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Abstract 

We show how to index mobile objects in one and two di- 
mensions using efficient dynamic external memory data 
structures. The problem is motivated by real life appli- 

cations in traffic monitoring, intelligent navigation and 
mobile communications domains. For the l-dimensional 

case, we give (i) a dynamic, external memory algo- 
rithm with guaranteed worst case performance and lin- 
ear space and (ii) a practical approximation algorithm 
also in the dynamic, external memory setting, which 
has linear space and expected logarithmic query time. 
We also give an algorithm with guaranteed logarithmic 
query time for a restricted version of the problem. We 
present extensions of our techniques to two dimensions. 

In addition we give a lower bound on the number of 
I/O’s needed to answer the d-dimensional problem. Ini- 
tial experimental results and comparisons to traditional 
indexing approaches are also included. 

1 Introduction 

Traditional database management systems assume that 
data stored in the database remain constant until ex- 
plicitly changed through an update. While this model 
serves well many applications where data changes in dis- 
crete steps, it is not appropriate for applications with 
continuously changing data. One such application is a 
“motion” database that stores the location of mobile ob- 
jects (e.g. cars). Since objects change location continu- 
ously, one would have to update the database at every 
unit of time. This is clearly an inefficient and infeasi- 
ble solution considering the prohibitively large update 
overhead. 

A better approach is to abstract each object’s loca- 
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tion as a function of time f(t), and update the database 
only when the parameters of f change (for example 
when the speed or the direction of a car changes). Us- 
ing f(t) the “motion” database can compute the lo- 
cation of the mobile object at any time in the future. 
While this approach minimizes the update overhead, 
it introduces a variety of novel problems (such as the 
need for appropriate data models, query languages and 
query processing and optimization techniques) since the 
database is not directly storing data values but func- 
tions to compute these values. Motion database prob- 
lems have recently attracted the interest of the research 
community: ([33, 36, 371) present the Moving Objects 
Spatio-Temporal (MOST) model and a language (FTL) 
for querying the current and future locations of mobile 
objects; ([15]) proposes a model that tracks and queries 
the history (past routes) of mobile objects, based on 
new spatio-temporal data types. Another spatiotem- 
poral model appears in 1111. Spatio-temporal queries 
about mobile objects have important applications in 
traffic monitoring, intelligent navigation and mobile com- 
munications domains. For example in databases that 
track cars in a highway system, we can detect future 
congestion areas. In mobile communications we can al- 
locate more bandwidth for areas where high concentra- 
tion of mobile phones is approaching. There is already 
a GIS system [4] that supports tracking and querying 
of mobile objects. 

In this paper we focus on the problem of indexing 
mobile objects. In particular we examine how to effi- 
ciently address range queries over the object locations 
into the future. An example of such a spatio-temporal 
query is: “Report all the objects that will be inside a 
query region P after 10 minutes from now”. Note that 
the answer to this query is tentative in the sense that it 
is computed based on the current knowledge stored in 
the database about the mobile objects’ location func- 
tions. In the near future this knowledge may change, 
which implies that the same query could have a different 
answer. As the number of mobile objects in the appli- 
cations we consider (traffic monitoring, mobile commu- 
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nications, etc.) can be rather large we are interested in 
external memory solutions. 

While in general an object could move anywhere in 
the 3-dimensional space using some rather complex mo- 
tion, we limit our treatment to objects moving in l- and 
2-dimensional spac.es and whose location is described 

by a linear function of time. There is a strong mo- 
tivation for such an approach based on the real-world 
applications we have in mind: straight lines are usually 
the faster way to get from one point to another; cars 
move in networks of highways which can be approxi- 
mated by connected straight line segments on a plane; 
this is also true for routes taken by airplanes or ships. 
In addition, solving these simpler l- and 2-dimensional 
problems may provi.de intuition for addressing the more 
difficult problem of indexing general multidimensional 
functions. 

2 Problem Description 

We consider a database that keeps track of mobile ob- 
jects moving in one and two dimensions. We model 
the objects as points that move with a constant veloc- 
ity starting from a specific location at a specific time 
instant. Using this information we can compute the 
location of an object at any time in the future for as 
long as its movement characteristics remain the same. 
In one dirnension, an object started from location ya at 
time to with a velocity ZJ (V can be positive or negative) 

will be in location ys + w(t - to) at time t > tn. Simi- 
larly for objects moving in two dimensions. Objects are 

responsible to update their motion information, every 
time when their speed or direction changes. Also, we 
assume that the objects can move inside a finite terrain 
(a line segment in one dimension or a rectangle in two). 
Thus when an object has reached the limits, it has to 
issue an update (either because it is deleted or it is re- 
flected). Finally, we allow to insert a new object or to 
delete an old one, e.g. the system is dynamic. 

We would like to itnswer efficiently proximity queries 
among the mobile objects. In particular, we are in- 
teresting to answering queries of the form: “Report 
the objects that reside inside the interval [yiq, ysq] (or 
the rectangle [+,zQ] x [ye, ysgJ in two dimensions) 
at the time instants between time tl, and tsg, (where 
t now 5 tl, < tzq), given the current motion informa- 
tion of all objects”. We call this type ‘of queries the 
one dimensional MOR query for objects moving in one 
dimension and the two dimensional MOR query for ob- 
jects moving in two dimensions. 

We consider the problem in the standard external 
memory model of computation[3]. In this model each 
disk access (an I/O) transmits in a single operation B 
units of data. We call B the page capacity. We measure 
the efficiency of an algorithm in terms of the number of 

I/O’s to perform an operation. If N is the number of the 
mobile objects and K is the number of objects reported 
by the MOR query, then the minEmum number of pages 
to store the database is n = [$] and the minimum 

number of I/O’s to report the answer is k = r$$]. We 
say that an algorithm uses linear space, if it uses O(n) 
disk pages, and that it uses logarithmic time to answer 
a query if it needs to execute O(logB n + Ic) I/O%. Not’s 
that log, n is for the external memory model different 
than log, n since B is not a constant but a pro’blem 
variable. 

In the next section we consider the problem of in- 
dexing mobile objects on a line. First we present two 
geometric representations of the problem (sections 3.1, 
3.2) and discuss why storing the trajectories of mobile 
objects as lines in traditional indexing methods (1ik:e R- 
trees) does not work. We then give a lower bound on the 
static version of the problem by reducing it to simplex 
range searching in two dimensions (section 3.3). We 
also give a dynamic external memory algorithm .with 
matching upper bound that is based on partition trees 
[27] (section 3.4). Unfortunately this algorithm is not 
practical because it has a large hidden constant fac- 
tor. Accordingly we turn our attention into algorithms 
designed to use linear space and to work well in the av- 

erage case. We present two approaches, a simple one 
based on kd-trees and a more sophisticated one based. 
on B-l--trees (section 3.5). Our experimental resiults. 

(section 5) show that the B+-trees based approach out- 
performs the Icd-tree and the simple R-tree approach. 
In section 3.6, we impose the restriction that we can 
only answer queries within a fixed time window in the 
future. For this setting we present a data structure with 
logarithmic query time. The space requirement of our 
method varies between linear and quadratic, depending 
on the size of the time window and the distribution of 
the velocities of the mobile objects. 

In section 4 we extend the previous results for two 
versions of the 2-dimensional case. In the first version 
we make the assumption, motivated from practice, that 
the objects move on a network of l-dimensional routes 
(we call this version, the 1.5-dimensional problem). In 
the second version the objects are allowed to move arbi- 
trarily on a plane (the general 2-dimensional problem). 

3 Indexing in one dimension 

We begin with the simpler problem of objects moving on 
an l-dimensional line. We partition the mobile objects 
into two categories, the objects with low speed 1) :Y 0 
and the objects with speed between a minimum u,in 
and maximum speed v,,, . We consider here the “mov- 

ing” objects, eg. the objects with speed greater than 
urnin, We discuss the case of slowly moving objects in 
section 3.6. 
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Figure 1: Trajectories and query in (t, y) plane. 

We assume that the objects move on the y-axis be- 

tween 0 and ymaz and that an object can update its 
motion information whenever it changes. We treat an 
update as a deletion of the old information and an in- 
sertion of the new one. Next we give different geo- 

metric representations of the problem and for each one 
we discuss access structures to efficiently address MOR 
queries. 

3.1 Space-time representation 

In this representation we plot the trajectories of the 
mobile objects as lines in the time-location (t, y) plane. 
The equation of each line is y(t) = wt + a where 21 is 
the slope (the velocity in our case) and a is the inter- 
cept, that can be computed by the motion information. 
Figure 1 shows a number of trajectories in the plane. 

The query is expressed as a 2-dimensional interval 
[(ye, ye), (TV,&)]. The answer is the set of objects 
that correspond to lines that intersect the query rect- 
angle. 

While the space-time representation is quite intu- 
itive, it leads to indexing long lines, a situation that 
causes significant shortcomings to traditional indexing 
techniques. 

One way is to index the lines using a Spatial Access 
Method (SAM). Then each line is approximated by a 
minimum bounding rectangle (MBR) which is then in- 
dexed using an R-tree[20] or an R*-tree[8]. However, 
this approach is problematic because: (i) an MBR as- 
signs to the moving object a much larger area than a 
line has, (ii) since objects retain their trajectory until 
being updated, all lines in figure 1 extend to “infinity”, 
i.e. a common ending on the time dimension. Mapping 
a line segment as a point in four dimensions, by taking 
the coordinates of the end points, will also not work. 
Even if we partition the time dimension in time inter- 
vals (“sessions”) of length AT (as in [35]) and index the 
part of each trajectory that falls in the current session, 
we still have segments with a common endpoint (the 
end time of the current session). Another shortcoming 
is that the SAM can only address queries until the end 
of the current session. 

A different approach is to decompose the data space 
into disjoint cells and store with each cell the set of 
lines that intersect it. Indexes that follow this approach 
are the R+-tree[Sl], the cell-tree[l9] and the PMR- 
quadtree[30]. The main drawback for these methods 
is that every line will have many copies; this becomes 
worse in our environment since lines are large. Storing 
many copies affects both the update performance (when 
an object changes its trajectory, its previous route has 
to be deleted from all cells it was contained), as well as 
space. ’ 

In [23] a method is proposed to index line segments 
based on the dual transformation. The use of dual 
transformation to index mobile objects is also proposed 
in [37]. In the next section we consider this approach 
in our setting, namely using the dual transformation to 
index mobile objects. 

3.2 The dual space-time representation. 

Duality is a powerful and useful transform frequently 
used in the computational geometry literature; in gen- 
eral it maps a hyper-plane h from Rd to a point in Rd 
and vice-versa. The duality transform is useful because 
it allows to formulate a problem in a more intuitive 
manner. 

In our case we can map a line from the primal plane 
(t, y) to a point in the dual plane. There is no unique 
duality transform, but a class of transforms with sim- 
ilar properties. Sometimes one transform is more con- 
venient than another. 

Consider a dual plane where one axis represents the 
slope of an object’s trajectory and the other axis its 
intercept. Thus the line with equation y(t) = vt + a is 
represented by the point (~,a) in the dual space (this 
is called the Hough-X transform in 1231). While the 
values of v are between --2rmaz and v,,,, the values of 
the intercept are depended on the current time. If the 
current time is t,,, then the range for a is [-v,,, x 

t nour, ymas -t hum x klJ1. 
The query is transformed in a polygon in the dual 

space. We can express this polygon using a linear con- 
straint query [18]. 

Proposition 1 The one dimensional MOR quey is ex- 
pressed in the dual Hough-X plane as follows: 

l For v > 0 the query is : Q = Cl A C2 A C3 A C4, 
where: Cl = v 1 urnin, C2 = v 5 v,,,, C3 = 
aftz*w>yl, andC4=a+tlqvIyzq. 

l For u < 0 the query is : Q = D1 A 02 A D3 A D4, 
where: D1 = v 5 -vmin, 02 = v 2 -urnax, D3 = 
a f tl,v 2 ~1~ and D4 = a + tzPv < yzq. 

‘[35] USES a method based on the PMR-quadtree; their experiments 
show that even for a small number of mobile objects (50K) the number 
of copies can become quite large (about 250 copies/object). 
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Figure 2: Query in the dual Hough-X plane. 

Since the query is different for positive and nega- 
tive slopes, we can use two structures to store the dual 
points. It is easy to see that the range of the u’s values 

is now [--%,, X bow, Ymax - Gnin X tnow]. 
However since time is monotonically increasing, the 

values of the intercept are not bounded. If the value 
of the maximum speed is significant, the values of the 
intercept can become very large and this potentially 
can be a problem (i.e., representing unbounded ranges 
of real numbers). 

To solve this problem we use our assumption that 

when an object crosses a border it issues an update 

( i.e. it is deleted or reflected). Combining this as- 

sumption with the minimal speed, we can assure that 
all objects have updated their motion information at 
least once durmg the last TpeTiod time instants, where 

Tperiod = e. We can then use two distinct index 
structures. The first index stores all objects that have 
issued their last updlate in the period [O,Tpe+d]. The 
second index stores objects that have issued their last 
update in the interval [Tperiod, ZTp.ariod]e Each object 
is stored only once, either in the first or in the second 
index. Before time Tperiod, all objects are stored in the 

first index. However, every object that issues an update 

after Tperiod is deleted from the first index and it is in- 
serted in the second index. The intercept of the first 
index is computed by using the line t = 0 and for the 
second index using the line t = Tperiod. Thus we are 
sure that the intercept will always have values between 

0 and urnax x Tperiot<. To query the database we use 
both indices. After time 2TpeTiod we know that the first 
index is empty and alll objects are stored in the second 
index, since every object have issued at least one up- 
date from Tperiod to L?Tperiodm At that time we remove 
the empty index and we initiate a new one with time 

period [2T&riody STperiod]. We continue in the same way 
and every ‘Tperiod time instants we initiate a new index 
and we remove an empty one. Using this method the 
intercept is bounded while the performance of the index 
structures remain asymptotically the same as if we had 
only one st,ructure. 

Another way to represent a line y = wt + a, is to 
write the equation as t = $y - 2, Then we can map 

\ 
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this line to a point in the dual plane with coordinates 

RC = i and the b = --z (Hough-Y in [23]). Note that b is 
the point where the given line intersects the line y := 0. 
Note also that this transform cannot represent horizon- 
tal lines (similarly, the Hough-X transform cannot rep- 
resent vertical lines). However, this is not a problem 

since our lines have a minimum and a maximum slope. 

3.3 Lower Bounds 

The dual space-time representation transforms the prob- 
lem of indexing mobile objects on a line to the problem 
of simplex range searching in two dimensions. 

In simplex range searching we are given a set S of 
2-dimensional points, and we want to answer efficiently 
queries of the following form: given a set of linear con- 

straints oi < b, find all the points in S that satisfy all 
the constraints. Geometrically, the constraints form a 
polygon on the plane, and we want to find the points 
in the interior of the polygon. This problem has been 
extensively studied before in the static, main-mem.ory 
setting (see for example the excellent survey in [2] #and 
the related work section). 

The only known lower bound for simplex range search- 

ing, if we want to report all the points that fall in 
the query region rather than their number, is due to 
Chazelle and Rosenberg ([lo]). They show that sim- 
plex reporting in d-dimensions with a query time of 
O(N” + K), where N is the number of points, h: is 
the number of the reported points and 0 < 6 < 1, re- 
quires space O(Nd(l-s)-c), for any fixed E. This result 
is shown for the pointer machine model of computat,ion 
[lo]. The bound holds for the static case, even if the 
query region is the intersection of just two hyper-planes. 
Since E can be arbitrary small, any algorithm that uses 
linear space for d-dimensional simplex range searching 
has worst case query time of O(N(d-l)ld + K). 

Here we show that a similar bound holds for the 
input-output complexity of simplex searching. Follow- 
ing the approach in [34] we use the external mem,ory 
pointer machine as our model of computation. This 
is a generalization of the pointer machine suitable for 
analyzing external memory algorithms. In this model, 
a data structure is modeled as a directed graph G = 
(V, E), with a source w. Each node of the graph rep- 
resents a disk block and is therefore allowed to have 
B data and pointer fields. The points are stored in 
the nodes of G. Given a query, the algorithm traverses 
G starting from w, examining the points at the nodes 
it visits. The algorithm can only visit nodes that .are 
neighbors of already visited nodes (with the except.ion 
of the root) and, when it terminates the answer to the 
query must be contained in the set of visited nodes. The 
running time of the algorithm is the number of nodes it 
visits. 



Theorem 1 Simplex reporting in d-dimensions with a 
query time of O(nb + k) I/O’s, where N is the nuinber 
of points, n = N/B, K is the number of the reported 

points, k = K/B, and 0 < 6 5 1, requires Q(nd(‘-‘)-‘) 
disc blocks, for any fixed E. 

Proof. (Sketch) To prove the lower bound we need to 
show that, given 6, there exists a set of N points, and 
a set of O(nd(l-a)-s-E) queries such that, each query 
has @(Bnb) points, and the intersection of any pair of 
query results is small. To answer a query with O(Bn’) 
points, the answering algorithm must visit a(n6) nodes. 
To answer this query in O(n6) I/O’s, at least a con- 
stant fraction of that many blocks have a constant frac- 
tion of their points in the answer of the query. But if 
the set of the queries has small intersection, it follows 
that to answer this set of queries in time O(ns) at least 
O(d) x f2(nd(1-6)-6-‘) = S2(nd(1-a)-C) nodes have to 
be visited. It remains to show that such a set of queries 
exist. To do so we simply modify the existing construc- 

tion by Chazelle and Rosenberg [lo] by replacing each 
point in their point set by B copies. • I 

A corollary of the theorem is that in the worst case 
a data structure that uses linear space to answer the 
2-dimensional simplex range query and thus the one 
dimensional MOR query, requires O(fi+ k) I/O%. In 
the next section we give a dynamic, external-memory 
algorithm that achieves almost optimal query time with 
linear space. As we shall see however this algorithm is 
not practical so we also consider faster algorithms to 
approximate the queries. Finally, we give a worst case 
logarithmic query time algorithm for a restricted but 
practical version of our problem. 

3.4 An (Almost) Optimal Solution 

Matousek ([27]) g ave an almost optimal algorithm for 
simplex range searching, given a static set of points. 
This main memory algorithm is based on the idea of 
simplicial partitions. 

We briefly describe this approach here. For a set S of 
N points, a simplicial partition of S is a set { (Sr , Ai), . . . 
(S,., A,.)} where {Si, . . . , S,.} is a partitioning of S, and 
Ai is a triangle that contains all the points in Si. If 
maxi I&[ < 2mini ISi], we say that the partition is bal- 
anced. Matousek ([27]) shows that, given a set S of N 
points, and a parameter s (where 0 < s < N/2), we can 
construct in linear time, a balanced simplicial partition 
for S of size O(s) such that any line crosses at most 
0(,/Z) triangles in the partition. 

This construction can be used recursively to con- 
struct a partition tree for S. The root of the tree con- 
tains the whole set S, and a triangle that contains all 
the points. We find a balanced simplicial partition of S 
of size Jls’i. Each of the children of the root are associ- 
ated with a set Si from the simplicial partition, and the 

triangle Ai that contains the points in Si. For each of 
the Si’s we find simplicial partitions of size m, and 
continue until each leaf contains a constant number of 
points. The construction time is O(N log, N). 

To answer a simplex range query, we start at the 
root. We take each of the triangles in the simplicial 
partition at the root and check if it is inside the query 
region, outside the query region, or intersects one of the 
lines that define the query. In the first case al1 points 
inside the triangle are reported, in the second case the 
triangle is discarded, and in the third case we recurse 
on the triangle. The number of triangles that the query 
can cross is bounded however, since each line crosses at 
most O(]S]t) triangles at the root. The query time is 

O(Nt+’ + K), with the constant factor depending on 
the choice of E. 

Agarwal et. al. [l] give an external memory ver- 

sion of static partition trees that answers queries in 
O(ni+’ + k) I/OS. To adapt this structure to our envi- 

ronment, we have to make it dynamic. Using a standard 
technique by Overmars ([28]) for decomposable prob- 
lems we can show that we can insert or delete points in 
a partition tree in O(logz N) I/OS, and answer simplex 

queries in O(ns*’ + k) I/OS. 

3.5 improving the average query time. 

Partition trees are not very useful in practice because 

the query time is O(ni i-E + k) and the hidden constant 

factor becomes large if we chose a small E. In this section 
we present two different approaches that are designed 
to improve the average query time. 

3.5.1 Using Point Access Methods 

There is a large number of access methods that have 
been proposed to index point data[l7]. All these struc- 
tures were designed to address orthogonal range queries, 

eg. a query expressed as a multidimensional hyper- 
rectangle. However, most of them can be easily modi- 
fied to address non-orthogonal queries like simplex que- 
ries. 

Recently, Goldstein at al. [18] presented an algo- 
rithm to answer simplex range queries using R-trees. 
The idea is to change the search procedure of the tree. 
In particular they gave efficient methods to test whether 
a, linear constraint query region and a hyper-rectangle 
overlap. As mentioned in [18] this method is not only 
applicable to the R-tree family, but to other access 
methods as well. 

We use this approach to answer the one dimensional 

MOR query in the dual Hough-X space (Figure 2). How- 
ever it is not clear what structure would be more suit- 
able here, given that the distribution of points in the 
dual space is highly skewed. We argue that an index 
structure based on k&trees (like the LSD-tree [21] and 



the /@-tree [16]) is more suitable than a method based 

on R-trees. The reason is that since R-trees try to clus- 
ter data points into squarish regions [24], they will split 
using only one dimension (the intercept). On the other 

hand a kd-tree based method will use both dimensions 
to split (see Figure 3). Thus it is expected to have bet- 

ter performance for the MOR qu.ery. 

3.5.2 A Query Approximation Algorithm. 

A different approach is based on a query approxi- 
mation idea using the Hough-Y dual plane. In gen- 
eral, the b coordin.ate can be computed at different 
horizontal (y = y,.) lines. The query region is de- 
scribed by the intersection of two half-plane queries 
(Figure 4). The one line intersects the line n = & at 

the point (tr, - zz, &) and the line n = & at 

the point (ti, - T-$, &). Similarly the other line 
that defines the query intersects the horizontal lines at 

(hg - y~~~p, &) and (hq - ‘:“YY’, &I. 
Since access methods are more efficient for rectangle 

queries, suppose that we approximate the simplex query 
with a rectangular one. In Figure 4 the query rectangle 
will be [(ti9 ---e,&, - ‘,$-i’), (&, ;;I-)]. Note 
that the query area is enlarged by the area E = El + E2 

which is computed as: 

(1) 

We are interested in minimizing E since it represents 
a measure of the extra I/O’s that an access method will 
have to perform for solving an one dimensional MOR 
query. E is based on both gyr (i.e. where the b coor- 
dinate is computed) and the query interval (yiq, ~2~) 
which is unknown. Hence, we propose to keep c indices 
(where c is a small constant) at equidistant yT’s. All 
c indices contain the same information about the ob- 
jects, but use differe:nt yr’s. The i-th index stores the 
b coordinates of the data points using y = y x i, 
i = 0, ‘.) c - 1. Conceptually, yi serves as an “observa- 
tion” element, and its corresponding index stores the 
data as observed from position yi. We call the area 
between subsequent “observation” elements, a subter- 
rain. A given one dimensional MOR query will be for- 
warded to the index(es) that minimize E. Since all 
2-dimensional approximate queries have the same rect- 
angle side (& ,&) (Figure 4) the rectangle range 
search is equivalent to a simple range search on the b 
coordinate axis. Thus each of the c “observation” in- 
dices can simply be a B+-tree [13]. 

To process a gener,al query interval [yiq, ~2~1 we con- 
sider two cases depending on whether the query interval 
covers a subterrain: 

(i) ysq -. ~1~ 5 hi-: then it can be easily shown 
that area E is boundid by: 

E 5 !i(limax - vmin,2(s+m) 

2 %in x %zax 
The query is processed at the index that minimizes 

lY2g - Yrl + IYlc? - YTI. 
(ii) 1~2~ - yrq > 9: the query interval contains 

one or more subterrains, which implies that if a query 
is executed at a single observation index, area E be- 
comes large. To bound E we index each subterrain, too. 
Each of the c subterrain indices records the time inter- 
val when a moving object was in the subterrain. Then 
the query is decomposed into a collection of smaller sub- 
queries: one subquery per subterrain fully contained by 
the original query interval, and one subquery for each. 
of the original query’s endpoints. The subqueries at 
the endpoints fall to case (i) above, thus they can be 

answered with bounded E using an appropriate “obser- 
vation” index. To index the intervals in each subterrain 
we could use an external memory Interval tree[5] which 
will answer a subterrain query optimally (i.e., E =: 0). 
As a result, the original query can be answered with 
bounded E. Thus we have the following lemma: 

Lemma 1 The one dimensional MOR query can be an- 
swered in time O(log, n+ (K+K’)/B), where K’ is the 
approximation error. The space used is O(cn) where c 
is a small constant, and the update is O(clogB n). 

Note that assuming that the points are distributed uni- 
formly over the b-axis;then the approximation error is 

bounded by l/c, eg. K’ = 0(1/c). 

3.6 Achieving Logarithmic Query Time 

For many applications, the relative positions of the mov- 
ing objects do not change often. Consider for example 
the case where objects are moving very slowly, or with 
approximately the same velocity. In this case the lines 
in the time-space plane do not cross until well forward in 
the future. If we restrict our queries to occur before the 
first time that a point overtakes (passes) another, the 
original problem is equivalent to l-dimensional range 
searching. 

This is one of our motivations to consider a restricted 
version of the original problem, namely, to index mobile 
objects in a bounded time interval T in the future. As 
we have seen, there exist lower bounds for the original 
problem that show that we cannot achieve query time 
better than Q(fi) g iven linear space. However, using 
the above restriction, we achieve a logarithmic query 
time, with space that can be quadratic in the worst 
case but is expected to be linear in practice. 

Formally, the problem we are considering in this sec- 
tion is the following: given a set of objects that ade 
moving on a line, and a time limit T, find all the ob- 
jects that lie in the segment [yl, y,] at time t, (where 
to 5 t, 5 to + T). Equivalently, this is a standard one 
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Figure 3: Data regions for R-tree like and Icd-tree like Figure 4: Query in the dual Hough-Y 

methods . plane. 

dimensional MOR query where ti, = tz,. We will call 
it an one dimensional MORl query. 

be the ordering of the same N objects at time T. Then 
objects i and j cross if and only if t(j) < t(i). 

Our method is to find all the times when an ob- 
ject overtakes another. These events correspond to line 
segment crosses in the time-space plane. Note that be- 
tween two consecutive crossing events the relative or- 
dering of the objects on the plane remains the same. 

First we show the following lemma: 

Lemma 2 If we have the relative ordering of all the 
objects at time t,, the position of the objects at time t, 
that corresponds to the closest crossing event before t,, 

and the speed of the objects, we can find the objects that 
are in [yl, yp] in O(log, N + K) time. 

Keep the objects in a linked list, in the same order 
they were at time t = 0. Scan the sorted list of objects 
at time T. Find object pt(,) in the list. This object 
crosses all the objects ahead of it in the list. After 
reporting these crosses, we remove it from the list, and 
repeat this process with the next point. This procedure 
reports all the crossings in O(N + M) time. After all 
the crossings are reported we can find when each occurs 
and sort them on their time attributes. q 

Proof. Assume that the objects are {pl ,p2,. . . , pi}, 
where pi has a position yi at time t, and a velocity 
vi. Without loss of generality, assume that, at time t,, 

the relative order of the objects from left to right is 

Pl,PZ,...,Piv. 

These M crosses define M ordered lists of the N 
objects. Each two consecutive lists differ in exactly two 
positions, the positions that correspond to the objects 
that cross. The total sum of the differences between 
consecutive lists is therefore O(M). In the next lemma 
we show how we can efficiently store and search these 
lists in external memory. 

Store the objects in a binary tree, sorted by their 
original positions. The root of the tree, point pi, is 
going to be at position yi + vi x t, at time t,. Since 
the objects in the binary tree are stored by order at the 
time t,, if yi + wi x t, < yl then this is also true for all 
the objects to the left child of the root, in which case we 
eliminate the left child and recurse on the right child. 
Otherwise we recurse on the left child of the tree. Thus 
in O(log, N) time we can find the positions of yl and 
y,. relative to the objects at time t,, and we report the 
objects that lie between. q 

The following lemma finds all the crossings of points 
efficiently. 

Lemma 3 We can find all the crossings of objects in 
time O(N log, N + M log, M), where M is the number 
of crosses in the time period [0, T]. 

Lemma 4 We can store the O(M) ordered lists of N 
objects in O(n + m) blocks and perform a search on any 
list in O(logB(n+m)) I/O ‘s, where n = g and m = $$. 

Proof. Let L(t) be the list of objects at time t. Con- 
sider CS = tl,..., tM the ordered sequence of the time 
instants where crossings occur during the interval (0,T). 
The problem of storing the M ordered lists L(tl) through 
L(tM) can be “visualized” as storing the history of a 
list L(t) that evolves over time, i.e., a .partial persis- 
tence problem [14]. That is, list L(t) starts from an 
initial state L(0) and then evolves through consecutive 

states L(tl), L(t2),..., L(tM), where L(ti+i) is produced 
from L(ti) by applying the crossing that occurred at 
ti+l (i=O ,..., M-l, and to=O). 

Proof. Let {PI,. . . ,p~} be the ordering of the N ob- 
jects at time 0. At time T, the position of object i is 
yi + vi x T. To find the ordering of the objects at time 
T we have to sort their positions. Let {p,(,), . . . ,p,(,)} 

A common characteristic in the list evolution is that 
each L(t) has exactly N positions, namely positions 1 
through N, where position j stores the j - th element 
of L(t). To perform a binary search on a given L(t) we 
could implement it using a binary tree with N nodes, 
where each node is numbered by a position (the root 
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node corresponds to the middle position in the list and 
so on) and holds the element of %(t) at that position. 

A main-memory solution to this problem appears 
in [12]. Here we present an efficient external memory 
solution. In particular, we first embed the binary tree 
structure inside a B-tree. This is easily done since the 
structure of the list (and its corresponding binary tree) 
does not change over time. Consider for example tree 
B(0) that corresponds to the initial list L(0). Tree B(0) 
uses O(,nj nodes where each node can hold B entries. 
An entry is now a record: (position, occupant, pointer, 

t), where position corresponds to a position in the list, 
occupant contains the element at that position, pointer 
points to a child node and t corresponds to the time 
this element was at that position, in this case t=O. 

Conceptually, each B-tree node is permanently as- 
signed B positions and is responsible for storing the 
occupants of these positions. Consider the evolution of 

such a node s through trees B(0),B(t~),B(t~),...,B(t~j. 
An obvious way to store this evolution is to store a copy 
of s(O) and a “log” of changes that happen on the oc- 
cupants of node s at later times. A change is simply 
another record that stores the position where a change 
occurred, the new occupant and the time of the change. 
To achieve fast access to s(t) we do not allow the “log” 
to get too large. Every O(B) changes (in practice when 
the log fills one or two pages) we store a new, current 
copy of s. If we consider the history of node s inde- 

pendently, we can have an auxiliary array with records 
(time, pointer) that point to the various copies of node 
s. Locating the appropriate node s(t) takes O(log, m) 
time (first find the record in the auxiliary array with 
the largest timestamp that is less or equal to t and 
then we access the appropriate copy of s and probably a 
(constant) number a’f “log” pages). The space remains 
O(n + m) since ever,y new node copy is amortized over 
the O(B) changes in the “log”. 

While this solution works nicely for the history of a 
given B-tree node, it would lead to O(log, n x log, m) 
search (since finding the appropriate version of a child 
node, when searching the B-tree, requires O(log, m) 
search in the child node’s history). Instead of using 
the auxiliary array to index the copies of node s we 
post such entries as changes in the history of the parent 
node p. Assume that node s is pointed by the record 
on position 1 in node p. When a new copy of node 
s is created, a new :record is added on the “log” of p 
that has the same position I, but a pointer to the new 
copy of s and the current time. Since new node copies 
are added after O(B) changes, the overall space remains 
O(n+m). The query time is reduced to O(logB(n+m)) 
since performing a binary search on list L(t) is equiv- 
alent to searching a path of B(t); locating the root of 
B(t) takes O(log, m) (searching the history of the B- 
tree root node) while all other nodes of B(t) are found in 

O(log, n) using the appropriate parent to child point- 
ers. 0 

The following theorem follows from the previous lem-. 
mas: 

Theorem 2 Given N objects and a time limit T, an 
one dimensional MORl query can be answered in time 
logB(n + m) using space O(n + m), where m = g anal 
M is the number of crosses of objects in the time limit 
T. 

To solve the problem of answering queries within a 
time interval T into the future, we stagger the construc- 
tion of our data structure. Thus, at time to we const:ruct 
a data structure that will answer queries in the time in- 
terval [to, to + 2T], and at time to + iT we construct 
a data structure that will answer queries in the time 
interval [to + (i + l)T, to + (i + 2)T] 

Our approach works for any value of T. If the time 
limit is set too large however, all pairs of objects may 
cross, in which case the size of the data structure will 
be quadratic. It is therefore important to set the time 
limit appropriately so that only approximately a linear 
number of crossings occur. Fortunately, in practice it is 
often true that many objects move with approximately 
equal speeds (one example is cars on a highway) and 
therefore do not cross very often. 

4 Indexing in two dimensions 

In this section we consider the problem of mobile ob- 
jects in the plane. Again we consider only “moving” 
objects, namely objects with a speed between v,in ,and 

vu,,,. We assume that objects move in the (2, y) plane 
inside the finite terrain [(0, zmaz)(O, ymaz)]. The initial 
location of the object oi is (ziO, yiO) and its velocit;y is 
a vector 77 = (v,, vy). 

We distinguish two important cases. The first con- 
siders objects moving in the plane but their movement 
is restricted on using a given collection of routes (roa.ds) 
on the finite terrain. Due to its restriction, we call this 
case the 1.5-dimensional problem. There is a strong mo- 
tivation for such an environment; for the applications 
we have in mind, objects (cars, airplanes.etc.) move on 
a network of specific routes (highways, airways). In the 
second case the objects move anywhere in the plane. 

4.1 The 1.5-dimensional problem 

The 1.5-dimensional problem can be reduced to a num- 
ber of l-dimensional queries. In particular, we propose 
representing each predefined route as a sequence of con- 
nected (straight) line segments. The positions of these 
line segments on the terrain are indexed by a standard 
SAM. (Maintaining this SAM does not introduce a large 
overhead since for most practical applications: (a) the 



number of routes is much smaller than the number of 
objects moving on them, (b) each route can be approxi- 
mated by a small number of straight lines, and, (c) new 
routes are added rather infrequently.) Indexing the ob- 
jects moving on a given route is an l-dimensional model 
and will use techniques from the previous section. 

Given a two dimensional MOR query, the above SAM 
identifies the intersection of the routes with the query’s 
spatial predicate (the rectangle [zlq, XQ] x [yap, ~2~1). 
Since each route is modeled as a sequence of line seg- 
ments, the intersection of the route and the query’s 
spatial predicate is also a set of line segments, possi- 
bly disconnected. Each such intersection corresponds 
to the spatial predicate of an l-dimensional query for 
this route. In this setting we assume that when routes 
intersect, objects remain in the route previously trav- 
eled (otherwise an update is issued). 

4.2 The P-dimensional problem 

The full 2-dimensional problem (i.e., allowing objects to 
move anywhere on the finite terrain) is more difficult. 
As with the l-dimensional case, we discuss different rep- 
resentations of the problem and we propose methods to 
address the two dimensional MOR query. 

In the space-time representation the trajectories of 
the mobile objects are lines in the space. The lines can 
be computed by the motion informations of each object. 
The two dimensional MOR query is expressed as a cube 
in the 3-dimensional (z, y, t) space and the answer is the 
set of objects with lines that cross the query cube. 

Figure 5: Trajectories and query in (z, y, t) plane. 

Algorithms that are applied directly to the time- 
space representation do not work well in one-dimension, 
so the performance is likely to be even worse in two 
dimensions. Unfortunately we cannot use directly the 
dual transformations of the previous section, since these 
transforms map a hyper-plane in the space into a point 
and vice-versa, where here we have lines. We point 
out that the problems with lines in the space are much 
harder than lines in the plane. The reason is that a 
line in space has 4 degrees of freedom and therefore 
taking the dual we jump to a 4-dimensional space. To 
get the dual we project the lines on the (2, t) and (y, t) 

planes and then take the duals for the two lines on these 
planes. Thus now a line can be represented by the 4- 
dimensional point (w, , a,, zlY, aY), where the V, and zly 
are the slopes of the lines on the (z, t) and (y, t) planes 
and the a, and aY are the intercepts respectively. 

The two dimensional MOR query is mapped to a 
simplex query in the dual space. This query is the in- 
tersection of four 3-d hyper-planes and the projection 
of the query to (t,z) and to (t, y) planes are wedges, 
as in the l-dimensional case. Thus we can use a 4- 
dimensional partition tree (section 3.4) and answer the 
MOR query in O(n o 75+E +Ic) I/O’s that almost matches 

the lower bound for four dimensions. 
A simple approach to solve the 4-dimensional prob- 

lem is to use an index based on the led - tree. An 
alternative approach is to decompose the motion of the 
object into two independent motions, one in the x-axis 
and the other in the y-axis. For each axis we can use 
the methods for the l-dimensional case and answer two 

l-dimensional MOR queries. We must then take the in- 
tersection of the two answers to find the answer to the 
initial query. This method allows us to use the algo- 

rithms for the l-dimensional case. 

5 A Performance Study 

We present initial results for the one dimensional MOR 
query, comparing our query approximation approach, 
the Icd-tree method and a traditional R-tree based ap- 
proach. First we describe the way experimental data 
is generated. At time t = 0 we generated the initial 
locations of N mobile objects uniformly distributed on 
the terrain [0, lOOO]. We varied N from 1OOlc to 5001c. 
The speeds were generated uniformly from v,i, = 0.16 
to w,,, = 1.66 and the direction randomly positive or 
negative.2 Then objects start moving. When an object 
reaches a border simply it changes its direction. At each 
time instant we choose 200 objects randomly and we 
randomly change their speed and/or direction. We gen- 
erate 10 different time instants that represent the times 
when queries are executed. At each such time instant we 
execute 200 random queries, where the length of the y- 
range is chosen uniformly between 0 and YQMAX and 
the length of the time range between 0 and TW. We 
actually generated two sets of queries. One set of large 
queries with YQMAX = 150 and TW = 60 and one 
set of small queries with YQMAX = 10 and TW = 20. 
The first set of queries has average cardinality almost 
10% and the second one close to 1%. We run this sce- 
nario using a particular access method for 2000 time 
instants. 

To verify that indexing mobile objects as line seg- 
ments is not efficient, we stored the trajectories in an 

‘Note that 0.16 miles/min is equal to 10 miles/hour and 1.66 
miles/min is equal to 100 miles/hour. 



Figure 6: Query Performance for 10% Queries. 

R*-tree. We fixed lthe page size to 4096 bytes. To rep- 
resent a line segme:nt in an R*-tree we used four 4-byte 
numbers (the two end points) and one more number as 
a pointer to the real object, resulting in a page capacity 
of B = 204. For the B+-tree we used one 4-byte number 
to represent the b-coordinate, one number for the speed 
and another one for the pointer, so the page capacity 

was B = 341. We index each record using only the b 
coordinate but using the speed of each object we can 
identify the objects that correspond to the real answer 
and report only these objects. The same page capac- 
ity used and for the hB”-tree.However, each hB”-tree 
page reserves some space for internal structural data. 

We consider a simple buffering scheme for the results 
we present here. For each tree we buffer the path from 
the root to a leaf node, thus the buffer size is only 3 or 
4 pages. For the queries we always clear the buffer pool 
before we run a query. An update is performed when 
the motion informa.tion of an object changes. 

In Figure 6 we present the results for the average 
number of I/O’s per query for 10% queries and in fig- 
ure 7 for 1% queries. The approximation method used 
c = 4,6 and 8 B+-trees. As anticipated, the line seg- 
ments method with R*-trees has the worst performance. 
Also, the approximation method outperforms the hBn- 
tree for small queries and it is slightly better for large 
queries. 

In Figures 8,9 we plot the space consumption and 
the average number of I/O’s per update respectively. 
We did not report the update performance for the R*- 
tree method because it was very high (more than 90 
I/O’s per update). The update and space performance 
of the hB”-tree is better than the other methods since 
its objects are stored only once and better clustered 
than the :R*-tree. The update performance of the hB”- 
tree and the approximation approach remain constant 
for different number of mobile objects. The space of 
all methods is linear to the number of objects. The 
approximation approach uses more space due to the use 
of c observation indices. There is a tradeoff between c 

Figure 7: Query Performance for 1% Queries. 

and the query/update performance. 

6 Related Work 

The problem of indexing mobile objects is novel; we are 
not aware of any other related work except [35] where 
a method to index mobile objects based on the PM& 

quadtree is presented. However as we mentioned earlier, 
this approach has large space and update overhead. 

Mobility in a geographic system is addressed in. [32:] 
where the aim is to map close points in space to adjacent 
disks so as collision detection queries are optimized. 

The queries we examine have also a temporal com- 

ponent. There has been a lot of research in temporal 
indexing [29], however it has focused on queries about 
the past and not the future as in our case. 

Representing the trajectories as line segments in two 

and three dimensions, also relates to spatial indexing 
[17]. [22] presents a qualitative comparison of t,hree 
spatial access methods for a line segments database is 
presented. In particular they consider the R*-tree, the 
Rf-tree and the PMR-quadtree. The result is that all 
these methods are comparable and no one seems to be 
superior than the others. 

A method to index line segments on the plane is pre,- 

sented in [23]. A line segment is represented by the slope 
and the intercept of the line obtained by extending the 
line segment and by the range of the projection of the 
segment to one axis. Using this mapping, a line seg- 
ment on the plane is mapped to a vertical line segrnenl; 
in three dimensions. Then a standard spatial access 
method can be used to index the new segments. It is 
shown analytically and experimentally that the queries 
in the transformation space have better selectivity that 
in the original space. 

An interesting approach to index constraint databases 

is presented by Bertino et al. in [9]. In particular -they 
address the problem of indexing conjunction of linear 
constraints with two variables, in order to answer ALL 
and EXIST queries (variations of the half-plane query). 
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Figure 8: Space Consumption. 

They use the dual transformation and they reduce the 
problem to a point location problem. Then, if the line 
that defines the query has slope from a predefined set 
of slopes, an optimal solution can be derived using the 
external memory Interval tree[5]. Other works on in- 
dexing constraint databases include [5, 251. These ap- 

proaches reduce the problem of indexing constraint to 
a dynamic interval management problem or to a special 
case of two-dimensional range searching, and therefore 

are not applicable to our problem. 
The issue of mobility and maintenance of a number 

of configuration functions among continuously moving 
objects has been addressed by Basch et al. in [6]. Such 
functions are the convex hull, the closest pair and the 
minimum spanning tree. They propose a framework 
to transform a static data structure into a kinetic data 
structure (KDS) that maintains an attribute of inter- 
est for a set of mobile objects and they give a num- 
ber of criteria for the quality of such structures. The 
key structure is an event queue that contains events 
corresponding to times where the value of the configu- 
ration function (may) change. This event queue is the 
interface between the data structure and the mobile ob- 
jects. All these structures are main memory data struc- 
tures. It will be an interesting problem to investigate 
how these structures can be implemented efficiently in 
external memory. 

7 Conclusions and Future Work 

Indexing mobile objects is a novel problem motivated 
by real life applications. We study the one and two 
dimensional versions of the problem. For the one di- 
mensional case, we give a dynamic, external memory 
algorithm with guaranteed worst case performance and 
linear space. We also give a practical approximation 
algorithm also in the dynamic, external memory set- 
ting, which has linear space and expected logarithmic 
query time. Finally we give an algorithm with guaran- 
teed logarithmic query time for a restricted version of 
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Figure 9: Update Performance. 

the problem. We also extend some of our results into 
two dimensions. First we consider the case where ob- 
jects move in 2-dimensional networks of l-dimensional 
routes. In this case we can effectively apply our l- 
dimensional algorithms. We also consider objects that 
move on a plane, and we discuss extensions of our tech- 

niques to two dimensions. 
Future work includes a variety of interesting prob- 

lems. In addition to performing a more complete perfor- 
mance study (using various data distributions) we plan 
to address restricted versions of the 2-dimensional prob- 
lem using realistic assumptions. One idea is to cluster 
similarly moving objects into representative clusters. If 
query response is time critical, main-memory database 
techniques need to be involved. We are currently study- 
ing the problem of indexing mobile objects with prob- 
abilistic route choices. A generalization of the 1.5- 
dimensional problem is when the terrain is subdivided 
into areas with various speed limits (or terrain abnor- 
malities that limit movement according to direction). 
Other interesting queries are near-neighbor queries and 
joins among relations of mobile objects. Some applica- 
tions may require keeping the history of mobile objects 
(for traffic analysis etc.); then the indices presented 
need to support historical queries. This probably re- 
quires making the presented structures partially persis- 
tent [7, 261. While in this paper we restricted the object 
movement to simple (linear) functions,‘it is a first step 
at examining ways to index more complex functions. 
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