searching, given a static set of points.
This main memory algorithm is based on the idea of
simplicial partitions.

We briefly describe this approach here. For a set S of
N points, a simplicial partition of S is a set { (Sr , Ai), . . .
(S,., A,.)} where {Si, . . . , S,.} is a partitioning of S, and
Ai is a triangle that contains all the points in Si. If
maxi I&[< 2mini ISi], we say that the partition is bal-
anced. Matousek ([27]) shows that, given a set S of N
points, and a parameter s (where 0 < s < N/2), we can
construct in linear time, a balanced simplicial partition
for S of size O(s) such that any line crosses at most
0(,/Z) triangles in the partition.

This construction can be used recursively to con-
struct a partition tree for S. The root of the tree con-
tains the whole set S, and a triangle that contains all
the points. We find a balanced simplicial partition of S
of size Jls’i. Each of the children of the root are associ-
ated with a set Si from the simplicial partition, and the

triangle Ai that contains the points in Si. For each of
the Si’s we find simplicial partitions of size m, and
continue until each leaf contains a constant number of
points. The construction time is O(N log, N).

To answer a simplex range query, we start at the
root. We take each of the triangles in the simplicial
partition at the root and check if it is inside the query
region, outside the query region, or intersects one of the
lines that define the query. In the first case al1 points
inside the triangle are reported, in the second case the
triangle is discarded, and in the third case we recurse
on the triangle. The number of triangles that the query
can cross is bounded however, since each line crosses at
most O(]S]t) triangles at the root. The query time is

O(Nt+’ + K), with the constant factor depending on
the choice of E.

Agarwal et. al. [l] give an external memory ver-

sion of static partition trees that answers queries in
O(ni+’ + k) I/OS. To adapt this structure to our envi-

ronment, we have to make it dynamic. Using a standard
technique by Overmars ([28]) for decomposable prob-
lems we can show that we can insert or delete points in
a partition tree in O(logz N) I/OS, and answer simplex

queries in O(ns*’ + k) I/OS.

3.5 improving the average query time.

Partition trees are not very useful in practice because

the query time is O(ni i-E + k) and the hidden constant

factor becomes large if we chose a small E. In this section
we present two different approaches that are designed
to improve the average query time.

3.5.1 Using Point Access Methods

There is a large number of access methods that have
been proposed to index point data[l7]. All these struc-
tures were designed to address orthogonal range queries,

eg. a query expressed as a multidimensional hyper-
rectangle. However, most of them can be easily modi-
fied to address non-orthogonal queries like simplex que-
ries.

Recently, Goldstein at al. [18] presented an algo-
rithm to answer simplex range queries using R-trees.
The idea is to change the search procedure of the tree.
In particular they gave efficient methods to test whether
a, linear constraint query region and a hyper-rectangle
overlap. As mentioned in [18] this method is not only
applicable to the R-tree family, but to other access
methods as well.

We use this approach to answer the one dimensional

MOR query in the dual Hough-X space (Figure 2). How-
ever it is not clear what structure would be more suit-
able here, given that the distribution of points in the
dual space is highly skewed. We argue that an index
structure based on k&trees (like the LSD-tree [21] and

the /@-tree [16]) is more suitable than a method based

on R-trees. The reason is that since R-trees try to clus-
ter data points into squarish regions [24], they will split
using only one dimension (the intercept). On the other

hand a kd-tree based method will use both dimensions
to split (see Figure 3). Thus it is expected to have bet-

ter performance for the MOR qu.ery.

3.5.2 A Query Approximation Algorithm.

A different approach is based on a query approxi-
mation idea using the Hough-Y dual plane. In gen-
eral, the b coordin.ate can be computed at different
horizontal (y = y,.) lines. The query region is de-
scribed by the intersection of two half-plane queries
(Figure 4). The one line intersects the line n = & at

the point (tr, - zz, &) and the line n = & at

the point (ti, - T-$, &). Similarly the other line
that defines the query intersects the horizontal lines at

(hg - y~~~p, &) and (hq - ‘:“YY’, &I.
Since access methods are more efficient for rectangle

queries, suppose that we approximate the simplex query
with a rectangular one. In Figure 4 the query rectangle
will be [(ti9 ---e,&, - ‘,$-i’), (&, ;;I-)]. Note
that the query area is enlarged by the area E = El + E2

which is computed as:

(1)

We are interested in minimizing E since it represents
a measure of the extra I/O’s that an access method will
have to perform for solving an one dimensional MOR
query. E is based on both gyr (i.e. where the b coor-
dinate is computed) and the query interval (yiq, ~2~)
which is unknown. Hence, we propose to keep c indices
(where c is a small constant) at equidistant yT’s. All
c indices contain the same information about the ob-
jects, but use differe:nt yr’s. The i-th index stores the
b coordinates of the data points using y = y x i,
i = 0, ‘.) c - 1. Conceptually, yi serves as an “observa-
tion” element, and its corresponding index stores the
data as observed from position yi. We call the area
between subsequent “observation” elements, a subter-
rain. A given one dimensional MOR query will be for-
warded to the index(es) that minimize E. Since all
2-dimensional approximate queries have the same rect-
angle side (& ,&) (Figure 4) the rectangle range
search is equivalent to a simple range search on the b
coordinate axis. Thus each of the c “observation” in-
dices can simply be a B+-tree [13].

To process a gener,al query interval [yiq, ~2~1 we con-
sider two cases depending on whether the query interval
covers a subterrain:

(i) ysq -. ~1~ 5 hi-: then it can be easily shown
that area E is boundid by:

E 5 !i(limax - vmin,2(s+m)

2 %in x %zax
The query is processed at the index that minimizes

lY2g - Yrl + IYlc? - YTI.
(ii) 1~2~ - yrq > 9: the query interval contains

one or more subterrains, which implies that if a query
is executed at a single observation index, area E be-
comes large. To bound E we index each subterrain, too.
Each of the c subterrain indices records the time inter-
val when a moving object was in the subterrain. Then
the query is decomposed into a collection of smaller sub-
queries: one subquery per subterrain fully contained by
the original query interval, and one subquery for each.
of the original query’s endpoints. The subqueries at
the endpoints fall to case (i) above, thus they can be

answered with bounded E using an appropriate “obser-
vation” index. To index the intervals in each subterrain
we could use an external memory Interval tree[5] which
will answer a subterrain query optimally (i.e., E =: 0).
As a result, the original query can be answered with
bounded E. Thus we have the following lemma:

Lemma 1 The one dimensional MOR query can be an-
swered in time O(log, n+ (K+K’)/B), where K’ is the
approximation error. The space used is O(cn) where c
is a small constant, and the update is O(clogB n).

Note that assuming that the points are distributed uni-
formly over the b-axis;then the approximation error is

bounded by l/c, eg. K’ = 0(1/c).

3.6 Achieving Logarithmic Query Time

For many applications, the relative positions of the mov-
ing objects do not change often. Consider for example
the case where objects are moving very slowly, or with
approximately the same velocity. In this case the lines
in the time-space plane do not cross until well forward in
the future. If we restrict our queries to occur before the
first time that a point overtakes (passes) another, the
original problem is equivalent to l-dimensional range
searching.

This is one of our motivations to consider a restricted
version of the original problem, namely, to index mobile
objects in a bounded time interval T in the future. As
we have seen, there exist lower bounds for the original
problem that show that we cannot achieve query time
better than Q(fi) g iven linear space. However, using
the above restriction, we achieve a logarithmic query
time, with space that can be quadratic in the worst
case but is expected to be linear in practice.

Formally, the problem we are considering in this sec-
tion is the following: given a set of objects that ade
moving on a line, and a time limit T, find all the ob-
jects that lie in the segment [yl, y,] at time t, (where
to 5 t, 5 to + T). Equivalently, this is a standard one

266

Figure 3: Data regions for R-tree like and Icd-tree like Figure 4: Query in the dual Hough-Y

methods . plane.

dimensional MOR query where ti, = tz,. We will call
it an one dimensional MORl query.

be the ordering of the same N objects at time T. Then
objects i and j cross if and only if t(j) < t(i).

Our method is to find all the times when an ob-
ject overtakes another. These events correspond to line
segment crosses in the time-space plane. Note that be-
tween two consecutive crossing events the relative or-
dering of the objects on the plane remains the same.

First we show the following lemma:

Lemma 2 If we have the relative ordering of all the
objects at time t,, the position of the objects at time t,
that corresponds to the closest crossing event before t,,

and the speed of the objects, we can find the objects that
are in [yl, yp] in O(log, N + K) time.

Keep the objects in a linked list, in the same order
they were at time t = 0. Scan the sorted list of objects
at time T. Find object pt(,) in the list. This object
crosses all the objects ahead of it in the list. After
reporting these crosses, we remove it from the list, and
repeat this process with the next point. This procedure
reports all the crossings in O(N + M) time. After all
the crossings are reported we can find when each occurs
and sort them on their time attributes. q

Proof. Assume that the objects are {pl ,p2,. . . , pi},
where pi has a position yi at time t, and a velocity
vi. Without loss of generality, assume that, at time t,,

the relative order of the objects from left to right is

Pl,PZ,...,Piv.

These M crosses define M ordered lists of the N
objects. Each two consecutive lists differ in exactly two
positions, the positions that correspond to the objects
that cross. The total sum of the differences between
consecutive lists is therefore O(M). In the next lemma
we show how we can efficiently store and search these
lists in external memory.

Store the objects in a binary tree, sorted by their
original positions. The root of the tree, point pi, is
going to be at position yi + vi x t, at time t,. Since
the objects in the binary tree are stored by order at the
time t,, if yi + wi x t, < yl then this is also true for all
the objects to the left child of the root, in which case we
eliminate the left child and recurse on the right child.
Otherwise we recurse on the left child of the tree. Thus
in O(log, N) time we can find the positions of yl and
y,. relative to the objects at time t,, and we report the
objects that lie between. q

The following lemma finds all the crossings of points
efficiently.

Lemma 3 We can find all the crossings of objects in
time O(N log, N + M log, M), where M is the number
of crosses in the time period [0, T].

Lemma 4 We can store the O(M) ordered lists of N
objects in O(n + m) blocks and perform a search on any
list in O(logB(n+m)) I/O ‘s, where n = g and m = $$.

Proof. Let L(t) be the list of objects at time t. Con-
sider CS = tl,..., tM the ordered sequence of the time
instants where crossings occur during the interval (0,T).
The problem of storing the M ordered lists L(tl) through
L(tM) can be “visualized” as storing the history of a
list L(t) that evolves over time, i.e., a .partial persis-
tence problem [14]. That is, list L(t) starts from an
initial state L(0) and then evolves through consecutive

states L(tl), L(t2),..., L(tM), where L(ti+i) is produced
from L(ti) by applying the crossing that occurred at
ti+l (i=O ,..., M-l, and to=O).

Proof. Let {PI,. . . ,p~} be the ordering of the N ob-
jects at time 0. At time T, the position of object i is
yi + vi x T. To find the ordering of the objects at time
T we have to sort their positions. Let {p,(,), . . . ,p,(,)}

A common characteristic in the list evolution is that
each L(t) has exactly N positions, namely positions 1
through N, where position j stores the j - th element
of L(t). To perform a binary search on a given L(t) we
could implement it using a binary tree with N nodes,
where each node is numbered by a position (the root

267

node corresponds to the middle position in the list and
so on) and holds the element of %(t) at that position.

A main-memory solution to this problem appears
in [12]. Here we present an efficient external memory
solution. In particular, we first embed the binary tree
structure inside a B-tree. This is easily done since the
structure of the list (and its corresponding binary tree)
does not change over time. Consider for example tree
B(0) that corresponds to the initial list L(0). Tree B(0)
uses O(,nj nodes where each node can hold B entries.
An entry is now a record: (position, occupant, pointer,

t), where position corresponds to a position in the list,
occupant contains the element at that position, pointer
points to a child node and t corresponds to the time
this element was at that position, in this case t=O.

Conceptually, each B-tree node is permanently as-
signed B positions and is responsible for storing the
occupants of these positions. Consider the evolution of

such a node s through trees B(0),B(t~),B(t~),...,B(t~j.
An obvious way to store this evolution is to store a copy
of s(O) and a “log” of changes that happen on the oc-
cupants of node s at later times. A change is simply
another record that stores the position where a change
occurred, the new occupant and the time of the change.
To achieve fast access to s(t) we do not allow the “log”
to get too large. Every O(B) changes (in practice when
the log fills one or two pages) we store a new, current
copy of s. If we consider the history of node s inde-

pendently, we can have an auxiliary array with records
(time, pointer) that point to the various copies of node
s. Locating the appropriate node s(t) takes O(log, m)
time (first find the record in the auxiliary array with
the largest timestamp that is less or equal to t and
then we access the appropriate copy of s and probably a
(constant) number a’f “log” pages). The space remains
O(n + m) since ever,y new node copy is amortized over
the O(B) changes in the “log”.

While this solution works nicely for the history of a
given B-tree node, it would lead to O(log, n x log, m)
search (since finding the appropriate version of a child
node, when searching the B-tree, requires O(log, m)
search in the child node’s history). Instead of using
the auxiliary array to index the copies of node s we
post such entries as changes in the history of the parent
node p. Assume that node s is pointed by the record
on position 1 in node p. When a new copy of node
s is created, a new :record is added on the “log” of p
that has the same position I, but a pointer to the new
copy of s and the current time. Since new node copies
are added after O(B) changes, the overall space remains
O(n+m). The query time is reduced to O(logB(n+m))
since performing a binary search on list L(t) is equiv-
alent to searching a path of B(t); locating the root of
B(t) takes O(log, m) (searching the history of the B-
tree root node) while all other nodes of B(t) are found in

O(log, n) using the appropriate parent to child point-
ers. 0

The following theorem follows from the previous lem-.
mas:

Theorem 2 Given N objects and a time limit T, an
one dimensional MORl query can be answered in time
logB(n + m) using space O(n + m), where m = g anal
M is the number of crosses of objects in the time limit
T.

To solve the problem of answering queries within a
time interval T into the future, we stagger the construc-
tion of our data structure. Thus, at time to we const:ruct
a data structure that will answer queries in the time in-
terval [to, to + 2T], and at time to + iT we construct
a data structure that will answer queries in the time
interval [to + (i + l)T, to + (i + 2)T]

Our approach works for any value of T. If the time
limit is set too large however, all pairs of objects may
cross, in which case the size of the data structure will
be quadratic. It is therefore important to set the time
limit appropriately so that only approximately a linear
number of crossings occur. Fortunately, in practice it is
often true that many objects move with approximately
equal speeds (one example is cars on a highway) and
therefore do not cross very often.

4 Indexing in two dimensions

In this section we consider the problem of mobile ob-
jects in the plane. Again we consider only “moving”
objects, namely objects with a speed between v,in ,and

vu,,,. We assume that objects move in the (2, y) plane
inside the finite terrain [(0, zmaz)(O, ymaz)]. The initial
location of the object oi is (ziO, yiO) and its velocit;y is
a vector 77 = (v,, vy).

We distinguish two important cases. The first con-
siders objects moving in the plane but their movement
is restricted on using a given collection of routes (roa.ds)
on the finite terrain. Due to its restriction, we call this
case the 1.5-dimensional problem. There is a strong mo-
tivation for such an environment; for the applications
we have in mind, objects (cars, airplanes.etc.) move on
a network of specific routes (highways, airways). In the
second case the objects move anywhere in the plane.

4.1 The 1.5-dimensional problem

The 1.5-dimensional problem can be reduced to a num-
ber of l-dimensional queries. In particular, we propose
representing each predefined route as a sequence of con-
nected (straight) line segments. The positions of these
line segments on the terrain are indexed by a standard
SAM. (Maintaining this SAM does not introduce a large
overhead since for most practical applications: (a) the

number of routes is much smaller than the number of
objects moving on them, (b) each route can be approxi-
mated by a small number of straight lines, and, (c) new
routes are added rather infrequently.) Indexing the ob-
jects moving on a given route is an l-dimensional model
and will use techniques from the previous section.

Given a two dimensional MOR query, the above SAM
identifies the intersection of the routes with the query’s
spatial predicate (the rectangle [zlq, XQ] x [yap, ~2~1).
Since each route is modeled as a sequence of line seg-
ments, the intersection of the route and the query’s
spatial predicate is also a set of line segments, possi-
bly disconnected. Each such intersection corresponds
to the spatial predicate of an l-dimensional query for
this route. In this setting we assume that when routes
intersect, objects remain in the route previously trav-
eled (otherwise an update is issued).

4.2 The P-dimensional problem

The full 2-dimensional problem (i.e., allowing objects to
move anywhere on the finite terrain) is more difficult.
As with the l-dimensional case, we discuss different rep-
resentations of the problem and we propose methods to
address the two dimensional MOR query.

In the space-time representation the trajectories of
the mobile objects are lines in the space. The lines can
be computed by the motion informations of each object.
The two dimensional MOR query is expressed as a cube
in the 3-dimensional (z, y, t) space and the answer is the
set of objects with lines that cross the query cube.

Figure 5: Trajectories and query in (z, y, t) plane.

Algorithms that are applied directly to the time-
space representation do not work well in one-dimension,
so the performance is likely to be even worse in two
dimensions. Unfortunately we cannot use directly the
dual transformations of the previous section, since these
transforms map a hyper-plane in the space into a point
and vice-versa, where here we have lines. We point
out that the problems with lines in the space are much
harder than lines in the plane. The reason is that a
line in space has 4 degrees of freedom and therefore
taking the dual we jump to a 4-dimensional space. To
get the dual we project the lines on the (2, t) and (y, t)

planes and then take the duals for the two lines on these
planes. Thus now a line can be represented by the 4-
dimensional point (w, , a,, zlY, aY), where the V, and zly
are the slopes of the lines on the (z, t) and (y, t) planes
and the a, and aY are the intercepts respectively.

The two dimensional MOR query is mapped to a
simplex query in the dual space. This query is the in-
tersection of four 3-d hyper-planes and the projection
of the query to (t,z) and to (t, y) planes are wedges,
as in the l-dimensional case. Thus we can use a 4-
dimensional partition tree (section 3.4) and answer the
MOR query in O(n o 75+E +Ic) I/O’s that almost matches

the lower bound for four dimensions.
A simple approach to solve the 4-dimensional prob-

lem is to use an index based on the led - tree. An
alternative approach is to decompose the motion of the
object into two independent motions, one in the x-axis
and the other in the y-axis. For each axis we can use
the methods for the l-dimensional case and answer two

l-dimensional MOR queries. We must then take the in-
tersection of the two answers to find the answer to the
initial query. This method allows us to use the algo-

rithms for the l-dimensional case.

5 A Performance Study

We present initial results for the one dimensional MOR
query, comparing our query approximation approach,
the Icd-tree method and a traditional R-tree based ap-
proach. First we describe the way experimental data
is generated. At time t = 0 we generated the initial
locations of N mobile objects uniformly distributed on
the terrain [0, lOOO]. We varied N from 1OOlc to 5001c.
The speeds were generated uniformly from v,i, = 0.16
to w,,, = 1.66 and the direction randomly positive or
negative.2 Then objects start moving. When an object
reaches a border simply it changes its direction. At each
time instant we choose 200 objects randomly and we
randomly change their speed and/or direction. We gen-
erate 10 different time instants that represent the times
when queries are executed. At each such time instant we
execute 200 random queries, where the length of the y-
range is chosen uniformly between 0 and YQMAX and
the length of the time range between 0 and TW. We
actually generated two sets of queries. One set of large
queries with YQMAX = 150 and TW = 60 and one
set of small queries with YQMAX = 10 and TW = 20.
The first set of queries has average cardinality almost
10% and the second one close to 1%. We run this sce-
nario using a particular access method for 2000 time
instants.

To verify that indexing mobile objects as line seg-
ments is not efficient, we stored the trajectories in an

‘Note that 0.16 miles/min is equal to 10 miles/hour and 1.66
miles/min is equal to 100 miles/hour.

Figure 6: Query Performance for 10% Queries.

R*-tree. We fixed lthe page size to 4096 bytes. To rep-
resent a line segme:nt in an R*-tree we used four 4-byte
numbers (the two end points) and one more number as
a pointer to the real object, resulting in a page capacity
of B = 204. For the B+-tree we used one 4-byte number
to represent the b-coordinate, one number for the speed
and another one for the pointer, so the page capacity

was B = 341. We index each record using only the b
coordinate but using the speed of each object we can
identify the objects that correspond to the real answer
and report only these objects. The same page capac-
ity used and for the hB”-tree.However, each hB”-tree
page reserves some space for internal structural data.

We consider a simple buffering scheme for the results
we present here. For each tree we buffer the path from
the root to a leaf node, thus the buffer size is only 3 or
4 pages. For the queries we always clear the buffer pool
before we run a query. An update is performed when
the motion informa.tion of an object changes.

In Figure 6 we present the results for the average
number of I/O’s per query for 10% queries and in fig-
ure 7 for 1% queries. The approximation method used
c = 4,6 and 8 B+-trees. As anticipated, the line seg-
ments method with R*-trees has the worst performance.
Also, the approximation method outperforms the hBn-
tree for small queries and it is slightly better for large
queries.

In Figures 8,9 we plot the space consumption and
the average number of I/O’s per update respectively.
We did not report the update performance for the R*-
tree method because it was very high (more than 90
I/O’s per update). The update and space performance
of the hB”-tree is better than the other methods since
its objects are stored only once and better clustered
than the :R*-tree. The update performance of the hB”-
tree and the approximation approach remain constant
for different number of mobile objects. The space of
all methods is linear to the number of objects. The
approximation approach uses more space due to the use
of c observation indices. There is a tradeoff between c

Figure 7: Query Performance for 1% Queries.

and the query/update performance.

6 Related Work

The problem of indexing mobile objects is novel; we are
not aware of any other related work except [35] where
a method to index mobile objects based on the PM&

quadtree is presented. However as we mentioned earlier,
this approach has large space and update overhead.

Mobility in a geographic system is addressed in. [32:]
where the aim is to map close points in space to adjacent
disks so as collision detection queries are optimized.

The queries we examine have also a temporal com-

ponent. There has been a lot of research in temporal
indexing [29], however it has focused on queries about
the past and not the future as in our case.

Representing the trajectories as line segments in two

and three dimensions, also relates to spatial indexing
[17]. [22] presents a qualitative comparison of t,hree
spatial access methods for a line segments database is
presented. In particular they consider the R*-tree, the
Rf-tree and the PMR-quadtree. The result is that all
these methods are comparable and no one seems to be
superior than the others.

A method to index line segments on the plane is pre,-

sented in [23]. A line segment is represented by the slope
and the intercept of the line obtained by extending the
line segment and by the range of the projection of the
segment to one axis. Using this mapping, a line seg-
ment on the plane is mapped to a vertical line segrnenl;
in three dimensions. Then a standard spatial access
method can be used to index the new segments. It is
shown analytically and experimentally that the queries
in the transformation space have better selectivity that
in the original space.

An interesting approach to index constraint databases

is presented by Bertino et al. in [9]. In particular -they
address the problem of indexing conjunction of linear
constraints with two variables, in order to answer ALL
and EXIST queries (variations of the half-plane query).

270

Figure 8: Space Consumption.

They use the dual transformation and they reduce the
problem to a point location problem. Then, if the line
that defines the query has slope from a predefined set
of slopes, an optimal solution can be derived using the
external memory Interval tree[5]. Other works on in-
dexing constraint databases include [5, 251. These ap-

proaches reduce the problem of indexing constraint to
a dynamic interval management problem or to a special
case of two-dimensional range searching, and therefore

are not applicable to our problem.
The issue of mobility and maintenance of a number

of configuration functions among continuously moving
objects has been addressed by Basch et al. in [6]. Such
functions are the convex hull, the closest pair and the
minimum spanning tree. They propose a framework
to transform a static data structure into a kinetic data
structure (KDS) that maintains an attribute of inter-
est for a set of mobile objects and they give a num-
ber of criteria for the quality of such structures. The
key structure is an event queue that contains events
corresponding to times where the value of the configu-
ration function (may) change. This event queue is the
interface between the data structure and the mobile ob-
jects. All these structures are main memory data struc-
tures. It will be an interesting problem to investigate
how these structures can be implemented efficiently in
external memory.

7 Conclusions and Future Work

Indexing mobile objects is a novel problem motivated
by real life applications. We study the one and two
dimensional versions of the problem. For the one di-
mensional case, we give a dynamic, external memory
algorithm with guaranteed worst case performance and
linear space. We also give a practical approximation
algorithm also in the dynamic, external memory set-
ting, which has linear space and expected logarithmic
query time. Finally we give an algorithm with guaran-
teed logarithmic query time for a restricted version of

271

Figure 9: Update Performance.

the problem. We also extend some of our results into
two dimensions. First we consider the case where ob-
jects move in 2-dimensional networks of l-dimensional
routes. In this case we can effectively apply our l-
dimensional algorithms. We also consider objects that
move on a plane, and we discuss extensions of our tech-

niques to two dimensions.
Future work includes a variety of interesting prob-

lems. In addition to performing a more complete perfor-
mance study (using various data distributions) we plan
to address restricted versions of the 2-dimensional prob-
lem using realistic assumptions. One idea is to cluster
similarly moving objects into representative clusters. If
query response is time critical, main-memory database
techniques need to be involved. We are currently study-
ing the problem of indexing mobile objects with prob-
abilistic route choices. A generalization of the 1.5-
dimensional problem is when the terrain is subdivided
into areas with various speed limits (or terrain abnor-
malities that limit movement according to direction).
Other interesting queries are near-neighbor queries and
joins among relations of mobile objects. Some applica-
tions may require keeping the history of mobile objects
(for traffic analysis etc.); then the indices presented
need to support historical queries. This probably re-
quires making the presented structures partially persis-
tent [7, 261. While in this paper we restricted the object
movement to simple (linear) functions,‘it is a first step
at examining ways to index more complex functions.

8 Acknowledgement

The problem of indexing moving objects was proposed
to us by Ouri Wolfson at the 1997 Dagstuhl Seminar on
Temporal Databases. The authors would like to thank
0. Wolfson, C. Faloutsos and V.S. Subrahmanian for
many helpful discussions.

References PO1

PI

PI

[31

[41

I51

PI

[71

PI

PI

PO1

1111

WI

P31

P41

P51

Ll61

1171

WI

WI

P.K. Agarwal, L. Arge, J. Erickson, P. Franciosa and J.S.
Vitter. Efficient Searching with L,inear Constraints In Proc.
17th ACM P0D.S Symposium on Principles of Database
Systems,pp. 169-l78 1998.

P.K. Agarwal, and J. Erickson. Geometric range searching
and its relatives. In Discrete and Computational Geome-
try: Ten Years Latter., (B. Chazelle, E. Goodman, and R.
Pollack eds.), American Math. Society, Providence, 1998.

A. .4ggarwal and J. S. Vitter. The Input/Output complex-
ity of sorting and related problems. In Communications of
the ACM, 31(9):1116-1127, 1988.

ArcView GIS. ArcView Tracking Analyst. 1998.

L. Arge and J. S. Vitter. Optimal Dynamic Interval Man-
agement in External Memory. In Proc. 37th Annual Symp.
on Foundations of Comp. Science, pp. 560-569, 1996.

J. Basch, L. Guibas and J. Hershberger. Data Structures
for Mobile Data. In Proceedings of the Eighth Annual
ACM-SIAM Svmnosium on Discrete Alaorithms. New Or-
leans, Louisiana, ‘i997.

B. Becker, S. Gsc.hwind, T. Ohler, B. Seeger and P. Wid-
mayer. An Asymptotically Optimal Multiversion B-Tree.
VLDB Journal, 5(4):264-275,1996.

N. Beckmann, H:-P. Kriegel, R. Schneider, and B. Seeger.
The It*-tree: An Efficient and Robust Access Method For
Points and Recta.ngles. In Proc. ACM-SIGMOD Interna-
tional Conference on Management of Data, pages 322-331,
Atlantic City, Ma,y 1990.

E. Bertino, B. Catania and B. Shidlovsky. Towards optimal
two-dimensional indexing for constraint databases. Infor-
mation Processing Letters, 64(1997):1-S.

B. Chazelle and B. Rosenberg. Lower Bounds on the
Complexity of Simplex Range Reporting on a Pointer
Machine. Proc. 19th Intern: Col&uiu& on Automata,
Lanouaoes and Proqrammino. LNCS, Vol. 693, Snringer-
Verl&g, Berlin, 1992. 1

I- I

J. Chomicki and P. Revesz. A Geometric Framework for
Specifying Spatiotemporal Objects. Proc. 6th International
Workshop on Time Representation and Reasoning, May
1999.

R. Cole. Searching and Storing Similar Lists. Journal of
Algorithms, 7(2):i!O2-220, 1986.

D. Comer. The Ubiquitous B-Tree. Computing Surveys,
11(2):121-137, June 1979.

J. Driscoll, N. Sarnak, D. Sleator and R.E. Tarjan. Making
Data Structures Persistent. In Proc. of the 18th Annual
ACM Symp. on Theory of Computing, Berkeley, CA, 1986.

M. Erwig, R.H. Guting, M. Schneider and M. Vazirgianis.
Spatio-temporal Data Types: An Approach to Modeling
and Querying Moving Objects in Databases. In Proc. of
A CM GIS Symposium ‘98.

G. Evangelidis, D. Lomet, and B. Salzberg. The hB”-tree:
A Modified hB-tree Supporting Concurrency, Recovery and
Node Consolidation. In Proc. 2fst Intern. Conf. on Very
Large Data Bases, Zurich, September 1995.

V. Gaede and 0. Gunther. Multidimensional Access Meth-
ods. ACM Computing Surveys, 30(2):170-231, 1998.

J. Goldstein, R. Ramakrishnan, U. Shaft and J.B. Yu. Pro-
cessing Queries By Linear Constraints. In Proc. 16th ACM
PODS Symposium on Principles of Database Systems, pp.
257-267, Tuscan, Arizona, 1997.

0. Gunther. The Design of the Cell Tree: An Object-
Oriented Index Structure for Geometric Databases. In
Proc. Fifth IEEE International Conference on Data En-
gineering, Los Angeles, CA, USA, February 1989.

WI

P21

[231

[241

[251

WI

[271

P31

P91

1301

[311

[321

1331

I341

[351

[361

[371

A. Guttman. R-Trees: A Dynamic Index Structure For
Spatial Searching. In Proc. ACM-SIGMOD Intern. Conf.
on Management of Data, pages 47-57, June 1984.

A. Henrich, H.-W. Six, P. Widmayer. The LSD-tree: Spa-
tial Access to Multidimensional Point and Nonpoint Ob-
jects. In Proc. 15th Intern. Conf. on Very Large Data
Bases, pages 45-53, Amsterdam, August 1989.

E.G. Hoe1 and H. Samet. A Qualitative Comparison Study
of Data Structures for Large Linear Segment Database:s. In
Proc. ACM-SIGMOD International Conference on Man-
agement of Data, pages 205-214, San Diego, June 1992.

H. V. Jagsdish. On Indexing Line Segments. In Proc. 16th
International Conference on Very Large Data Bases, pages
614-625, Brisbane, Queensland, Australia, August 19910.

I. Kamel and C. Faloutsos. On Packing R-trees. In Proc.
Second Int. Conference on Information and Knowledge
Management (CIKM), Washington, DC, Nov. 1-5, 1993.

P. Kanellakis, S. Ramaswamy, D. Vengroff and J. Vitter.
Indexing for Data Models with Constraint and Classes. In
Proc. 12th ACM SIFACT-SIGMOD-SIGART Symposium
on Principles of Database Systems,pages 233-243 , Wash-
ington, D.C, 1993.

A. Kumar, V.J. Tsotras and C. Faloutsos. Designing Ac-
cess Methods for Bitemporal Databases. IEEE Trans. on
Knowledge and Data Engineering, lO(l):l-20, 1998.

J. Matousek. Efficient Partition Trees. Discrete and Com-
putational Geometry, 8 (1992), 432-448.

M.H. Overmars. The Design of Dynamic Data Structures.
LNCS vol. 156, Springer-Verlag, Heidelberg, West IGer-
many, 1983.

B. Salzberg and V.J. Tsotras. A Comparison of Access
Methods for Time-Evolving Data. ACM Comoutino Sur-
veys, March 1999.

II. Samet. The Design and Analysis of Spatial Data Struc-
tures., Addison-Wesley, Reading, MA, 1990.

T. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects. In Proc.
13rd International Conference on Very Large Data Bases,
pages 507-518, Brighton, England, September 1987.

S. Shekhar and T.A. Yang. Motion in a Geographi-
cal Database System In 2nd International Symposium
on Advances in Spatial Databases, pages 339-357, Ziirich,
Switzerland, August 1991.

A. P. Sistla, 0. Wolfson, S. Chamberlain, S. Dao. Modeling
and Querying Moving Objects. In Proc. 13th IEEE Inter-
national Conference on Data Engineering, pages 422-432,
Birmingham, U.K, April 1997.

S. Subramanian and S. Ramaswamy. The P-range I’ree:
A New Data Structure for Range Searching in Secondary
Memory. In Proceedings of the 6th Annual Symposium on
Discrete Algorithms, New York, NY, USA, 1995.

J. Tayeb, 0. Ulusoy, 0. Wolfson. A Quadtree-Based Dy-
namic Attribute Indexing Method. The Computer Journal,
41(3):185-200, 1998.

0. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendez.
Cost and Imprecision in Modeling the Position of Moving
Objects. In Proc. 14th IEEE Intern. Conf. on Data Engi-
neering, pages 588-596, Orlando, FL, February 1998.

0. Wolfson, B. Xu, S. Chamberlain, L. Jiang. Moving Ob-
jects Databases: Issues and Solutions In Proceedings of the
10th International Conference on Scientific and Statistical
Database Management. Capri, Italy, July 1998.

272

