
Journal of Artificial Intelligence Research 64 (2019) 21-53 Submitted 3/18; published 1/19

On Inductive Abilities of Latent Factor Models

for Relational Learning

Théo Trouillon theo.trouillon@imag.fr

Univ. Grenoble Alpes

700 avenue Centrale

38401 Saint Martin d’Hères, France

Éric Gaussier eric.gaussier@imag.fr

Univ. Grenoble Alpes

700 avenue Centrale

38401 Saint Martin d’Hères, France

Christopher R. Dance chris.dance@naverlabs.com

NAVER LABS Europe

6 chemin de Maupertuis

38240 Meylan, France

Guillaume Bouchard gbouchard@fb.com

Facebook

1 Rathbone Square

WT1 1FB London, United Kingdom

Abstract

Latent factor models are increasingly popular for modeling multi-relational knowledge
graphs. By their vectorial nature, it is not only hard to interpret why this class of models
works so well, but also to understand where they fail and how they might be improved. We
conduct an experimental survey of state-of-the-art models, not towards a purely comparative
end, but as a means to get insight about their inductive abilities. To assess the strengths
and weaknesses of each model, we create simple tasks that exhibit first, atomic properties of
binary relations, and then, common inter-relational inference through synthetic genealogies.
Based on these experimental results, we propose new research directions to improve on
existing models.

1. Introduction

In many machine learning fields, research is deserting symbolic approaches. Most of the
time, this is justified by better predictive performances and scalability of the alternative
approaches. It is especially true with link prediction, a core problem of statistical relational
learning (Getoor & Taskar, 2007), where latent factor models became more popular than
logic-based models (Nickel, Tresp, & Kriegel, 2011; Bordes, Usunier, Garcia-Duran, Weston,
& Yakhnenko, 2013b; Trouillon, Welbl, Riedel, Gaussier, & Bouchard, 2016).

Link prediction in knowledge graphs—also known as knowledge graph completion—
operates on predicates of pairs of entities: the objects of knowledge graphs. Each different
predicate symbol is called a relation, and a grounded relation is called a fact. For exam-
ple, given the entities Alice, Eve and Bob and the relations mother and grandmother, if
mother(Alice,Eve) and mother(Eve,Bob) are true facts, then grandmother(Alice,Bob)

c©2019 AI Access Foundation. All rights reserved.

Trouillon, Gaussier, Dance & Bouchard

is also true. Inferring this last fact from the first two requires knowing that the mother
of one’s mother is one’s grandmother, which can be expressed by the first-order formula:
∀x∀y∀z mother(x, y) ∧ mother(y, z)⇒ grandmother(x, z).

Logic-based link prediction consists in using both observed facts and logical rules to
infer the truth of unobserved facts. It can be achieved deterministically by logical deduction,
or probabilistically to cope with uncertainty of the data (Richardson & Domingos, 2006;
Kersting & De Raedt, 2001). Beyond known problems such as complexity or brittleness,
an obvious limitation arises in this setup: logical rules over the knowledge graph relations
are required for inference, and many knowledge graphs only provide observed facts (Dong
et al., 2014; Auer et al., 2007). In this case one must either handcraft rules, or learn them,
generally through inductive logic programming (ILP) methods (Muggleton & De Raedt,
1994; Dzeroski & Lavrac, 1994).

Latent factor models do not suffer this limitation, as the learned model is never represented
explicitly in a symbolic way, but rather as vectorial embeddings of the entities and relations.
Such representations can make the model difficult to interpret, and although they show
better predictive abilities, it has not yet been explored how well those models are able to
overcome this absence of logical rules, and how their inference abilities differ from logic-based
models.

To do so, we evaluate state-of-the-art latent factor models for link prediction on synthetic
tasks, each designed to target a specific inference ability, and see how well they discover
structure in the data. As we are only interested in evaluating inductive abilities of these
models, and not their ability to cope with uncertainty, we design synthetic experiments
with noise-free deterministic data. The choice of this very favorable setup for deterministic
logical inference clarifies the approach followed in this paper and its very purpose: we do

not evaluate latent factor models as an end, but as a means to point out their weaknesses
and stimulate research towards models that do not suffer from combinatorial complexity—
as advocated by Bottou (2014). Computational complexity, and namely polynomiality,
could turn out to be the very criterion for machine intelligence (Aaronson, 2013). Beyond
complexity, one could also argue against explicitly learning logical expressions to tackle
knowledge graph completion that, “when solving a given problem, try to avoid solving a
more general problem as an intermediate step” (Vapnik, 1995).

We first evaluate the models on the three main properties of binary relations: reflexivity,
symmetry and transitivity, and their combinations. We do so by experimentally testing their
ability to learn these patterns from facts, and their robustness to missing data. Then we
set up tasks that represent real reasoning over family genealogies. On this data, we explore
different types of training/testing splits that map to different types of inference.

The remainder of the paper is organized as follows. We first review the literature in
Section 2, before formally presenting the link-prediction task, the evaluated latent factor
models and the optimization procedure in Section 3. Experiments on learning properties of
relations are presented along with their results in Section 4, and experiments description and
results for family genealogies are reported in Section 5. Finally, we propose new research
directions from these results in Section 6.

22

On Inductive Abilities of Latent Factor Models for Relational Learning

2. Related Work

Artificial intelligence is becoming more driven by its empirical successes than by the quest
for a principled formalization of reasoning, making it more of an empirical science than a
theoretical one. Experimental design is a key skill of empirical scientists, and a well-designed
experiment should expose model limitations to enable improving on them. Indeed, seeking
falsification is up to now the best definition of science (Popper, 1934). In machine learning,
it is extremely simple to come up with an experiment that will fail. However it is less easy
to think of one that brings an informative failure—when one thinks of a failing experiment
at all. Generally, when experimental results are presented, the aim is to show that the
proposed approach works. Here this is somehow the reverse as we want to show where the
studied models fail. Our article is thus aimed at researchers who want to improve on existing
models, and not at practitioners who want to know which model is the better or faster on
which collection. Several studies have addressed the latter (Trouillon, Dance, Welbl, Riedel,
Gaussier, & Bouchard, 2017; Nickel, Rosasco, & Poggio, 2016b; Garcia-Duran, Bordes,
Usunier, & Grandvalet, 2016), where the presented models are thoroughly compared on
many popular datasets, both in term of performances and training time. It is however difficult
to draw conclusions on specific model abilities from such studies as several phenomena
are usually mixed in real datasets. Conversely, the bAbI data set (Weston et al., 2015),
proposing a set of 20 prerequisite tasks for reasoning over natural language, is an example of
an informative experiment, by the specific reasoning type that each task targets. Inspired by
the idea of this work, we designed simple tasks for link prediction that assess basic properties
of relations, as well as simple reasonings such as kinship relations.

Learning from knowledge graphs and more generally relational data is an old problem
of artificial intelligence (Davis, Shrobe, & Szolovits, 1993). Many contributions have
been made using inductive logic programming for relational data during the last decades
(Muggleton, 1995; Lisi, 2010; Galárraga, Teflioudi, Hose, & Suchanek, 2015). Handling
inference probabilistically gave birth to the statistical relational learning field (Getoor
& Taskar, 2007), and link prediction has always been one of the main problems in that
field. Different probabilistic logic-based inference models have been proposed (Ngo &
Haddawy, 1997; Wellman, Breese, & Goldman, 1992; Kersting & De Raedt, 2001). The
main contribution along this line of research is probably Markov Logic Networks (MLNs)
(Richardson & Domingos, 2006). MLNs take as input a set of first-order rules and facts, build
a Markov random field between facts co-occurring in possible groundings of the formulae,
from which they learn a weight over each of these rules that represents their likeliness
of being applied at inference time. Some other proposals followed different probabilistic
approaches (Friedman, Getoor, Koller, & Pfeffer, 1999; Heckerman, Meek, & Koller, 2007).

The link-prediction problem has recently drawn attention from a wider community. Driven
by the W3C standard data representation for the semantic web, the resource description
framework (Cyganiak, Wood, & Lanthaler, 2014), various knowledge graphs—also called
knowledge bases—have been collaboratively or automatically created in recent years such as
DBpedia (Auer et al., 2007), Freebase (Bollacker, Evans, Paritosh, Sturge, & Taylor, 2008)
or the Google Knowledge Vault (Dong et al., 2014). Since the Netflix challenge (Koren,
Bell, & Volinsky, 2009), latent factor models have taken the advantage over probabilistic
and symbolic approaches in the link-prediction task, in terms of prediction performances

23

Trouillon, Gaussier, Dance & Bouchard

first, but also in scalability. This rise of predictive performances and speed enabled many
applications including automated personal assistants and recommender systems (Ma, Crook,
Sarikaya, & Fosler-Lussier, 2015; Koren, 2008).

Statistical models for learning in knowledge graphs are summarized in a recent review
(Nickel, Murphy, Tresp, & Gabrilovich, 2016a), and among them latent factor models. We
discuss these models in detail in the following section. One notable latent factor model
that is not tested in this paper is the holographic embeddings model (Nickel et al., 2016b),
as it has been shown to be equivalent to the ComplEx model (Trouillon & Nickel, 2017;
Hayashi & Shimbo, 2017). The ComplEx model (Trouillon et al., 2016) is detailed in the
next section. Also, the latent factor model proposed by Jenatton, Bordes, Le Roux, and
Obozinski (2012) is not included as it is a combination of uni-, bi- and trigram terms that
will be evaluated in separate models to understand the contribution of each modeling choice
in different situations.

Not all latent models are actually factorization models. Among these are a variety of
neural-network models, including the neural tensor networks (Socher, Chen, Manning, & Ng,
2013), or the multi-layer perceptron used in Dong et al. (2014). We did not survey these
models in this work and focus on latent factor models, that is models that can be expressed
as a factorization of the knowledge graph represented as a tensor.

Similarly to our purely synthetic evaluation approach, Bowman, Potts, and Manning
(2015) learned some natural logic operations with recurrent neural tensor networks, to tackle
natural language processing tasks such as entailment or equivalence. Natural logic is a
theoretical framework for natural language inference that uses natural language strings as the
logical symbols. Bouchard, Singh, and Trouillon (2015) compared the squared and logistic
losses when learning transitive and sequential synthetic relations, and Singh, Rocktäschel,
and Riedel (2015) also investigated a few synthetic examples for relational learning on
different latent factor models.

Following a different approach, other contributions formalized the encoding of logical
operations as tensor operations. Smolensky et al. (2016) applied it to the bAbI data set
reasoning tasks, and Grefenstette (2013) to general Boolean operations.

Advances in bringing both worlds together include the work of Rocktäschel et al. (2015,
2014) and Demeester, Rocktäschel, and Riedel (2016), where a latent factor model is used,
as well as a set of logical rules. An error-term over the rules is added to the classical
latent factor objective function. In Rocktäschel and Riedel (2016), a fully differentiable
neural theorem prover is used to handle both facts and rules, whereas Minervini, Demeester,
Rocktäschel, and Riedel (2017) use adversarial training to do so. Wang and Cohen (2016)
learned first-order logic embeddings from formulae learned by ILP. Similar proposals for
integrating logical knowledge in distributional representations of words include the work of
Lewis and Steedman (2013). Conversely, Yang, Yih, He, Gao, and Deng (2015) learn a latent
factor model over the facts only, and then try to extract rules from the learned embeddings.

3. The Link-Prediction Task and Models

This section formally defines the link-prediction problem in knowledge graphs, as well as the
notations that will be used throughout this paper. We then introduce the state-of-the-art
models that will be tested in the experimental sections.

24

On Inductive Abilities of Latent Factor Models for Relational Learning

3.1 Link-Prediction in Knowledge Graphs

A knowledge graph stores facts about a set of entities E , and a set of relations R, in the form
of facts r(s, o), that we also write as triples (r, s, o), where the relation r ∈ R and the subject
and object entities s, o ∈ E . Each fact is associated with its truth value yrso ∈ {−1, 1}. For
example, the fact first used(Cardano, imaginary numbers) is true (Cardano, 1545), thus
it has a corresponding truth value yrso = 1. To false facts we attribute the value −1. We
denote the set of all possible triples for a given entity set and relation set with T = R×E×E .

In the link-prediction task we observe the truth values of a given set of training triples
TΩ ⊆ T , that together form the observed facts set Ω = {((r, s, o), yrso) | (r, s, o) ∈ TΩ}. The
task then consists in predicting the truth values of a disjoint set of unobserved triples
(r′, s′, o′) ∈ T \ TΩ.

Each model is defined by its scoring function φ(r, s, o; Θ), where Θ are the latent
parameters of this model—the entity and relation embeddings—and φ(r, s, o; Θ) : C|Θ| → R

assigns a real-valued score to the fact r(s, o). As some models are real-valued and some
other models are complex-valued, we define the space of the parameters C|Θ| directly over
the complex space.

We define the probability of a given fact r(s, o) to be true as

P (yrso = 1) = σ(φ(r, s, o; Θ)) (1)

where σ is a sigmoid function. We here use the classical logistic function σ(x) = 1
1+e−x .

In the remainder of the paper, the following notations will also be used: the number of
entities is denoted by Ne = |E|, and the number of relations by Nr = |R|. The ith row of a
complex matrix X ∈ C

n×m is written xi ∈ C
m. By a slight abuse of notation, for entities

i ∈ E and relations r ∈ R, we will write their corresponding rows in the embedding matrices
as xi or xr, where xi, xr ∈ C

m.
Let us also define the trilinear product of three vectors over the complex space:

〈a, b, c〉 =

K∑

j=1

ajbjcj

= a⊤(b⊙ c) (2)

where a, b, c ∈ C
K , and ⊙ is the Hadamard product, that is, the element-wise product

between two vectors of same length.

3.2 The Models

In the following we present in detail the model scoring functions and parameters that we
compare in this experimental survey. We chose to compare only the most popular and
best-performing link-prediction models. The models’ scoring functions and parameters are
summarized in Table 1.

A natural way to represent a knowledge graph mathematically is to frame it as a 3rd-order,
partially observed, binary tensor Y ∈ {−1, 1}Nr×Ne×Ne , where the value at index (r, s, o) is
the truth value of the corresponding triple: yrso, that we want to approximate (Equation (1)).
Knowledge graph completion becomes a tensor completion problem, that can be achieved
through tensor factorization methods (Kolda & Bader, 2009).

25

Trouillon, Gaussier, Dance & Bouchard

Model Scoring Function φ Parameters Θ

CP (Hitchcock, 1927) 〈wr, us, vo〉 wr, us, vo ∈ R
K

RESCAL (Nickel et al., 2011) e⊤s Wreo Wr ∈ R
K2

, es, eo ∈ R
K

TransE (Bordes et al., 2013b) −||(es + wr)− eo||q wr, es, eo ∈ R
K

F model (Riedel et al., 2013) u⊤d wr wr, ud ∈ R
K

DistMult (Yang et al., 2015) 〈wr, es, eo〉 wr, es, eo ∈ R
K

ComplEx (Trouillon et al., 2016) Re(〈wr, es, ēo〉) wr, es, eo ∈ C
K

Table 1: Scoring functions of the evaluated latent factor models for a given fact r(s, o), along
with the representation of their parameters. In the F model, d indexes all possible pairs of
entities: d = (s, o) ∈ E × E .

Each of the following models can be seen as a tensor factorization, and hence use latent
representations of variable length, that is controlled by the hyper-parameter K ∈ N

∗, often
called the rank of the decomposition. We start by introducing the most natural model, a
general decomposition for tensors: the Canonical-Polyadic (CP) decomposition (Hitchcock,
1927), also know as CANDECOMP (Caroll & Chang, 1970), and PARAFAC (Harshman,
1970).

Canonical-Polyadic Decomposition (CP) The Canonical-Polyadic decomposition
involves one latent matrix for each dimension of the tensor Y, so in our case we have three
latent matrices as Y is a 3rd order tensor. The scoring function is

φ(r, s, o; Θ) = 〈wr, us, vo〉 (3)

where U, V ∈ R
Ne×K are the embedding matrices of entities depending on whether they

appear as subject (U) of the triple or as object (V), and W ∈ R
Nr×K is the embedding

matrix of the relations.
This model is a very general tensor decomposition, though it is not really tailored to

our problem, since our tensor is a stack of Nr square matrices where rows and columns
represent the same underlying objects: the entities. Indeed, its completely decorrelated
representations ui and vi of the same entity i ∈ E make it harder for this model to generalize,
as we will see in the experiments.

RESCAL RESCAL (Nickel et al., 2011) differs from the CP decomposition in two points:
there is only one embedding per entity instead of having one embedding for entities as
subject and another one for entities as objects; and each relation is represented by a matrix
embedding instead of a vector. Its scoring function is

φ(r, s, o; Θ) = e⊤s Wreo (4)

where E ∈ R
Ne×K is the embedding matrix of the entities, andW ∈ R

Nr×K×K the embedding
tensor of the relations. Thus Wr ∈ R

K×K is the embedding matrix of the relation r.
RESCAL was the first model to propose unique embeddings for entities—simultaneously

with Bordes, Weston, Collobert, and Bengio (2011)—which yielded significant performance

26

On Inductive Abilities of Latent Factor Models for Relational Learning

improvement, and since then unique entity embeddings have been adopted by most of the
subsequent models. Its matrix representations of relations allows it to have asymmetric
scores when substituting the subject and object entities, as entities have a single embedding,
conversely to the CP model. However, this matrix representation of the relations makes its
scoring function time and space complexity quadratic in the rank K of the decomposition.
This also leads to potential overfitting.

F model This model proposed by Riedel et al. (2013) maps all possible subject and object
entity pairs d = (s, o) ∈ E × E to a single dimension. Each row in the entity embedding
matrix corresponds to one pair of entities. The scoring function computes the dot product
of the embedding of the pair d with the embedding of the relation r:

φ(r, s, o; Θ) = e⊤d wr (5)

where E ∈ R
N2

e×K is the embedding matrix of the pairs of entities, and W ∈ R
Nr×K the

embedding matrix of the relations. It is actually a decomposition of the matrix that results
from a specific unfolding of the Y tensor (Kolda & Bader, 2009).

Its pairwise nature gives this model an advantage over non-compositional pairs of entities
(Welbl, Bouchard, & Riedel, 2016). However, its memory complexity is quadratic in the
number of entities Ne. In practice, unobserved pairs of entities are not stored in memory
as they are useless, which is also the weak point of this model: it cannot predict scores for
unobserved pairs of entities since it only learns pairwise representations.

TransE The TransE model (Bordes et al., 2013b) imposes a geometrical structural bias
on the model: the subject entity vector should be close to the object entity vector once
translated by the relation vector. For a given q-norm (generally q = 1 or q = 2) over the
embedding space:

φ(r, s, o; Θ) = −||(es + wr)− eo||q (6)

where E ∈ R
Ne×K is the embedding matrix of the entities, and W ∈ R

Nr×K is the embedding
matrix of the relations. Deriving the norm in the scoring function exposes another perspective
on the model and unravels its factorial nature, as it gives a sum of bilinear terms as explored
by Garćıa-Durán, Bordes, and Usunier (2014):

φ(r, s, o; Θ) ≈ e⊤s eo + e⊤o wr − e⊤s wr (7)

where constant multipliers and norms of the embeddings have been ignored here. These
bigram terms will help in some specific situations as shown in Section 5.

It is difficult to capture symmetric relations with this model in a multi-relational setting.
Indeed, having φ(r, s, o; Θ) = φ(r, o, s; Θ) implies either es = eo, or w

⊤
r (eo − es) = 0. Since

es 6= eo in general for s 6= o, and wr is in general not the zero vector—in order to share
latent dimensions’ information with the other relation embeddings—modeling symmetric
relations such as similar, cousin, or related implies a strong geometrical constraint on
entity embeddings: their difference must be orthogonal to the relation embedding wr. The
model thus has to make a trade-off between (i) correctly modelling the symmetry of the
relation r, (ii) not zeroing its relation embedding wr, and (iii) not altering too much the
entity embeddings to meet the orthogonality requirement between wr and (eo − es) for all
e, o ∈ E .

27

Trouillon, Gaussier, Dance & Bouchard

DistMult The DistMult model (Yang et al., 2015) can be seen as a simplification of the
RESCAL model, where the unique representation of entities is kept, while the representation
of the relations is brought back to vectors instead of matrices:

φ(r, s, o; Θ) = 〈es, wr, eo〉 (8)

where E ∈ R
Ne×K is the embedding matrix of the entities, and W ∈ R

Nr×K the embedding
matrix of the relations.

The major drawback of this model is its symmetry over the subject and object entity
roles. Indeed we have φ(r, s, o; Θ) = φ(r, o, s; Θ), for all s, o ∈ E . But many antisymmetric
relations appear in knowledge graphs such as older, partOf, hypernym. One does not want
to assign the same score to older(a,b) as to older(b,a)!

ComplEx The ComplEx model (Trouillon et al., 2016, 2017) can be seen as a complex-
valued version of the DistMult model. The latent matrices of the entities and relations are
in the complex domain instead of the real domain. The scoring function is the real part of
the trilinear product of the entities and relation embeddings:

φ(r, s, o; Θ) = Re(〈es, wr, eo〉) (9)

where E ∈ C
Ne×K is the embedding matrix of the entities, W ∈ C

Nr×K the embedding
matrix of the relations, and eo is the complex conjugate of the vector eo. We write Re(a) the
real part of the complex number a ∈ C, and Im(a) its imaginary part: a = Re(a) + iIm(a),
where i =

√
−1 and Re(a), Im(a) ∈ R. We use the same notations for complex vectors, for

instance: eo = Re(eo)− iIm(eo), where Re(eo), Im(eo) ∈ R
K .

This model solves the symmetry problem of DistMult by having slightly different
representations of entities as subject or object through the use of the complex conjugate.
These representations are still tightly linked which yields good generalization properties,
unlike CP. Yet this slight difference allows the model to retain a vectorial representation
of the relations, and thus a linear time and space complexity, unlike RESCAL, and to do
so without any loss of expressiveness—ComplEx is able to decompose exactly all possible
knowledge graphs (Trouillon et al., 2017).

3.3 Training the Models

All models have been reimplemented within the same framework for experimental fairness.
We describe their common optimization scheme in this section.

As previously mentioned, we used the logistic function to approximate the truth value
of the facts (Equation (1)). We minimized the negative log-likelihood of the logistic model
with L2 regularization applied entity-wise and relation-wise over their vector embeddings of
the considered model:

L(Ω;Θ) =
∑

((r,s,o),yrso)∈Ω

log(1 + exp(−yrsoφ(r, s, o; Θ))) + λ||Θ{r,s,o}||22 , (10)

as we found it to perform better than the ranking loss used in previous studies (Bordes
et al., 2013b; Nickel et al., 2016b), and is also known to perform better than the squared

28

On Inductive Abilities of Latent Factor Models for Relational Learning

error (Nickel & Tresp, 2013; Bouchard et al., 2015). For RESCAL’s relation embeddings
Wr ∈ R

K×K , the Frobenius norm is used for regularization ||Wr||F .
The loss is optimized through stochastic gradient descent with mini-batches (10 batches

for the relation properties experiment, and 100 for the families experiment), AdaGrad (Duchi,
Hazan, & Singer, 2011) with an initial learning rate of 0.1, and early stopping when average
precision decreased on the validation set calculated every 50 epochs. The λ regularization
parameter was validated over the values {0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0} for each
model for each factorization rank K. Parameters are initialized from a centered unit-variance
Gaussian distribution. The complete algorithm is detailed in Appendix A.

Models are evaluated using average precision—which is the area under the precision-recall
curve, sometimes called AUC—as it is classically used in the field (Richardson & Domingos,
2006; Nickel et al., 2011). For each factorization rank, the models with best validated λ are
kept. Average precisions are macro-averaged over 10 runs, and error bars show the standard
deviation over these 10 runs.

We also computed the average precision of a deterministic logic inference engine, by
applying the corresponding rules that were used to generate each data set (dotted line in
the following Figures). For each fact r(s, o) in the test set, its probability P (yrso = 1) is set
to 1 if the fact can be logically deduced true from the facts of the training and validation
sets, 0 if it can be deduced to be false, and 0.5 otherwise. This is not at a comparative end,
but rather to provide an upper-bound on the performances that can be reached from the
observed facts.

For the TransE model, we trained its scoring function with L1 and L2 norms and
report the best performing results in each experiment. As in the original paper, we did not
use regularization over the parameters but instead we enforced entity embeddings to have
unit norm ||ei||2 = 1 for all i ∈ E (Bordes et al., 2013b). With the F model, prediction of
unobserved entity pairs in the training set is handled through random Gaussian embeddings,
similarly to the initialization of the embeddings of the observed pairs.

To assess whether latent factor models are able to generalize from data without any
first-order logic rules, we generate synthetic data from such rules, and evaluate the model in
a classical training, validation and test splitting of the data. The proportion of positives
and negatives is respected across the sets.

We first consider rules corresponding to relation properties, then rules corresponding to
inter-relations reasonings about genealogical data. We also explore robustness to missing
data, as well as different training/testing splits of the data. Keeping the data deterministic
and simple also allows us to write the corresponding logical rules of each experiment, and
simulate test metrics of what perfect induction would yield to get an upper-bound on the
performance of any method. All data sets are made available1.

4. Learning Relation Properties

In this section we define the three main properties of binary relations, and devise different
experimental setups for learning them with varying proportions of observed data.

1. https://github.com/ttrouill/induction_experiments

29

Trouillon, Gaussier, Dance & Bouchard

Property Definition

Reflexivity ∀a r(a, a)

Irreflexivity ∀a ¬r(a, a)
Symmetry ∀a∀b r(a, b)⇒ r(b, a)

Antisymmetry ∀a∀b r(a, b) ∧ r(b, a)⇒ a = b

Transitivity ∀a∀b∀c r(a, b) ∧ r(b, c)⇒ r(a, c)

Table 2: Definitions of the main properties of binary relations.

4.1 Experimental Design

Relations in knowledge graphs have different names in the different areas of mathematics.
Logicians call them binary predicates, as they are Boolean-valued functions of two variables.
For set theorists, they are binary endorelations, as they operate on two elements of a single
set, in our case the set of entities E . In set theory, relations are characterized by three
main properties: reflexivity/irreflexivity, symmetry/antisymmetry and transitivity. The
definitions of these properties are given in first-order logic in Table 2.

Different combinations of these properties define basic building blocks of set theory such
as equivalence relations that are reflexive, symmetric and transitive relations, or partial
orders that are reflexive, antisymmetric and transitive relations (Halmos, 1998). Examples
are given in Table 3.

There are many such common examples of these combinations in knowledge graphs, as
there are many hierarchical and similarity relations. For example, the relations older and
father are both strict hierarchies, thus antisymmetric and irreflexive. But one is transitive
(older) whereas the other is not, and that makes all the difference at inference time. Similarly
for symmetric relations, such as has-the-same-parents-as and friend, your sibling’s
parents are also yours which makes the first relation transitive, whereas your friend’s friends
are not necessarily yours. Note that this makes the has-the-same-parents-as relation
reflexive—it is thus an equivalence relation.

Link prediction models must be able to handle relations that exhibit each of the possible
combinations of these properties, since they are all very common, but imply different types
of reasoning, as already acknowledged by Bordes, Usunier, Garcia-Duran, Weston, and
Yakhnenko (2013a). Given that a relation can be reflexive, irreflexive, or neither; symmetric,
antisymmetric, or neither; and transitive or not, we end up with 18 possible combinations.
However we will not address the cases of little interest where (i) none of these properties are
true, (ii) only reflexivity or irreflexivity is true, (iii) the irreflexive, symmetric and transitive
case as the only consistent possibility is that all facts are false, and (iv) the irreflexive
transitive case that again must be either all false, or antisymmetric—and thus corresponds
to an already existing case—to be consistent. Indeed, if one observes two true facts r(s, o)
and r(o, s), by application of the transitivity rule, r(s, s) and r(o, o) must be true, which
explains the inconsistency of cases (iii) and (iv), as they are irreflexive. This leaves us with
13 cases of interest. To evaluate the ability of models to learn these properties, we generate
random 50× 50 matrices that exhibit each combination.

30

On Inductive Abilities of Latent Factor Models for Relational Learning

Table 3: Different types of binary relations in set theory. From Wikipedia page on binary
relations (Wikipedia, 2004).

To do so, we sample random square sign matrices Y ∈ {−1, 1}Ne×Ne . First we fill the
diagonal with 1, −1 or missing depending on reflexivity/irreflexivity or none. Then we
make successive passes over the data to make it [anti-]symmetric and/or transitive, until
all of the properties are true over the whole matrix. A pass to make a matrix symmetric
consists in assigning yji ← yij for all i, j ∈ 1, . . . , Ne where i < j, and yji ← −yij to make
it antisymmetric. A pass to make a matrix transitive consists in assigning yij ← 1 if there
exists a k ∈ 1, . . . , Ne such that yik = ykj = 1, for all i, j ∈ 1, . . . , Ne. When no more
assignment is made during the passes it means the desired properties are true, and the
relation generation is finished.

We also sample each matrix under the constraint of having a balanced number of positives
and negatives up to ±1% at the end of the generation process, by discarding the ones that
does not satisfy this constraint and re-sampling new ones until they do. Though there are
many more negatives than positives in real knowledge graphs, in practice negatives are
generally subsampled or generated to match the number of positive facts (Bordes et al.,
2013b; Nickel et al., 2016b).

For each sampled matrix, that is, for each combination of the above properties, we first
learn them individually as in a single relation knowledge graph, with 80% of training data.
To assess models robustness to missing data, we then reduce the proportion of the training
set when learning the different relations.

4.2 Results

Results are first reported on each relation, then with decreasing proportion of training data.
We conduct here a 10-fold cross-validation (CV) with 80% training, 10% validation and
10% test, and report the average-precision—the area under the precision-recall curve for
each of the 10 runs—macro-averaged, which means that the 10 scores resulting from the
cross-validation are averaged together to form one point in the following figures. Error bars
show the standard deviation over these 10 runs. When decreasing training data, the training

31

Trouillon, Gaussier, Dance & Bouchard

set percentage varies between 80% (8 folds) and 10% (1 fold), the validation set size is kept
constant at 10%, and the test set contains the remaining folds—between 10% and 80% of
the data.

4.2.1 Experiments with factorization rank

First of all, results were identical for all models whether the relations were reflexive, irreflexive,
or neither (unobserved). This tells us that reflexivity and irreflexivity are not so important
in practice as they do not add or remove any quality in the prediction of latent factor
models. In other words, having either a diagonal full of -1 or full of 1 does not add any
difficulty to the problem for these models. We report only results for different combinations
of symmetry/antisymmetry and transitivity in the main text. Results of combinations
including reflexivity and irreflexivity are reported in Appendix B.

Figure 1 shows the average precision for each model over the generated symmetric and
antisymmetric relations. Surprisingly, on such simple relations with 80% of observed data,
only ComplEx and RESCAL manage to learn from the symmetric and antisymmetric
patterns, with a non-negligible advantage for the ComplEx model.

The CP model probably fails due to its uncorrelated representations of entities as subject
and as objects, which makes it unable to model symmetry and antisymmetry. DistMult

unsurprisingly fails in the non-symmetric cases, due to the symmetric nature of its scoring
function, and thus succeeds in the symmetric case. More unexpectedly, the TransE model
has a hard time on antisymmetry, but performs well on the symmetric relation, by zeroing
its relation embedding, as explained in Section 3.2. The F model, cannot actually generalize
in a single relation case, as it has one single embedding for each (ordered) entity pair. For
any fact r(s, o) in the test set, the entity pair (s, o) has never been seen in the training set,
and thus has a random embedding vector.

Figure 3 shows results for the symmetric transitive and antisymmetric transitive relations,
and Figure 2 for the transitive only relations. Almost all models, except the F model and
DistMult in the non-symmetric cases, perfectly generalize with very low-rank. This tells
us that transitivity yields matrices decomposable with very low ranks, and thus makes the
problem very easy for tensor factorization models. This low-rank reconstruction ability for
transitive patterns is also conditioned to the use of a logistic loss (Equation (1)), as shown
by Bouchard et al. (2015).

Most state-of-the-art latent factor models are surprisingly unable to model all the basic
properties of binary relations when learned in isolation. We next assess the models ability to
learn these five relations with less data by gradually decreasing the size of the training set.

32

On Inductive Abilities of Latent Factor Models for Relational Learning

Figure 1: Generated symmetric (left) and antisymmetric (right) relations with 50 entities.
Average precision and standard deviation (error bar) on 10-fold CV, function of the rank K.

Figure 2: Generated transitive relation with 50 entities. Average precision and standard
deviation (error bar) on 10-fold CV, function of the rank K.

Figure 3: Generated symmetric and transitive (left) and antisymmetric and transitive (right)
relations with 50 entities. Average precision and standard deviation (error bar) on 10-fold
CV, function of the rank K.

33

Trouillon, Gaussier, Dance & Bouchard

4.2.2 Experiments with training set size

Figures 4 to 6 represent the average precision for different proportions of the training set,
ranging from 0.8 to 0.1. In this case, we took the best validated rank for each model to
plot each point. The first point of these curves hence corresponds to the best point in the
preceding figures, for each model.

In Figure 4, ComplEx, TransE and DistMult show the same robustness to missing
data on the symmetric relation, however ComplEx remains the best model in the antisym-
metric case, for all proportions of the training set. As expected the scores drop, but the
gap with the deterministic logic upper-bound does not widen much with the decrease of
training data for models that succeeded in the previous experiment with 80% of training
data, excepted for RESCAL. This suggests that having a matrix representation of relations
makes the model less robust to missing data for symmetric and antisymmetric patterns. CP

and the F model already failed with 80% of training data, and unsurprisingly don’t fare
better with less data.

In Figures 5 and 6 that involve the transitive relations, we can see that all the models
that were able to correctly learn these relations in the first place with 80% of training data
keep doing so down to 20% of training data. RESCAL, ComplEx and TransE succeed
also at 10% of training data, except in the transitive only case where only RESCAL keeps
perfect average precision. This result, combined with the fact that perfect reconstruction
is reached with very low-ranks (Figures 2 and 3), suggests that these three latent factor
models are naturally suited for transitive patterns.

Figure 4: Generated symmetric (left) and antisymmetric (right) relations with 50 entities.
Average precision and standard deviation (error bar) on 10-fold CV for each proportion of
the training set.

34

On Inductive Abilities of Latent Factor Models for Relational Learning

Figure 6: Generated symmetric and transitive (left) and antisymmetric and transitive (right)
relations with 50 entities. Average precision and standard deviation (error bar) on 10-fold
CV for each proportion of the training set.

Figure 5: Generated transitive relation with 50 entities. Average precision and standard
deviation (error bar) on 10-fold CV for each proportion of the training set.

Relation Properties Experiments Summary:

• Only ComplEx manages to learn each combination near perfectly.

• ComplEx is the most robust to missing data for symmetric and antisymmetric
relations.

• RESCAL is the most robust to missing data for transitive relations.

• Models can be improved on symmetric and antisymmetric relations.

• Factorization models are suited for transitive patterns.

35

Trouillon, Gaussier, Dance & Bouchard

Figure 7: Example of a generated family tree.

5. Learning Inter-Relational Patterns: Family Relationships

We generated family trees and their corresponding kinship relations and facts, and designed
three different splits of the data. The three splits try to assess different inductive properties
of the latent models, by giving more or less supporting facts in the training set.

5.1 Experimental Design

Predicting family relationships is an old task in AI, popularised by Hinton’s kinship data
set (Hinton, 1986). Generated synthetic families for testing link-prediction models have
also been recently proposed (Garćıa-Durán et al., 2014). In this public dataset, generated
families are all intertwined with each other in it. We here want each family to be disjoint
from the other ones, such that there is no true fact between entities of two different families,
and we will see why below.

We propose here to generate family relations from synthetic family trees, namely:
mother, father, husband, wife, son, daughter, brother, sister, uncle, aunt, nephew,
niece, cousin, grandfather, grandson, grandmother and granddaughter.

We sample five families independently that span over three generations from a unique
couple, with three children of random sex per couple. Figure 7 shows an example of such
a family tree. The whole data set totals 115 entities—23 persons per family—and the 17
relations mentioned above. Each family thus consists of 8993 true and false facts.

Within these traditional families that feature only married heterosexual couples that do
not divorce and have children, one can figure out that the relations mother, father, son
and daughter are sufficient to deduce the 13 remaining ones. Examples of rules that allow
deducing these 13 relations from the 4 main ones are shown in Table 4. From this fact, we
devise three different splits of the data.

Let us first introduce notations for each subset of the observed facts set Ω. As each
family is independent from the four others, we will denote each entity set of each family from
1 to 5: E1, . . . , E5, where E i ∩ Ej = ∅ with i 6= j. Accordingly, we will write the observed
facts of each family Ω1, . . . ,Ω5, where for all ((r, s, o), yrso) ∈ Ωi we have s, o ∈ E i. Observed
fact sets that contain only the 4 main relations mother, father, son and daughter are

36

On Inductive Abilities of Latent Factor Models for Relational Learning

∀a∀b∀c father(a, c) ∧ mother(b, c)⇒ husband(a, b)

∀a∀b∀c father(a, c) ∧ mother(b, c)⇒ wife(b, a)

∀a∀b∀c daughter(a, c) ∧ son(b, c)⇒ sister(a, b)

∀a∀b∀c daughter(a, c) ∧ son(b, c)⇒ brother(b, a)

∀a∀b∀c father(a, b) ∧ father(b, c)⇒ grandfather(a, c)

∀a∀b∀c son(a, b) ∧ son(b, c)⇒ grandson(a, c)

∀a∀b∀c mother(a, b) ∧ mother(b, c)⇒ grandmother(a, c)

∀a∀b∀c daughter(a, b) ∧ daughter(b, c)⇒ granddaughter(a, c)

∀a∀b∀c∀d son(a, b) ∧ daughter(b, c) ∧ son(d, c)⇒ uncle(d, a)

∀a∀b∀c∀d daughter(a, b) ∧ son(b, c) ∧ daughter(d, c)⇒ aunt(d, a)

∀a∀b∀c∀d son(a, b) ∧ daughter(b, c) ∧ son(d, c)⇒ nephew(a, d)

∀a∀b∀c∀d daughter(a, b) ∧ son(b, c) ∧ daughter(d, c)⇒ niece(a, d)

∀a∀b∀c∀d∀e son(a, b) ∧ daughter(b, c) ∧ son(d, c) ∧ daughter(e, d)⇒ cousin(a, e)

Table 4: Examples of rules to deduce all relations from the four relations: mother, father,
son and daughter.

Figure 8: Tensor representation of the observed subsets for the family experiments. The
part in dark orange represents the sets containing the four relations mother, father, son
and daughter, while the part in light orange represents the 13 other relations.

denoted by Ω4main, and the facts involving the 13 other relations by Ω13other. We thus have
for each family i: Ωi = Ωi

4main ∪Ωi
13other. Figure 8 draws the corresponding tensor with each

subset of the observed facts. Finally, let the sampling function Sp(Ω) be a uniformly random
subset of Ω of size |Sp(Ω)| = ⌈p|Ω|⌉, with 0 ≤ p ≤ 1, p being the proportion of the set that
is randomly sampled.

37

Trouillon, Gaussier, Dance & Bouchard

(a) Random split (b) Evidence split (c) Family split

Figure 9: Tensor representation of the three different splits. Green sets are always contained
in the training set Ωtrain, whereas blue sets are split among training, validation and test sets.

We propose to split the data in three different ways to explore inductive abilities of the
models. The first split is the classical random split between training, validation and test
sets, it will mainly serve as a control experiment for the other splits. In the second split,
we aim at evaluating whether latent factor models are able to leverage on the fact that the
13 other relations are entirely deducible from the 4 main ones. To do so, we ensure that
all the relations mother, father, son and daughter of the five families are in the training
set, and we split the 13 remaining ones between training, validation and test set. Formally:
Ωtrain = Ω4main ∪ Sp(Ω13other). We will call this splitting scheme the evidence split, as the
training set always contains the sufficient evidence to deduce the 13 other relations—that is
the four main ones.

Thirdly, we assess the ability of latent factor models to transfer knowledge learnt from
a family to another, that is between disjoint set of entities. In this split, the training set
always contains all the relations for four out of the five families plus all the mother, father,
son and daughter of the fifth family, while the 13 other relations of this fifth family are split
between training, validation and test set. Formally: Ωtrain = Ω1−4 ∪ Ω5

4main ∪ Sp(Ω5
13other).

We will call it the family split. Figure 9 shows tensor drawings of the three splits.

For each split we explore different values of p ∈ {0.8, 0.4, 0.2, 0.1}. We also run with
p = 0 in the last (family) split, which corresponds to Ωtrain = Ω1−4∪Ω5

4main, that is 4 entirely
observed family, plus the 4 main relations of the fifth one. Observe that it only makes sense
to have p = 0 in this last split. If latent factor models have expected inductive abilities,
they would be able to understand genealogical reasoning from the four first families, and use
this learned information to correctly predict the 13 other relations of the fifth family from
its four main ones. Note that in the last two splits, a deterministic logic inference system
makes perfect predictions—given rules such as the ones shown in Table 4—for any value of
p. The number of facts in the training, validation and test sets of each split are summarized
in Table 5.

38

On Inductive Abilities of Latent Factor Models for Relational Learning

Size with p =
Split Set 0.8 0.4 0.2 0.1 0

Random
Ωtrain = Sp(Ω) 35973 17987 8994 4496 -
Ωvalid = S0.1(Ω) 4496 4496 4496 4496 -
Ωtest = S(0.9−p)(Ω) 4496 22482 31475 35973 -

Evidence
Ωtrain = Ω4main ∪ Sp(Ω13other) 38089 24334 17457 14019 -
Ωvalid = S0.1(Ω13other) 3438 3438 3438 3438 -
Ωtest = S(0.9−p)(Ω13other) 3438 17193 24070 27508 -

Family
Ωtrain = Ω1−4 ∪ Ω5

4main ∪ Sp(Ω5
13other) 43589 40839 39463 38776 38088

Ωvalid = S0.1(Ω5
13other) 688 688 688 688 688

Ωtest = S(0.9−p)(Ω
5
13other) 688 3438 4814 5501 6189

Table 5: Training, validation and test set numbers for each split for each value of p. Sampling
is performed such that training, validation and test sets do not overlap.

Similar splits of data have already been proposed to evaluate rule-based inference models
(for example the UW-CSE dataset (Richardson & Domingos, 2006)), which are able of such
transfer of reasoning between disjoint sets of entities. Interestingly, such data sets have
rarely been reused in the subsequent latent factor model literature. Results reported next
might give us a hint why this is the case.

5.2 Results

Results are reported for each split separately, and in each of them we again decrease
progressively the amount of training data. As conducting a cross-validation is incompatible
with such a way of splitting the data, we run the models 10 times for each configuration
and report average-precision—the area under the precision-recall curve for each of the 10
runs—macro-averaged over these 10 runs, error bars show the standard deviation.

5.2.1 Random Split

In the first random split, we try to evaluate the quantity of training data needed to learn to
reason in genealogies. Figure 10 shows the average precision of each model for ranks ranging
from 5 to 50, for each value of p. Only ComplEx and RESCAL are able to generalize
almost perfectly with 80% of observed data, which first tells us that these models are indeed
capable to learn such genealogical reasonings. As many relations are antisymmetric, it is
no surprise that DistMult and TransE cannot reach perfect predictions, as they already
failed in the antisymmetric synthetic relation.

The ComplEx model generalizes quickly with small ranks, but is outperformed by
RESCAL—with small ranks—and TransE when the percentage of observed data decreases
below p = 0.2. We conjecture that TransE’s robustness is due to its bilinear terms, and
especially the one that involves the subject and the object embeddings—e⊤s eo—as shown in
Section 3.2, that can give high scores to pairs of entities belonging to the same family. For
RESCAL, its richer representations of relations by matrices probably helps here, as long as
the rank is not too large which clearly causes overfitting.

39

Trouillon, Gaussier, Dance & Bouchard

Figure 10: Average precision and standard deviation (error bar) on 10 runs, function of
the rank K, on the families experiment with the random split. Top-left: p = 0.8, top-right:
p = 0.4, bottom-left: p = 0.2, bottom-right: p = 0.1.

The CP decomposition scores drop quickly with the proportion of observed data, because
of its unrelated subject and object representations. The F model here fails again, for a
simple reason: these relations are exclusive between themselves for a given pair of entities
(s, o). Indeed, if father(s, o) is true, for example, then none of the other relations between
s and o will be true—at least not in these families. Hence if the F model has to predict the
score of the fact r(s, o), it has no other true triple involving (s, o) to support its decision. It
will also have trouble on the two next splits for the same reason. Note that in this split, the
logic upper-bound is not given as one would need to know all possible rules to deduce the
17 relations from each of them—and not only from the four main ones—to compute this
upper-bound.

5.2.2 Evidence Split

In this split, we recall that all the mother, father, son and daughter relations are always
in the train set for the 5 families. The value of p ranging from 0.8 to 0.1 corresponds here to
the proportion of the 13 other relations that are also put into the training set. The test and
validation sets are only composed of these 13 relations.

40

On Inductive Abilities of Latent Factor Models for Relational Learning

Figure 11: Average precision and standard deviation (error bar) on 10 runs, function of the
rank K, on the families experiment with the evidence split. Top-left: p = 0.8, top-right:
p = 0.4, bottom-left: p = 0.2, bottom-right: p = 0.1.

Compared to the random split setting, we can see in Figure 11 that the performances
of the models decrease more slowly with the percentage of observed data. This shows that
latent factor models are able to use the information provided by these four relations from
which all of the others can be deduced.

RESCAL is here clearly the best model for all values of p, as long as K is not too
large. It exhibits an unexplained behavior that seems to have two equilibria distributed
around a pivotal K at which average precision suddenly drops, with high variance of the
predictions around that K. ComplEx also seems to show less overfitting with high values
of K when p ≤ 0.2. TransE confirms an advantage with p = 0.1 with a notable rise of
average precision compared to the random split. CP, DistMult and the F model fail again
for the same reasons as in the random split.

However, given the rules to deduce the 13 other relations from the four main ones,
recall that a logical inference engine is able to reach an average precision of one. Though
improvement compared to the random split setup is large, the gap with logical inference is
still wide with p = 0.1 and p = 0.2, showing that latent factor models have trouble making
the link between the four main relations and the 13 other ones when limited training data is
available. This could be due to the imbalance in the number of each relation in the training
set that this split introduces, biasing the entity embeddings towards a better reconstruction

41

Trouillon, Gaussier, Dance & Bouchard

of the 4 main relations, to the detriment of the generalization over the 13 remaining ones.
To assess whether this is the case, we re-ran these experiments by weighting the gradient
steps of each fact. For a given fact (r, s, o), we used the ratio between the number of facts
involving the same relation r in the training set: f(r) =

∑
(r′,s,o)∈Ωtrain

1r=r′ , and the number
of facts involving the relation the most present in the training set: maxr∈R f(r). We then
corrected these weights by up-scaling them, so that they do not create an artificial decrease
of the learning rate. The results obtained are worse than the one presented in Figure 11, on
average 0.1 points of average precision below for all models. This shows that correcting for
relation imbalance does not help the models linking the four main relations to the 13 other
relations.

5.2.3 Family Split

In this last split, all the mother, father, son and daughter are in the train set for all
families, but also all the 13 other relations of four out of the five families. The value of p
corresponds here to the amount of the 13 other relations of the fifth family only that are in
the training set too.

RESCAL is again the best model as it reaches average precisions ≥ 0.9 even down to
p = 0.1—with small ranks again (Figure 12). ComplEx is in these cases the best with high
ranks, though much below RESCAL’s best scores when p = 0.1. The curves in Figure 12
show a clear improvement over the previous ones in Figure 11, and also compared to the
random split (Figure 10). This shows that the models were able to exploit the additional
information of the four perfectly informed families, at least up to some extent as they do
not reach the logic upper-bound with lower values of p.

To better understand why performances are reduced when p is decreased, we reduced
this proportion p of the 13 other relations of the fifth family that are in the training set
to zero—which thus constitute the whole validation and test sets. Although the models
are provided with four perfectly informed families, and all the needed facts to predict the
missing ones in the fifth family, they fail in this last setting as shown in the bottom plot of
Figure 12. RESCAL and TransE resist better than the other models again in this last
setting with p = 0.

This is easily explained, as disconnected sets of entities, here families, correspond to
different blocks in the tensor Y, as shown in Figure 8. Entities that are in different
families s, o ∈ Ωi, s′, o′ ∈ Ωj , i 6= j, are never involved together in an observed fact:
((s, r, o′), ysro′), ((s

′, r, o), ys′ro) /∈ Ω, for any relation r ∈ R. Thus when learning their
embeddings es, eo and es′ , eo′ , the only link they share is the embedding of the relation r
that is involved in the scoring functions φ(r, s, o) and φ(r, s′, o′). This interpretation is also
supported by RESCAL scores, which benefits from its higher number of parameters of its
relation representations Wr ∈ R

K×K , which increases the amount of information shared
across the families.

The models are able to use the information of the perfectly informed families, as long as
they have enough facts in the training set involving the relations that appear in the test
set (the 13 others). This allows to tie the embeddings of the test entities (entities of the
fifth family) to the 13 relation embeddings, and thus allows for generalization. This outlines
the drawback of these models: unless the considered entity embeddings have been observed

42

On Inductive Abilities of Latent Factor Models for Relational Learning

Figure 12: Average precision and standard deviation (error bar) on 10 runs, function of
the rank K, on the families experiment with the family split. Top-left: p = 0.8, top-right:
p = 0.4, middle-left: p = 0.2, middle-right: p = 0.1, bottom: p = 0.0.

with a given relation, there is little chances that test facts involving these entities with
this relation will be correctly predicted, even if all necessary support evidence is available
through facts involving other relations.

43

Trouillon, Gaussier, Dance & Bouchard

Family Experiments Summary:

• RESCAL is the best model in all different splits, but overfits for large K.

• RESCAL and TransE are the most robust to missing data.

• ComplEx behaves well with more data and hardly overfits.

• The absence of explicit parameter sharing between entity representations prevents
knowledge transfer between disjoint sets of entities.

6. Future Research Directions

Overall, the ComplEx model proved to have the more stable generalization abilities across
all the synthetic experiments. Most models showed a good ability to learn basic relation
properties, except on antisymmetry where only ComplEx succeeded. Some models showed
their advantages in some specific settings. RESCAL and TransE showed a good robustness
when a lot of data is missing in the family experiments, thanks to the bilinear terms for
TransE, and the rich matrix relation representations of RESCAL. The F model was not
fit for these experiments, but its pairwise terms are known to give it an advantage for
non-compositional pairs of entities (Welbl et al., 2016).

Different possible combinations seem promising. The behaviour of RESCAL and
ComplEx on symmetric and antisymmetric experiments suggests that encoding these
patterns through complex conjugation is more stable than using the non-commutative matrix
product. But RESCAL’s matrix representations of relations helped a lot in the family
experiments, as long as the rank was not too high, suggesting that there might be a middle
ground between K and K2 to be found for the parametric representation of the relations.
Using tridiagonal or pentadiagonal (or more) symmetric matrices for relation representations
within the ComplEx model could be an answer to these problems.

Combining the scoring functions of the TransE and F models with ComplEx could also
lead to a more robust model. The combination of bilinear and trilinear terms has already
been explored within real-valued models (Garćıa-Durán et al., 2014), also with vectorial
weights over each term (Jenatton et al., 2012), as well as combining different pairwise terms
(Welbl et al., 2016; Singh et al., 2015), which yielded better performance in all cases.

The main defect of latent factor models that this experimental survey points to is their
low ability to transfer knowledge between disjoint set of entities, as shown in the last family
split with p = 0. Real knowledge graphs might not have fully disjoint subsets, but rather
some less-connected sub-graphs, between which this effect is likely to appear too. We believe
improving this ability of latent factor models is key.

One already-pursued way to harness this problem is to enable latent factor models to
make use of logic rules (Rocktäschel et al., 2015; Demeester et al., 2016). As already said,
those rules are not always available, and thus latent factor models should be improved in
order to have this ability to learn from disjoint subsets, while still operating without rules.

Intuitively, sharing parameters across all entity representations could also solve this issue,
as used in Bayesian clustered factorization models (Sutskever, Tenenbaum, & Salakhutdinov,
2009). Although, these models have known scalability issues. A possible, more scalable
way to implement a shared parametrization between the entity embeddings E ∈ C

Ne×K

44

On Inductive Abilities of Latent Factor Models for Relational Learning

is through a nested factorization, where the matrix E is itself expressed as a low-rank
factorization, as it has already been proposed for the relation embeddings (Jenatton et al.,
2012). Another one could be a suited regularization over the whole matrix E: in most
proposals E is regularized row-wise with ||ei||22 for all i ∈ E—as shown in Equation (10).

Another linked limitation of latent factor models—that does not require experiments
to be shown—is their inability to generalize to new entities without retraining. Indeed for
new facts involving a new entity i, its embedding ei ∈ C

K is unknown. But in a logic-based
setting, only the new facts involving the new entity are necessary to infer other facts from
known rules. Some recent works started tackling this problem: Verga, Neelakantan, and
McCallum (2017) proposed a solution for the F model, by expressing entity pair embeddings
as combinations of the relation embeddings in which they appear. Hamaguchi, Oiwa, Shimbo,
and Matsumoto (2017) used graph neural networks to handle unseen entities at test time.

A non-mentioned aspect of the problem in this paper is the theoretical learnability of such
logic formulas, a field that has been extensively covered (Valiant, 1984; Kearns & Valiant,
1994; Muggleton & De Raedt, 1994; Dzeroski & Lavrac, 1994). However logic learnability
by latent factor models has not yet been specifically studied. Recently established links
between sign-matrices complexity—specifically the sign-rank (Linial, Mendelson, Schechtman,
& Shraibman, 2007)—and VC-dimension open the door to such theoretical study (Alon,
Moran, & Yehudayoff, 2016), and possible extensions to the tensor case. This being said,
theoretical guarantees generally come under the condition that the training and test sets
are drawn from the same distribution, which is not the case in the last two splits of the
family experiments: a theoretical analysis of the learnability of such cases might require a
new theoretical framework for statistical learning.

7. Conclusion

We experimentally surveyed state-of-the-art latent factor models for link prediction in
knowledge graphs, in order to assess their ability to learn (i) binary relation properties,
and (ii) genealogical relations, directly from observed facts, as well as their robustness to
missing data. Latent factor models yield good performances in the first case, while having
more difficulties in the second one. Specifically, we show that such models do not reason
as it is generally meant for logical inference engines, as they are unable to transfer their
predictive abilities between disjoint subsets of entities. The different behaviors of the models
in each experimental setup suggest possible enhancements and research directions, including
combining them, as well as it exposes each model’s advantages and limitations.

Acknowledgments

This work was supported in part by the Association Nationale de la Recherche et de la
Technologie through the CIFRE grant 2014/0121.

45

Trouillon, Gaussier, Dance & Bouchard

Appendix A. Learning Algorithm

Algorithm 1 describes the stochastic gradient descent algorithm used to learn the evaluated
models, with the AdaGrad learning-rate updates (Duchi et al., 2011). The parameters are
initialized from a zero-mean normal distribution with unit variance. Squared gradients
are accumulated to compute AdaGrad learning rates, then gradients are updated. Every
s iterations, the parameters Θ are evaluated over the evaluation set Ωv, through the
evaluate AP(Ωv; Θ) function. The optimization process is stopped when average precision
decreases compared to the last evaluation (early stopping). The sample batch of size b(Ω, b)
function sample uniformly b true and false triples uniformly at random from the training set
Ω.

Algorithm 1 Stochastic gradient descent with AdaGrad

Input Training set Ω, validation set Ωv, learning rate α ∈ R++, rank K ∈ N
∗, L2 regu-

larization factor λ ∈ R+, batch size b ∈ N
∗, maximum iteration m ∈ N

∗, validate every
s ∈ N

∗ iterations, AdaGrad regularizer ǫ = 10−8.
Output Trained embeddings Θ.

Θi ∼ N (0k, Ik×k) for each i ∈ E
Θr ∼ N (0k, Ik×k) for each r ∈ R
gΘi
← 0k for each i ∈ E

gΘr
← 0k for each r ∈ R

previous score← 0
for i = 1, . . . ,m do
for j = 1, . . . , |Ω|/b do

Ωb ← sample batch of size b(Ω, b)
for ((r, s, o), yrso) in Ωb do

for v in Θ do
// AdaGrad updates:
gv ← gv + (∇vL({((r, s, o), yrso)}; Θ))2

// Gradient updates:
v ← v − α

gv+ǫ
∇vL({((r, s, o), yrso)}; Θ)

end for
end for

end for
// Early stopping
if i mod s = 0 then

current score← evaluate AP(Ωv; Θ)
if current score ≤ previous score then
break

end if
previous score← current score

end if
end for
return Θ

46

On Inductive Abilities of Latent Factor Models for Relational Learning

Appendix B. Results with Reflexivity and Irreflexivity

In this appendix we report results of the individual learning of combinations of relation prop-
erties including reflexivity and irreflexivity. Those results are included for completeness as
they are similar to the cases that are neither reflexive nor irreflexive, reported in Section 4.2.1.
Figure 14 shows results for the 5 combinations with reflexivity, and Figure 13 for the 3
combinations with irreflexivity. The irreflexive transitive case, and the irreflexive symmetric
transitive case are not reported as they are not consistent, as explained in Section 4.1. The
single noticeable difference is in the symmetric irreflexive case, where all models perform
slightly worse compared to the symmetric and symmetric reflexive cases, especially TransE.

Figure 13: Generated irreflexive relations with 50 entities, combined with symmetry (top-left),
antisymmetry (top-right) and antisymmetry and transitivity (bottom). Average precision
and standard deviation (error bar) on 10-fold CV, function of the rank K.

47

Trouillon, Gaussier, Dance & Bouchard

Figure 14: Generated reflexive relations with 50 entities, combined with symmetry (top-left),
antisymmetry (top-right), transitivity (middle), symmetry and transitivity (bottom-left) and
antisymmetry and transitivity (bottom-right). Average precision and standard deviation
(error bar) on 10-fold CV, function of the rank K.

References

Aaronson, S. (2013). Why philosophers should care about computational complexity. In
B. J. Copeland, C. P., & Shagrir, O. (Eds.), Computability: Turing, Gödel, Church,

and Beyond, pp. 261–328. MIT Press.

Alon, N., Moran, S., & Yehudayoff, A. (2016). Sign rank versus vc dimension. In Conference

48

On Inductive Abilities of Latent Factor Models for Relational Learning

on Learning Theory, pp. 47–80.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., & Ives, Z. (2007). DBpedia: A nucleus for
a web of open data. In International Semantic Web Conference, Busan, Korea, pp.
11–15. Springer.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: a collabora-
tively created graph database for structuring human knowledge. In ACM SIGMOD

International Conference on Management of Data, pp. 1247–1250.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013a). Irreflexive
and hierarchical relations as translations. arXiv preprint arXiv:1304.7158.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013b). Translating
embeddings for modeling multi-relational data. In Advances in Neural Information

Processing Systems, pp. 2787–2795.

Bordes, A., Weston, J., Collobert, R., & Bengio, Y. (2011). Learning structured embeddings
of knowledge bases. In AAAI Conference on Artificial Intelligence.

Bottou, L. (2014). From machine learning to machine reasoning. Machine Learning, 94 (2),
133–149.

Bouchard, G., Singh, S., & Trouillon, T. (2015). On approximate reasoning capabilities of
low-rank vector spaces. AAAI Spring Symposium on Knowledge Representation and

Reasoning: Integrating Symbolic and Neural Approaches.

Bowman, S. R., Potts, C., & Manning, C. D. (2015). Recursive neural networks can learn
logical semantics. In ACL Workshop on Continuous Vector Space Models and their

Compositionality.

Cardano, G. (1545). Artis Magnæ, Sive de Regulis Algebraicis Liber Unus.

Caroll, J. D., & Chang, J.-J. (1970). Analysis of individual differences in multidimensional
scaling via n-way generalization of Eckart–Young decomposition. Psychometrika, 35,
283–319.

Cyganiak, R., Wood, D., & Lanthaler, M. (2014). RDF 1.1 concepts and abstract syntax.
W3C Recommendation.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a knowledge representation?. AI

magazine, 14 (1), 17–33.

Demeester, T., Rocktäschel, T., & Riedel, S. (2016). Lifted rule injection for relation
embeddings. In Empirical Methods in Natural Language Processing, pp. 1389–1399.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S.,
& Zhang, W. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge
fusion. In ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 601–610.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

Dzeroski, S., & Lavrac, N. (1994). Inductive logic programming: techniques and applications.
Ellis Horwood, New York.

49

Trouillon, Gaussier, Dance & Bouchard

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational
models. In International Joint Conference on Artificial Intelligence, Vol. 99, pp.
1300–1309.

Galárraga, L., Teflioudi, C., Hose, K., & Suchanek, F. M. (2015). Fast rule mining in
ontological knowledge bases with amie+. The VLDB Journal, 24 (6), 707–730.

Garćıa-Durán, A., Bordes, A., & Usunier, N. (2014). Effective blending of two and three-way
interactions for modeling multi-relational data. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pp. 434–449. Springer.

Garcia-Duran, A., Bordes, A., Usunier, N., & Grandvalet, Y. (2016). Combining two
and three-way embedding models for link prediction in knowledge bases. Journal of
Artificial Intelligence Research, 55, 715–742.

Getoor, L., & Taskar, B. (2007). Introduction to Statistical Relational Learning. MIT Press.

Grefenstette, E. (2013). Towards a formal distributional semantics: Simulating logical calculi
with tensors. In Joint Conference on Lexical and Computational Semantics.

Halmos, P. R. (1998). Naive set theory. Springer Science & Business Media.

Hamaguchi, T., Oiwa, H., Shimbo, M., & Matsumoto, Y. (2017). Knowledge transfer for
out-of-knowledge-base entities: A graph neural network approach. arXiv preprint

arXiv:1706.05674.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: models and conditions
for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics,
16, 1–84.

Hayashi, K., & Shimbo, M. (2017). On the equivalence of holographic and complex embed-
dings for link prediction. arXiv preprint arXiv:1702.05563.

Heckerman, D., Meek, C., & Koller, D. (2007). Probabilistic entity-relationship models,
prms, and plate models. Introduction to statistical relational learning, 201–238.

Hinton, G. E. (1986). Learning distributed representation of concepts. In Conference of the

Cognitive Science Society.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematical Physics, 6 (1), 164–189.

Jenatton, R., Bordes, A., Le Roux, N., & Obozinski, G. (2012). A latent factor model for
highly multi-relational data. In Advances in Neural Information Processing Systems,
pp. 3167–3175.

Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM, 41 (1), 67–95.

Kersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with
bayesian networks. In International Conference on Inductive Logic Programming, pp.
118–131.

Kolda, T. G., & Bader, B. W. (2009). Tensor Decompositions and Applications. SIAM

Review, 51 (3), 455–500.

50

On Inductive Abilities of Latent Factor Models for Relational Learning

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collaborative
filtering model. In ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 426–434.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42 (8), 30–37.

Lewis, M., & Steedman, M. (2013). Combining distributional and logical semantics. Trans-
actions of the Association for Computational Linguistics, 1, 179–192.

Linial, N., Mendelson, S., Schechtman, G., & Shraibman, A. (2007). Complexity measures
of sign matrices. Combinatorica, 27 (4), 439–463.

Lisi, F. A. (2010). Inductive logic programming in databases: From datalog to. Theory and

Practice of Logic Programming, 10 (3), 331–359.

Ma, Y., Crook, P. A., Sarikaya, R., & Fosler-Lussier, E. (2015). Knowledge graph inference
for spoken dialog systems. In IEEE International Conference on Acoustics, Speech

and Signal Processing, pp. 5346–5350.

Minervini, P., Demeester, T., Rocktäschel, T., & Riedel, S. (2017). Adversarial sets for regu-
larising neural link predictors. In Conference on Uncertainty in Artificial Intelligence.

Muggleton, S. (1995). Inverse entailment and progol. New generation computing, 13 (3-4),
245–286.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.
The Journal of Logic Programming, 19, 629–679.

Ngo, L., & Haddawy, P. (1997). Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171 (1), 147–177.

Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. (2016a). A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104 (1), 11–33.

Nickel, M., Rosasco, L., & Poggio, T. A. (2016b). Holographic embeddings of knowledge
graphs. In AAAI Conference on Artificial Intelligence, pp. 1955–1961.

Nickel, M., & Tresp, V. (2013). Logistic tensor factorization for multi-relational data. arXiv
preprint arXiv:1306.2084.

Nickel, M., Tresp, V., & Kriegel, H. P. (2011). A three-way model for collective learning on
multi-relational data. In International Conference on Machine Learning, pp. 809–816.

Popper, K. (1934). Logik der Forschung. Mohr Siebeck.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62 (1-2),
107–136.

Riedel, S., Yao, L., McCallum, A., & Marlin, B. M. (2013). Relation extraction with matrix
factorization and universal schemas. In North American Chapter of the Association of

Computational Linguistics: Human Language Technologies, pp. 74–84.

Rocktäschel, T., Singh, S., & Riedel, S. (2015). Injecting logical background knowledge into
embeddings for relation extraction. In North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pp. 1119–1129.

51

Trouillon, Gaussier, Dance & Bouchard

Rocktäschel, T., Bosnjak, M., Singh, S., & Riedel, S. (2014). Low-dimensional embeddings
of logic. In Workshop on semantic parsing at ACL.

Rocktäschel, T., & Riedel, S. (2016). Learning knowledge base inference with neural theorem
provers. Workshop on Automated Knowledge Base Construction at NAACL-HLT,
45–50.

Singh, S., Rocktäschel, T., & Riedel, S. (2015). Towards combined matrix and tensor
factorization for universal schema relation extraction. In Workshop on Vector Space

Modeling for Natural Language Processing at NAACL-HLT, pp. 135–142.

Smolensky, P., Lee, M., He, X., Yih, W.-t., Gao, J., & Deng, L. (2016). Basic reasoning with
tensor product representations. arXiv preprint arXiv:1601.02745.

Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor
networks for knowledge base completion. In Advances in Neural Information Processing

Systems, pp. 926–934.

Sutskever, I., Tenenbaum, J. B., & Salakhutdinov, R. R. (2009). Modelling relational
data using bayesian clustered tensor factorization. In Advances in neural information

processing systems, pp. 1821–1828.

Trouillon, T., Dance, C. R., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2017).
Knowledge graph completion via complex tensor factorization. Journal of Machine

Learning Research, 18 (130), 1–38.

Trouillon, T., & Nickel, M. (2017). Complex and holographic embeddings of knowledge
graphs: a comparison. International Workshop on Statistical Relational AI.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., & Bouchard, G. (2016). Complex embeddings
for simple link prediction. In International Conference on Machine Learning, Vol. 48,
pp. 2071–2080.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27 (11),
1134–1142.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag New York,
Inc.

Verga, P., Neelakantan, A., & McCallum, A. (2017). Generalizing to unseen entities and
entity pairs with row-less universal schema. In European Chapter of the Association

of Computational Linguistics.

Wang, W. Y., & Cohen, W. W. (2016). Learning first-order logic embeddings via matrix
factorization. In International Joint Conference on Artificial Intelligence, pp. 2132–
2138.

Welbl, J., Bouchard, G., & Riedel, S. (2016). A factorization machine framework for
testing bigram embeddings in knowledge base completion. In Workshop on Automated

Knowledge Base Construction at NAACL-HLT, pp. 103–107.

Wellman, M. P., Breese, J. S., & Goldman, R. P. (1992). From knowledge bases to decision
models. The Knowledge Engineering Review, 7 (01), 35–53.

52

On Inductive Abilities of Latent Factor Models for Relational Learning

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., & Mikolov,
T. (2015). Towards AI-complete question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Wikipedia (2004). Binary relation — Wikipedia, the free encyclopedia.. https://en.

wikipedia.org/wiki/Binary_relation.

Yang, B., Yih, W.-t., He, X., Gao, J., & Deng, L. (2015). Embedding entities and relations
for learning and inference in knowledge bases. In International Conference on Learning

Representations.

53

