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The paper considers the problem of active fault diagnosis for discrete-time stochastic systems over an infinite time horizon.
It is assumed that the switching between a fault-free and finitely many faulty conditions can be modelled by a finite-state
Markov chain and the continuous dynamics of the observed system can be described for the fault-free and each faulty
condition by non-linear non-Gaussian models with a fully observed continuous state. The design of an optimal active fault
detector that generates decisions and inputs improving the quality of detection is formulated as a dynamic optimization
problem. As the optimal solution obtained by dynamic programming requires solving the Bellman functional equation,
approximate techniques are employed to obtain a suboptimal active fault detector.
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1. Introduction

The detection and diagnosis of abrupt faults in
the dynamics of a system play a vital role in
many applications, as timely and reliable decisions
help to reduce financial costs and avoid hazardous
situations (Isermann, 2006).

Most approaches to fault detector design can be
called passive because they lead to fault detectors
that passively process observed data and generate
decisions (Basseville and Nikiforov, 1993; Puig, 2010).
Although passive fault detectors deliver a satisfactory
quality of detection in many cases, they may fail
to provide timely and reliable decisions when the
observed data are not informative enough (Campbell
and Nikoukhah, 2004). To deal with such situations,
gradual use of ideas from optimum experimental
designs (Kiefer, 1959; Atkinson and Donev, 1992),
parameter estimation (Mehra, 1974; Goodwin and Payne,
1977), and control (Nett, 1986) in the area of fault
detection has resulted in an active approach to fault
detector design.

An active fault detector generates a decision and
an input signal that is injected into the system in
order to improve the quality of detection. Such a
problem was addressed first for stochastic models (Zhang,
1989; Kerestecioğlu, 1993) and later on for deterministic

uncertain models (Scola et al., 2003; Campbell and
Nikoukhah, 2004; Andjelkovic et al., 2008; Niemann,
2012; Ashari et al., 2012a; Scott et al., 2013).
The input signal designed to improve the quality of
detection can be inconvenient from a control perspective.
Therefore, integrated active fault detection and control for
deterministic uncertain models (Niemann, 2006; Poulsen
and Niemann, 2008; Ashari et al., 2012b) and stochastic
models (Blackmore et al., 2008) was studied.

A unified formulation of active fault detection and
control for stochastic systems over a finite time horizon
was introduced by Šimandl and Punčochář (2009). As
the optimal solution based on the closed-loop information
processing strategy (Bar-Shalom, 1981) poses a complex
functional problem, approximation techniques were used
to obtain suboptimal solutions for several special cases of
the unified formulation (Šimandl et al., 2005; Široký et al.,
2011). However, these approximation techniques are
suitable only for linear systems or suffer from substantial
on-line computational demands.

Another point is that active fault detection is usually
considered over a finite test period during which a
specially designed input signal is injected into the system
to reveal a potential fault (Campbell and Nikoukhah,
2004; Šimandl et al., 2005; Blackmore et al., 2008).
However, if the system is operated continuously, the
length of the test period and the time when the test period
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starts need to be determined using a heuristic rule or
through another optimization. One way to completely
circumvent this issue is to perform active fault detection
continuously while ensuring that it does not have a
detrimental impact on control or other aims.

This paper presents active fault diagnosis for a class
of non-linear non-Gaussian systems that allow active fault
diagnosis to be performed continuously over an infinite
time horizon. The goal is to formulate the design of the
active fault detector as a dynamic optimization problem
over an infinite time horizon with a discounted criterion
and provide a solution procedure based on approximate
dynamic programming.

The paper is organized as follows. The active
fault detection problem over an infinite time horizon is
formulated in Section 2. The design of the approximate
active fault detector is discussed in Section 3. First,
the original problem is reformulated in Section 3.1 using
a hyper-state as a perfect state information problem.
Then, the optimal solution based on solving the Bellman
functional equation is provided in Section 3.2 and
the approximate solution is discussed in Section 3.3.
The proposed approximate active fault detector is
demonstrated in a numerical example in Section 4.
Concluding remarks are given in Section 5.

2. Problem formulation

The block diagram of active fault detection and diagnosis
is depicted in Fig. 1. It consists of a given system and
an active fault detector that are described in the following
subsections.

2.1. System. The problem of active fault detection is
considered on an infinite time horizon for a system that
can be described at each time step k ∈ T = {0, 1, 2, . . .}
by the following discrete-time non-linear model:

xk+1 = f (xk, μk,uk) + wk, (1)

where xk ∈ R
nx is a known continuous-valued vector

and μk ∈ M = {1, 2, . . . , N} is an unknown
discrete-valued scalar. Taken together, xk and μk

represent the hybrid state xa
k = [xT

k, μk]T ∈ X �
R

nx × M of the system. The input uk ∈ U ⊂ R
nu

can attain only values from a discrete set of admissible
inputs U = {ū1, ū2, . . . , ūM}. The additive white state

Fig. 1. Block diagram of active fault detection and diagnosis.

noise wk ∈ R
nx has a known conditional probability

density function (pdf) pw(wk|xa
k). It is assumed that

the state noise wk has the whole R
nx as its support,

and the conditional mean value mw(xa
k) and covariance

matrix Pw(xa
k) are well defined for all hybrid states xa

k ∈
X . The variable μk is the index of the model in effect
during the k-th sampling period, and the known non-linear
vector function f : X × U �→ R

nx has the following
structure:

f(xk, μk,uk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(xk,uk) if μk = 1,

f2(xk,uk) if μk = 2,
...

fN (xk,uk) if μk = N,

(2)

where fi : R
nx ×U �→ R

nx is a given non-linear function
that represents the behaviour of the system under the
fault-free condition for i = 1 and under faulty conditions
for 1 < i ≤ N . The switching between fault-free and
faulty conditions is assumed to be random and described
by a stationary finite-state Markov chain with known
transition probabilities Pi,j = P (μk+1 = j|μk = i).
Finally, the initial conditions x0 and μ0 are mutually
independent and have a given pdf p(x0) and a discrete
probability distribution P (μ0), respectively.

2.2. Active fault detector. The active fault detector
that generates decisions about faults and inputs can
generally be described by a causal relation of the form

[
dk

uk

]

= ρk

(
Ik
0

)
, (3)

where Ik
0 = [xk

0 ,uk−1
0 ] is an information vector

containing the data received up to the time step k and ρk :
R

nx(k+1)×Uk �→ M×U is an unknown non-linear vector
function that represents the active fault detector. Since the
decision dk ∈ M can be interpreted as a point estimate
of μk, it provides both fault detection and fault diagnosis
information. The notation xj

i = [xT
i ,xT

i+1, . . . ,x
T
j ]T is

used to denote a sequence of variables from the time
step i through the time step j. The sequence ρp =
{ρ0, ρ1, . . .} of functions ρk is called the policy and
needs to be determined such that a chosen design criterion
representing the performance of the active fault detector is
optimized.

2.3. Design criterion. The performance of the active
fault detector is assessed using the following additive
discounted criterion:

J(ρp) = lim
F→∞E

{
F∑

k=0

λkLd(μk, dk)

}

, (4)
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where λ ∈ (0, 1) is a discount factor per sampling
period, Ld : M × M �→ R

+ is a detection cost
function that penalizes the discrepancy between the
decision dk and the actual model μk, R

+ denotes the set
of non-negative real numbers, and E{·} is the expectation
operator over all included random variables.

To ensure that the criterion (4) is finite for every
policy ρp, the detection cost function Ld is assumed to
be bounded,

Ld
min ≤ Ld(μk, dk) ≤ Ld

max, (5)

where Ld
min = minμk,dk

Ld(μk, dk) ≥ 0 and Ld
max =

maxμk,dk
Ld(μk, dk) < ∞ are finite lower and upper

bounds on the detection cost function, respectively.
Moreover, for the design criterion to be meaningful,
the detection cost function should penalize the correct
decision less than incorrect ones. Thus, it is assumed that
for each μk ∈ M the detection cost function satisfies

Ld(μk, μk) < Ld(μk, dk), dk ∈M, dk 	= μk. (6)

This means that for a given μk ∈ M the detection cost
function Ld attains a unique minimum at dk = μk. Note
that for a given decision dk the minimum of the detection
cost function does not need to be at μk = dk as there is
neither theoretical nor practical reason for making such
an assumption. Using the lower and upper bounds on the
detection cost function, it is possible to derive the lower
and upper bounds on the value of the criterion (4) under
any admissible policy ρp as

Ld
min

1− λ
≤ J(ρp) ≤ Ld

max

1− λ
. (7)

The goal is to determine the optimal policy ρp∗ that
minimizes the criterion (4),

J∗ = J(ρp∗) = inf
ρp

J(ρp). (8)

The discount factor λ can be interpreted in two
different ways. First, it can be understood as a
tuning parameter that makes the criterion well defined
and allows more emphasis to be put on immediate
decisions. Another interpretation that is common in
investment problems (Denardo, 2003) can be provided,
when the detection cost function Ld(μk, dk) represents
financial costs connected with fault detection (costs
of maintenance, missed detection, false alarm, etc.).
Assuming that money spent during fault detection could
otherwise be invested with a per sampling period interest
rate r > 0, the overall expected costs of the fault detection
over a finite time horizon F can be expressed as

J̄(F ) = E

{
F∑

k=0

(1 + r)F−kLd(μk, dk)

}

. (9)

Since the interest rate r is positive, the overall expected
costs would approach infinity for the infinite horizon F .
Nevertheless, by factoring out the term (1 + r)F , the
detection costs can be rewritten as

J̄(F ) = (1 + r)F E

{
F∑

k=0

λkLd(μk, dk)

}

, (10)

where λ = 1/(1 + r). Therefore, the criterion

J(ρp) = lim
F→∞

J̄(F )
(1 + r)F

(11)

can be regarded as the overall costs of fault detection
expressed at time step 0.

3. Design of an approximate active fault
detector

The design of the active fault detector as formulated in the
previous section is a dynamic optimization problem that
does not permit analytical solution and is computationally
intractable. Therefore, an approximate active fault
detector is designed in the following three steps:

Step 1. The original problem formulation falls
into the class of imperfect state information
problems (Bertsekas, 1995). In order to use a
standard form of dynamic programming, the
original problem is first reformulated as a perfect
state information one by introducing a new
state, called the hyper-state or the information
state (Åström, 1965).

Step 2. The optimal active fault detector is derived as
a solution to the Bellman functional equation that
corresponds to the reformulated problem obtained in
the previous step.

Step 3. The approximate active fault detector is obtained
by solving the Bellman functional equation
numerically. The numerical solution uses the
piecewise constant approximation of the value
function, and the value function iteration algorithm
is performed over sample points in the hyper-state
space.

3.1. Problem reformulation. The original problem
presented in Section 2 is reformulated as a perfect
state information problem by introducing a directly
observed hyper-state sk that is a function of the
information vector Ik

0 and represents a sufficient statistic
for the problem considered. As the continuous-valued
variable xk is already observed directly, only a sufficient
statistic for μk is required. One of the possible
sufficient statistics is represented by the conditional
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probability distribution P (μk|Ik
0) denoted as the belief

state (Bertsekas, 1995; Åström, 1965). As the conditional
probabilities add up to one, the belief state reduced by one
dimension is used,

bk =

⎡

⎢
⎢
⎢
⎣

bk,1

bk,2

...
bk,N−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

P (μk = 1|xk
0 ,u

k−1
0 )

P (μk = 2|xk
0 ,u

k−1
0 )

...
P (μk = N − 1|xk

0 ,uk−1
0 )

⎤

⎥
⎥
⎥
⎦

, (12)

where bk ∈ B = {b ∈ R
N−1 : b ≥ 0,1Tb ≤ 1} is the

vector of conditional probabilities, 0T = [0, 0, . . . , 0] ∈
R

N−1 is the zero vector, 1T = [1, 1, . . . , 1] ∈ R
N−1

denotes the vector of ones, and the inequalities are
component-wise.

The hyper-state sk consists of xk and bk,

sk =
[
xk

bk

]

∈ S = (Rnx × B) ⊂ R
ns , (13)

and the original model (1) can be replaced by a new
model,

sk+1 = φ(sk,uk,xk+1), (14)

where φ : S × U × R
nx �→ S is a vector non-linear

function and xk+1 can be regarded as a disturbance with
the conditional pdf p(xk+1|sk,uk) = p(xk+1|xk

0 ,uk
0).

It follows from the definition of the hyper-state that
the non-linear function φ has the following structure:

φ(sk,uk,xk+1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

xk+1

φb
1(sk,uk,xk+1)

φb
2(sk,uk,xk+1)

...
φb

N−1(sk,uk,xk+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (15)

where φb
i : S × U × R

nx �→ [0, 1] is a function
that represents the optimal recursive estimator of the
conditional probability of the i-th model. These functions
are given by the following recursive relations:

φb
i (sk,uk,xk+1) =

N∑

j=1

P (μk+1 = i|μk = j)

× P
(
μk = j|xk+1

0 ,uk
0

)
, (16)

where the conditional probability P
(
μk = j|xk+1

0 ,uk
0

)
is

computed as

P
(
μk = j|xk+1

0 ,uk
0

)

=
p

(
xk+1|xk

0 ,uk
0 , μk = j

)
P (μk = j|xk

0 ,uk−1
0 )

p
(
xk+1|xk

0 ,uk
0

) .

(17)

The conditional pdf p
(
xk+1|xk

0 ,uk
0

)
is given as

p
(
xk+1|xk

0 ,uk
0

)
=

N∑

i=1

p
(
xk+1|xk

0 ,uk
0 , μk = i

)

× P
(
μk = i|xk

0 ,uk−1
0

)
, (18)

and the likelihood function p(xk+1|xk
0 ,uk

0 , μk = j) is

p
(
xk+1|xk

0 ,uk
0 , μk = j

)

= pw (xk+1 − fj(xk,uk)|xk, μk = j) . (19)

Finally, the initial state s0 is given by the directly
observed x0 and the probabilities P (μ0 = j) for j =
1, . . . , N − 1. The obtained model is a perfect state
information model because the hyper-state sk is known
at each time step k.

As the hyper-state sk is a sufficient statistic, which
summarizes all relevant information contained in the
information vector Ik

0 , the active fault detector (3) and the
design criterion (4) can be updated as follows. Instead of
the time-varying active fault detector (3), it is sufficient to
consider only a stationary active fault detector of the form

[
dk

uk

]

= ρ(sk), (20)

where ρ : S �→ M× U is an unknown stationary policy.
Using a similar reasoning, the original design criterion (4)
can be replaced by the following equivalent criterion:

J̄(ρ, s0) = lim
F→∞E

{
F∑

k=0

λkL̄d(sk, dk)|s0

}

, (21)

where E{·|·} represents the conditional expectation
operator and L̄d : S × M �→ R

+ is an equivalent
detection cost function derived from the detection cost
function Ld(μk, dk) as

L̄d(sk, dk) = E{Ld(μk, dk)|xk
0 ,uk−1

0 , dk}. (22)

As the conditional probabilities P (μk = j|xk
0 ,uk−1

0 , dk)
are the belief states contained in the hyper-state sk, the
equivalent detection cost function is easy to evaluate for a
given hyper-state and decision.

A relation to the original design criterion (4) can be
established in the following way. By substituting (22)
into (21) and applying the chain rule, (21) can be rewritten
as

J̄(ρ, s0) = lim
F→∞E

{
F∑

k=0

λkLd(μk, dk)|s0

}

. (23)

Using the Weierstrass theorem, it can be shown that the
series in (23) converges uniformly on S. Thus, the
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interchange of the expectation and limit operators can be
done and provides the following relation:

E
{
J̄(ρ, s0)

}
= J(ρ). (24)

Hence, the optimal active fault detector that minimizes the
equivalent criterion (21) for every s0 ∈ S also minimizes
the original criterion (4). For more details on problem
reformulation using sufficient statistics, see, e.g., the work
of Bertsekas (1995).

3.2. Optimal active fault detector. The design of
an optimal active fault detector is based on solving a
functional equation (Puterman, 2005; Buşoniu et al.,
2010). Let us define a value function V ρ(sk) that
represents the value of the design criterion (21) when
starting at the state sk and following the stationary
policy ρ. The optimal value function V ∗(sk) = V ρ∗

(sk)
has to satisfy the following Bellman functional equation
for each state sk ∈ S:

V ∗(sk)

= min
dk∈M
uk∈U

E
{
L̄d(sk, dk) + λV ∗(sk+1)|sk,uk, dk

}
,

(25)

where V ∗ : S �→ R is the optimal value function. As the
equivalent detection cost function L̄d does not depend on
the input uk and the conditional expectation of the optimal
value function V ∗ does not depend on the decision dk, the
functional equation (25) can be rewritten as

V ∗(sk) = min
dk∈ME

{
L̄d(sk, dk)|sk, dk

}

+ λ min
uk∈U E {V ∗(sk+1)|sk,uk} . (26)

This form of the functional equation shows that the
optimal decision d∗k and the optimal input signal u∗

k are
given as

d∗k = σ∗(sk) = arg min
dk∈M

L̄d(sk, dk), (27)

u∗
k = γ∗(sk) = arg min

uk∈U E {V ∗(sk+1)|sk,uk} , (28)

where σ∗ : S �→ M and γ∗ : S �→ U are parts of
the optimal stationary policy ρ∗ that describe the optimal
fault detector and the optimal input signal generator,
respectively.

It is obvious from (27) that the optimal decision d∗k
minimizes only the immediate expected detection cost
resulting from that particular decision. Therefore, the
optimal fault detector can be obtained without solving the
functional equation (26). On the other hand, the optimal
input u∗

k minimizes the discounted sum of the future
expected detection costs incurred from the time step k +1
through infinity encoded in the optimal value function V ∗.

Since the functional equation (26) is independent of the
actual measurements, it can be advantageously solved
off-line to obtain the optimal value function V ∗ and thus,
in turn, the optimal input signal generator. The optimal
active fault detector represented by (27) and (28) can be
used on-line to generate the optimal decision and input
signal based on the hyper-state sk that is recursively
computed on-line as well.

To compute the optimal input signal from the
optimal value function in (28), the conditional expectation
E{V ∗(sk+1)|sk,uk} needs to be evaluated on-line. In
order to reduce on-line computation requirements, the
conditional expectation can be evaluated off-line. Then
the on-line computation of the optimal input signal
consists in a simple enumerative optimization problem
over all admissible inputs.

3.3. Approximate active fault detector. Note that the
functional equation (26) is highly non-linear due to the
minimization operator over all admissible input values
and does not permit an analytical solution. A numerical
solution relies on the value iteration, policy iteration, or
the policy search algorithm (Buşoniu et al., 2010; Powell,
2007; Bertsekas, 1995). In this paper, the value iteration
algorithm and a finite-dimensional approximation of the
value function are used to find an approximate solution
to the functional equation numerically. To this end,
sample points in the hyper-state space are chosen, and
the value function is approximated on a relevant part of
the hyper-state space using a piecewise constant function
approximator (Buşoniu et al., 2010). The sample points
can be chosen based on the a-priori information to form a
grid in the hyper-state space (Denardo, 2003), or they are
chosen rather randomly by simulating the system under
conditions that are believed to be representative (Powell,
2007; Lee et al., 2006).

3.3.1. Grid and aggregation function design. Grid
design techniques originally proposed for the point-mass
estimation method (Šimandl et al., 2006) could be adapted
to design an optimized grid. For brevity and simplicity of
presentation, a grid of sample points designed using the a
priori information about the system and expert knowledge
is considered in this paper. The non-grid points of the
hyper-state space are mapped to the grid points using an
aggregation function.

The grid points over the space of the reduced belief
states bk are designed considering the individual elements
of bk to be probabilities with values between zero and
one. The grid points over the space of the variable xk

must take into account the dynamics of the individual
models, values of admissible inputs and properties of the
state noise.

Let us assume that the discrete sets Sg
i representing
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quantization levels in the i-th dimension of the
hyper-state sk were chosen. Then, the grid of sample
points is represented by the set Sg defined by the Cartesian
product

Sg � Sg
1 × S

g
2 × . . .× Sg

ns
= {s̄i}Ng

i=1, (29)

where s̄i ∈ R
ns is a grid point and Ng =

|Sg
1 ||S

g
2 | . . . |Sg

ns
| denotes the total number of the grid

points. As the total number of the grid points grows
exponentially with the dimension of the hyper-state space,
this approach is suited only to problems with a low
dimension of the hyper-state. Note that, due to the way the
set Sg is created, it might contain grid points that are not
consistent with the model. These grid points are simply
left out from the further computation.

Assuming that the values of a function at the grid
points are known, the value of the function at a non-grid
point is approximated using an aggregation function g :
S �→ Sg that maps any hyper-state sk ∈ S to the “nearest”
grid point s̄k ∈ Sg. The aggregation function is assumed
to be

s̄k = g(sk) = arg min
ξ∈Sg

‖sk − ξ‖2, (30)

where ‖z‖2 is the L2 norm of a vector z ∈ R
nz .

Note that such an aggregation function defines a partition
of the hyper-state space and the original function is
approximated by a piecewise constant function.

3.3.2. Value iteration algorithm over grid points.
The value iteration algorithm (Buşoniu et al., 2010) is
used to compute successive approximations V̄ (i) of the
optimal value function V̄ ∗ over the uniform grid using the
recursive equation

V̄ (i+1)(ξ)

= min
d∈M

L̄d(ξ, d) + λmin
u∈U E

{
V̄ (i)(ξ′)|ξ,u

}
,

i = 0, 1, . . . , (31)

where V̄ (i) : Sg �→ R is an approximation of the optimal
value function V̄ ∗ at the i-th iteration, ξ ∈ Sg represents
a grid point, and ξ′ ∈ Sq is a discrete random variable
that represents an aggregated state resulting from using
the input u while being at the grid point ξ. The random
variable ξ′ is defined as

ξ′ = g(φ(ξ,u,x′)), (32)

where x′ ∈ R
nx corresponds to xk+1 regarded as an

external disturbance. The initial condition for the value
iteration algorithm is V̄ (0)(ξ) = 0 for all ξ ∈ Sg.
For each approximation V̄ (i), there is a corresponding
suboptimal input signal generator γ̄(i) defined as

ua = γ̄(i)(ξ) = argmin
u∈U E{V̄ (i)(ξ′)|ξ,u}. (33)

Note that the time index k is omitted since the particular
time step does not play any role in the value iteration
algorithm.

Since the convergence of the value iteration
algorithm is discussed in literature (see, e.g., Buşoniu
et al., 2010; Powell, 2007), only some important points
are highlighted here. The sequence of the functions V̄ (i)

asymptotically converges to the optimal value function V̄ ∗

as the number of iteration i goes to infinity. Since the
iteration process is always terminated after a finite number
of iterations Nvi, there is a discrepancy between the
optimal value function V̄ ∗ and the value function V̄ γ̄ that
corresponds to the suboptimal input signal generator γ̄ =
γ̄(Nvi). Either a conservative estimate of the number
of iterations required to attain a desired accuracy or the
difference between two consecutive iterations is usually
used as a stopping criterion. The value iteration algorithm
is terminated at the iteration i = Nvi for which

‖V̄ (Nvi+1)(ξ)− V̄ (Nvi)(ξ)‖∞ ≤ δ, (34)

where ‖h(z)‖∞ = maxz∈Z |h(z)| is the maximum
absolute value of a function h over a countable set Z
and δ > 0 is a chosen threshold. If a desired accuracy εvi

is given and it is required that ‖V̄ ∗ − V̄ γ̄‖∞ ≤ εvi, the
threshold δ can be computed as δ = εvi(1 − λ)/(2λ).

3.3.3. Approximate computation of the conditional
expectation. The functional recursive equation (31)
involves the computation of the conditional expected
value

E
{
V̄ (i)(g(φ(ξ,u,x′)))|ξ,u

}
. (35)

It follows from the definition of the hyper-state and (18)
that the conditional pdf

p(x′|ξ,u) = p(xk+1|sk,uk) = p(xk+1|xk
0 ,uk

0) (36)

required to evaluate the expected value is a weighted sum
of the predictive state pdfs conditioned by the models.
As the aggregation function g and the approximate value
functions V̄ (i) are non-linear, the expected value cannot
be computed exactly. In the area of non-linear state
estimation, the unscented transform (UT) has proven to
be of much use when computing the statistics of a random
variable that undergoes a non-linear transformation (Julier
and Uhlmann, 1997). Using the UT, the expected value
can be approximated as

E
{
V̄ (i)(g(φ(ξ,u,x′)))|ξ,u

}

≈
N∑

r=1

2nx∑

q=0

wqm
t
r,qP

(
μk = r|xk

0 ,uk−1
0

)
, (37)
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where mt
r,q are transformed sigma points defined as

mt
r,q = V̄ (i) (g (φ (ξ,u,mr,q))) . (38)

The weights wq and the sigma points mr,q are specified
as

w0 =
κ

nx + κ
, ws =

1
2(nx + κ)

, s = 1, . . . , 2nx,

mr,0 = fr(x,u) + mw(x, r),

mr,q = mr,0 − (
√

(nx + κ)Pw(x, r))q,

q = 1, . . . , nx,

mr,q = mr,0 + (
√

(nx + κ)Pw(x, r))q−nx ,

q = nx + 1, . . . , 2nx,

where (M)i denotes the i-th column of the matrix M, x
contains the first nx elements of the grid point ξ and κ ∈
R is a design parameter.

3.3.4. Summary of approximate active fault detector
design. This subsection summarizes the design of the
approximate active fault detector. The detector is given
by (27). The approximate Bellman function is computed
off-line using Algorithm 1, which combines the results
presented in the previous subsections. The approximate
input signal generator is given by (28), where the exact
Bellman function is replaced by its approximation.

Algorithm 1. Value iteration algorithm for finding the
approximate Bellman function.
Step 1. Choose the set Sg of grid points, initialize the
approximate value function V̄ (0)(ξ) = 0 for all grid
points ξ ∈ Sg, choose the threshold δ, and set i = 0.

Step 2. Compute a new approximate value
function V̄ (i+1)(ξ) for all ξ ∈ Sg using the functional
recursive equation (31), approximation to the conditional
mean value (37), and the aggregation function (30).

Step 3. If the termination condition (34) is not satisfied,
set i← i + 1 and return to Step 2.

4. Numerical example

The numerical example demonstrates the design of the
approximate active fault detector for a second-order
non-linear model of a pendulum with an intermittent fault
that indicates development of wear in rolling bearings.
The performance of the designed approximate active fault
detector is evaluated and compared with other detection
schemes where the same detector is used but different
input signal generators are employed.

A non-linear state-space continuous-time model of a
pendulum (Garces et al., 2003) is

[
ẋ1(t)
ẋ2(t)

]

=
[

x2(t)
− g

l sin(x1(t))− β
ml2 x2(t)+ 1

ml2 u(t)

]

, (39)

where x1(t) [rad] is the angular displacement from the
vertically downward equilibrium position, x2(t) [rad s−1]
is the angular velocity, u(t) [Nm] is the input
applied torque, β [kg m2 s−1] is the viscous damping
coefficient, m [kg] is the mass of the pendulum, l [m]
is the length of the pendulum, and g

.= 9.81 [m s−2] is
the gravitational acceleration constant. The values of the
physical parameters for the fault-free situation (Fault-free)
and an intermittent fault (Fault) represented by a change in
the viscous friction due to swarf or grit in the ball bearings
are given in Table 1.

The number of discrete-time non-linear models in the
structure (2) is N = 2. They are obtained using the
forward Euler method with a sampling period of Ts =
0.05 [s] in the form

fi(xk, uk) = Aixk + Buk + Bn sin(xk,1), (40)

where i ∈ M = {1, 2} and the matrices Ai, B and Bn

are

A1 =
[
1 0.05
0 0.85

]

, A2 =
[
1 0.05
0 0.845

]

, (41)

B =
[

0
0.025

]

, Bn =
[

0
−0.4905

]

.

The transition probabilities are assumed to be

P (μk+1 = j|μk = i) =
[
0.98 0.02
0.02 0.98

]

. (42)

The set of possible input torques is U =
{−10, 0, 10}. The components of the state noise
vector wk are assumed to be mutually independent and
have the Laplace distribution (Forbes et al., 2011) with
the location parameter η = 0 and the scale parameter ν =
5.6569 · 10−4. Thus, the mean value and the covariance
matrix of the state noise are mw(xa

k) = [η, η]T = [0, 0]T

and Pw(xa
k) = 2ν2I2 = 6.4 · 10−7I2, respectively. The

pdf of x0 is Gaussian with the zero mean value and the
covariance matrix 0.0001I2. The system starts as fault
free, i.e., P (μ0 = 1) = 1. The discount factor is chosen to

Table 1. Values of the physical parameters of the pendulum.
Fault-free Fault

l [m] 1 1
β [kg m2 s−1] 6 6.2
m [kg] 2 2
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be λ = 0.98 and the detection cost function is the zero-one
cost function

Ld(μk, dk) =

{
0 if dk = μk,

1 otherwise.
(43)

When the problem is reformulated, the hyper-state
has three components sk = [xk,1, xk,2, bk,1]T. Using (22),
the equivalent detection cost function L̄d can be expressed
as

L̄d(sk, dk) =
N∑

i=1
i�=d

P (μk = i|xk
0 ,uk−1

0 )

=

{
1− sk,3 if dk = 1,

sk,3 if dk = 2.
(44)

It can easily be derived that the optimal fault detector is

d∗k = σ∗(sk) = arg min
dk∈M

L̄d(sk, dk)

=

{
1 if sk,3 ≥ 0.5,

2 otherwise,
(45)

and the corresponding minimum value of the detection
cost is

min
dk∈M

L̄d(sk, dk) = min[1− sk,3, sk,3]. (46)

To design the approximate input signal generator, the
Bellman functional equation is solved approximately over
a non-uniform grid which is designed in such a way that
its extent and quantization levels reflect the dynamics of
the models, admissible values of the input, and state noise
characteristics. As a result, the value iteration algorithm
represented by the functional recursive equation (31) is
performed over 228563 grid points in the hyper-state
space at each iteration. Within the value iteration
algorithm, the mean value of the approximate value
function is computed using the UT with parameter κ = 3.
The convergence rate of the value iteration algorithm is
depicted in Fig. 2. The threshold δ = 0.01 for terminating
the value iteration algorithm is attained after Nvi = 41
iterations.

The approximate value function cannot be visualized
directly. To provide a basic insight, a slice through
the obtained approximate value function V̄ (41) as a
function of the angular displacement sk,1 and angular
velocity sk,2 for the fixed probability of the fault-free
model sk,3 = 0.9 is shown in Fig. 3. The corresponding
approximate function γ̄(41) is given in Fig. 4. Although
slightly different slices are obtained for other values
of sk,3, they all show that the quality of detection heavily
depends on the angular velocity. When the angular
velocity approaches zero, the approximate value function

rapidly increases (i.e., the quality of detection decreases)
regardless of the angular displacement. It corresponds to
common sense that the change in the viscous friction is
detected more quickly and reliably when the pendulum is
already moving than when it needs to be pushed to move.

The discussion in the previous paragraph might
suggest that in this particular example a simple ad hoc
strategy that constantly swings the pendulum could be
applied to obtain input-output data that are informative
enough for the detector to make correct decisions.
To examine this question experimentally, the designed
approximate active fault detector is compared with a
passive one and three other active fault detectors that all
share the same fault detector but use different input signal
generators. The input signal generators considered are the
following:

• zero input signal generator (passive detector),

uk = 0, (47)

5 10 15 20 25 30 35 40
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0.3

0.4

0.5

Iteration i

‖V̄
(i
)
−

V̄
(i
−
1
) ‖

∞

Fig. 2. Convergence rate of the value iteration algorithm.
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Fig. 3. Approximate value function V̄ (41) for sk,3 = 0.9.
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• random input signal generator,

P (uk = −10) = P (uk = 0)
= P (uk = 10) = 1/3, (48)

• sine input signal generator,

uk = argmin
ū∈U
|ū− 10 sin(0.05πk)|, (49)

• velocity switching input signal generator,

uk =

{
10 if xk,2 ≥ 0,

−10 if xk,2 < 0.
(50)

The detection quality of all fault detectors is
evaluated on the finite horizon of FFH = 500 steps, which
equals 25 [s] . Note that the error caused by using only the
finite horizon is bounded from above as

lim
F→∞E

{
F∑

k=FFH

λkLd(μk, dk)

}

≤ λFFH+1

1− λ
Ld

max = 0.02. (51)

Typical trajectories of the employed torque uk,
angular displacement xk,1, angular velocity xk,2, model
index μk and computed probability of the fault-free
model P (μk = 1|xk

0 , u
k−1
0 ) for individual active fault

detectors are shown in Figs. 5–14. Note that the
probability of the fault-free model is depicted in the
figures instead of the decisions because the probability
provides the information about the decision itself and
also the credibility of that decision. In the case of the
zero input signal generator, it can be seen in Fig. 5

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3
sk,3 = bk,1 = 0.9

sk,1 = xk,1

s k
,2
=

x
k
,2

−10

0

10

u
k

Fig. 4. Approximate input signal generator γ̄(41) for sk,3 = 0.9
(light grey areas: uk = 10, grey areas: uk = 0, black
areas: uk = −10).

that the excitation of the system provided by the state
noise is insufficient and the probability of the fault-free
model shown in Fig. 6 evolves mainly according to the
a-priori information given by the transition probabilities.
The random input signal generator provides a better
input signal, but it does not drive either the angular
displacement nor the angular velocity too far away from
zero as indicated in Fig. 7. It consequently causes
unreliable decisions being made, as can be observed
in Fig. 8. It follows from Figs. 9 and 11 that the
sine input signal generator and the velocity switching
input signal generator provide a similar excitation to
the system. Figures 10 and 12 suggest that more
reliable decisions can be expected in comparison with
the random input signal generator. The similarity of
those two input signal generators is caused by the chosen
period of the sine signal. Finally, Fig. 13 shows
that the designed approximate closed loop input signal
generator does not drive the angular displacement and
angular velocity away from zero to such an extent as the
previous two input signal generators do. Nevertheless,
Fig. 14 demonstrates even a better detection quality of the
designed approximate input signal generator.

0 100 200 300 400 500
−1

0

1

u
k

k

0 100 200 300 400 500
−0.02

0

0.02

x
k

k

Fig. 5. Typical trajectories of the torque uk (top), angular dis-
placement xk,1 (bottom-solid line), and angular veloc-
ity xk,2 (bottom-dotted line) for the zero input signal
generator.

The presented typical trajectories illustrate the
behaviour of the active fault detectors only for one
particular realization of the state noise and switching
between fault-free and faulty models. Although these
typical trajectories indicate that, except for the zero input
signal generator, the input signals allow the detector
to generate sensible decisions, the detection quality
across different random factors is evaluated using 10000
Monte Carlo simulations to obtain more convincing
evidence. The estimated values of the criterion J and the
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Fig. 6. Typical trajectories of the model μk (top) and probability
of the fault-free model P (μk = 1|xk

0 , uk−1
0 ) (bottom)

for the zero input signal generator.
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Fig. 7. Typical trajectories of the torque uk (top), angular dis-
placement xk,1 (bottom-solid line), and angular veloc-
ity xk,2 (bottom-dotted line) for the random input signal
generator.

precision of these estimates obtained using the bootstrap
method (Efron and Tibshirani, 1994) are presented in
Table 2. The results show that even if the error caused by
evaluating the detection quality on a finite time horizon
using Monte Carlo simulations is accounted for, the
designed approximate active fault detector outperforms
the other active fault detectors.
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Fig. 8. Typical trajectories of the model μk (top) and probability
of the fault-free model P (μk = 1|xk

0 , uk−1
0 ) (bottom)

for the random input signal generator.
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Fig. 9. Typical trajectories of the torque uk (top), angular dis-
placement xk,1 (bottom-solid line), and angular veloc-
ity xk,2 (bottom-dotted line) for the sine input signal
generator.

Table 2. Results of 10000 Monte Carlo simulations.
Input signal generator ĴMC 3δĴMC

Zero 16.1919 0.3177

Random 3.0656 0.0673

Sine 1.4927 0.0398

Velocity switching 1.5708 0.0400

Approximate closed loop 1.2647 0.0287
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Fig. 10. Typical trajectories of the model μk (top) and probabil-
ity of the fault-free model P (μk = 1|xk

0 , uk−1
0 ) (bot-

tom) for the sine input signal generator.
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Fig. 11. Typical trajectories of the torque uk (top), angular dis-
placement xk,1 (bottom-solid line), and angular veloc-
ity xk,2 (bottom-dotted line) for the velocity switching
input signal generator.

5. Conclusion

The paper dealt with active fault diagnosis for a
non-linear non-Gaussian system over an infinite time
horizon. The design of an active fault detector was
formulated as a discounted dynamic optimization problem
with imperfect state information, reformulated as a
perfect state information problem by introducing a new
state called hyper-state, and solved by a technique of
approximate dynamic programming. In comparison to
finite time horizon problems, a simpler time-invariant
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Fig. 12. Typical trajectories of the model μk (top) and probabil-
ity of the fault-free model P (μk = 1|xk

0 , uk−1
0 ) (bot-

tom) for the velocity switching input signal generator.
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Fig. 13. Typical trajectories of the torque uk (top), angular dis-
placement xk,1 (bottom-solid line), and angular veloc-
ity xk,2 (bottom-dotted line) for the designed approxi-
mate closed loop input signal generator.

solution is obtained in the case of infinite time horizon
problems. The presented approach allows the optimal
detector and corresponding approximate closed loop input
signal generator to account for the stochastic nature of
the system, including the unknown switching between
fault-free and faulty conditions. As both the detector and
the approximate input signal generator take the current
value of the hyper-state into account while making the
decision and generating the input, the quality of detection
is increased compared to a passive detector or an active
fault detector with an open loop input signal generator.
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Fig. 14. Typical trajectories of the model μk (top) and probabil-
ity of the fault-free model P (μk = 1|xk

0 , uk−1
0 ) (bot-

tom) for the designed approximate closed loop input
signal generator.

The presented approach can further be extended in
several ways to allow a broader range of problems to be
addressed. For example, it can be extended to allow for a
continuous set of admissible inputs. Such an extension
would require replacing the enumerative optimization
at each iteration of the value iteration algorithm by a
suitable derivative-free optimization algorithm. Another
extension consists in taking potential constraints on the
continuous part of the state into account. This kind
of constraints could be systematically incorporated by
making the set of admissible inputs depend on the state.
The last extension worth mentioning is to allow a system
where the continuous part of the state is partially observed
through noisy measurements instead of being directly
available. In this case, the conditional probability density
function of the whole state can be used in the hyper-state
as a sufficient statistic. However, this extension makes
the problem more difficult because the dimension of the
hyper-state is higher and a non-linear filtering technique
has to be used to compute the required probability density
function. All these extensions are beyond the scope of this
paper and constitute interesting topics for future research.
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