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ON INFINITE ROOT SYSTEMS

R. V. MOODY AND A. PIANZOLA
Dedicated to our good friend Stephen Berman

Abstract. We define in an axiomatic fashion the concept of a set of root data
that generalizes the usual concept of root system of a Kac-Moody Lie algebra.
We study these objects from a purely formal and geometrical point of view
as well as in relation to their associated Lie algebras. This leads to a coherent
theory of root systems, bases, subroot systems, Lie algebras defined by root data,
and subalgebras.

1. Introduction

The theory of finite root systems is very well understood and has been the
subject of several beautiful expositions [Bbk, Stn]. In comparison, the theory
of infinite root systems is still somewhat awkward and a number of difficulties
remain to be overcome. Among the most obvious of these is the problem of
subroot systems. We begin by illustrating this with an example.

Let A be a (generalized) Cartan matrix A = (A¡j)x<¡ ¡K¡. By definition A
satisfies the axioms

For all i < i, j < I,

AueZ,

A   < 0   whenever /' ¿ j,

AtJ = 0*AJt = 0.
A realization of A (over a field K of characteristic 0) consists of a finite-
dimensional vector space V and a pair of sets II = {a,, ... ,a¡) c V , IT7 =
{a^, ... ,a¡[} C V*   (V* = dual space of V) such that

(a) the elements of Fi (respectively nv) are linearly independent in  V
(respectively V*)

(b) (a(., aj) = A¡j for all  I < i, j < I where (•',•) denotes the natural
pairing of V x V* —* K.
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662 R. V. MOODY AND A. PIANZOLA

Given a realization R = (V,U,Yl ) of A we can define the Weyl group W
(respectively dual Weyl group Wy) as the group generated by the reflections r;
(respectively r;v) where

r¡ :v y-y v - (v , a;. )a(.   Vu e V ,
v      v v      , v,   v    w  v      T,vr(.  : v   y-y v   -(a¡}v  )a¡    Vu   e V   .

Since W ~ W via r; <-> r( we normally identify these two groups. Under
this identification

(wv, v ) = (v , w~ v )   for all v e V, v   eV   and for all w e W.

The (real) root system of R is now defined as
reA := WY1

and the corresponding (real) coroot system as
reAv:=irnv.

We say "real" because the Kac-Moody Lie algebra q(A) associated to A has
roots outside reA, these additional roots being the set of imaginary roots imA.
(By convention here 0 is a root so 0 € imA always.) For the moment let us
consider only the real roots.

For each a e reA, writing a = wa¡, w e W, a. e H, we define a reflection
ra = wr^" and a coroot av = ujq^ . Both ra and av depend only on a
(not on the choice of w and a¡) and

ra:v i-y v - (v ,a )a   Vu e V,
V V , V.     V      . .    V        T.vV    x-y V    —(a,v)a      Vu    € V   .

Now we can define subroot systems. A nonempty subset Q. of reA is a
subroot system if for all a and ß in reA

a,ßeQ^raßeCi.

To justify this definition (which is the natural one in view of the finite-dimen-
sional theory) we need to produce a Cartan matrix and a base (like n) for
Q. The following example illustrates that this is not always possible within the
framework we have here.

Example 1 (Maxwell's Demon). Let

/     2    -2        0\
A=     -2        2    -2     .

V     0    -2        2)
Let V = Rq0 © Ra, © Ra2 be a 3-dimensional real space, V* its dual, and
(•,•) : V x V* —y R the natural pairing. Let II = {a0,a, ,a2} c V and define
nv = {t*o ,ax,a2) c V* by (a(,aj) = AiJ; 0 < ij < 2.  With the Weyl
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ON INFINITE ROOT SYSTEMS 663

group W = (r. | i = 0,1,2) defined in the usual fashion and identifying W
with W let

ßk = (r2rx)ka0     and     ßk=(r2rx)k(*0-

Claim 1.  ßk = a0 + 2k2a{ + 2(k2 + k)a2 and ßyk = a0 + 2k2a\ + 2(k2 + k)a2
for all keZ.

To establish this, reason by induction on k .   D

Claim 2. For all p, q e Z, p ^ q we have

(ßp,ßyq)<0   and   (ßp,ßyp) = 2.
Assume without loss of generality that q — p = k > 0,

<*MV«Vi)%.(Vi)f«6>

= (a0,(r/,)*ao)
= (a0,a0 + 2/c a, + 2(fc  + k)a2 )

= 2-4k2.    D
We return to our main construction. Let

Then B is a Cartan matrix (infinite of rank 3). Let

* = W*ez   and   *V-{/£>*ö
and define

ÍÍ = ITTT   and   Qv = ITTTV

where
Wr = (rßk\keZ)cW.

It is clear that Q is a subroot system of Z := WY1. However, Q does not
admit a base in the sense that X does, as we will see in the sequel.

There is no shortage of examples of this type. For instance, one can let
k above vary over any infinite subset of Z and arrive at a similar situation.
This shows that any theory of infinite root systems must allow the possibility
of infinite bases and that the linear independence condition, which is usually
assumed for bases, is too strong.

In this paper we give a modified set of axioms which allow us to address five
problems which seem to us to be essential.

(a) The theory should be rational in the sense that it allows shifting of base
fields.

(b) Subroot systems should satisfy the same axioms as root systems.
(c) To these new root systems we should be able to associate Lie algebras

and (closed) subroot systems should correspond to subalgebras.
(d) There should be a conjugacy theorem for bases.
(e) The theory should lead to a chamber geometry in the style of [Bbk].
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664 R. V. MOODY AND A. PIANZOLA

The chamber geometry in fact is the main tool that we use in the study of
conjugacy and subroot problems. The rationality properties of root systems
allow us to work over R. Among the root systems that are included in our
treatment is the root system of the Lorentzian lattice A25'1 in 26-dimensional
space. Our work has obvious similarities to that of Vinberg [Vhb], who also
studied chambers with infinitely many faces and infinitely many symmetries.
His work differs from ours in the important respect that he considers only dis-
crete groups in hyperbolic space. Although the Demon is realized in hyperbolic
space, this is not so for root systems in general.

We would like to thank D. Maclean for his computer-drawn picture of the
Demon appearing in §5.

2. Root data

Let K be a field of characteristic 0. By a set of root data over K we will
understand a 6-tuple
(2.1) ^ = (A,U,Ylv,V,v\ (.,-))
consisting of
(RDI)      a Cartan matrix A = (Ajj)i eJ where J is an index set;
(RD2)      a pair of vector spaces V and Vv over K together with a nonde-

generate pairing (•,•): K x Fv —► K ;
(RD3)      subsets

U={aj}jeJcV,    UV = {ay}jeJcVy

such that (a¡, a, ) = A¡} for all i ,f eJ.
Furthermore we require

(RD4)      Q := J2¡eJ Zq     and   Qv := Yl,eJ ZqJ are free abelian groups ad-
mitting bases of the form {7¡}i& c Q and {yv}iel c ßv where I is
an index set and where the y. and y(v are linearly independent over K
and satisfy

n c 0 Ny,.   and   nv c 0 Ny,v .
ï€l 161

The last of these axioms requires some comment. The root system of a Kac-
Moody Lie algebra g over K is a rational geometric object to the extent that
g can be obtained from a rational Kac-Moody Lie algebra by extension of the
base field. Axiom RD4 can be motivated by this fact and we shall see later (§4)
that sets of root data can always be obtained from rational sets of root data.

The assumption that Q and £?v are lattices parallels the analogous fact for
Kac-Moody Lie algebras and Lie algebras with triangular decompositions [MP].
Note, however, that n and nv are not assumed to be bases of these lattices
even though n and nv lie each entirely in one orthant of a lattice. This last
fact is analogous to the division of roots into positive and negative and will
allow us to build the geometry of this new type of root system.
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ON INFINITE ROOT SYSTEMS 665

Example 2. If A is a Carian matrix and R = (V,U,YV') is a realization of A
then (A,Yl,Y? ,V ,V*,(-,.)) is a set of root data.

Example 3. Let the notation be that of the Maxwell Demon as in Example 1.
Then 2¡ = (B, T, Tv , V, Vv , (•, •)) is a set of root data. Indeed, to satisfy
RD4 we may simply take

and
V V v-v v.v

70 = ao >    yx  = 2qt '    y2 = 4a2 •

The reader can verify that £l€zz4 = SLo2^/ and E/ez^ = ©Lo2^ ■

Example 4 (Monstrous root data). Let A ' be the unimodular lattice of sig-
nature (l25, - 1) in 26-dimensional space R 5'' with symmetric bilinear form
(•|-) defined by

24
(x | x) = / y Xj — x25,       x = (Xq ,... , x24, x25).

i=0

Let n be the set of Leech roots in A ' and let a = a for all a e Yl. Then
L := ((a | ß))a ßen is a Cartan matrix and

Jf:=(L,Y\,Y\,V,V,(\))
is a set of root data for L. Later we will see that the associated Lie algebra
ü(Jt) is the Monster Lie algebra of Borcherds, Conway, Queen, and Sloane
[CS]. See §8 for details.

The linear independence of n and n   in the Kac-Moody setting is replaced
in the root data situation by the following weak independence property.

Proposition 1. Let 31 be a set of root data as above. Then for all k eJ

(WIP)

Zafcn|5>«;     =(0),
J#       J

Za>l£NaJj=(0).

Proof. Suppose -nkak = Y^¡¿k njaj where «   > 0 for all j ^ k. If nk < 0
by computing (•,ayk) on both sides we obtain a contradiction. If nk > 0, then

(*) ^2 HjUj = 0
jeJ

where «  > 0 for all j e J and not all n  = 0. By RD4 we can write

(**) <*jmL,cijfi
i&
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666 R. V. MOODY AND A. PIANZOLA

with Cjj > 0. Combining (*) and (**) then gives a contradiction. The case of
n    is similar and WIP then follows.   G

Given a set of root data 3 we define W c GL(K) and Wv c GL(FV) in
the usual fashion: for each j eJ, r. e GL(K) and rv e GL(FV) are defined
by

ra := r. : ay-y a- (a, a. )a .    for all a e V,

r v := ry : h ^ h - (a,,h)av   for all h e Vy .
i        j j        j

Then
W:=(rj\jeJ),        Wv :=(r]\jeJ)

and the systems of real roots and coroots are defined by
Z:=Wn,       Xv:=ITvnv.

We also call X and X    the root and coroot systems of 3 .
We also define the usual accountrements

X_ := -X+   and   X^ := -X  ,

ßv:=Ez«;.    ök-EK.
>eJ 7'eJ

We proceed now to outline the basic expected results that follow from the
definition.

Proposition 2. There exists a unique group isomorphism * :W —> Wy satisfying
r* = rj . Moreover, if we identify W and Wv via this isomorphism then

(a,h) = (wa,wh)

for all aeV, h e Fv , and w eW.
Proof. This uses only the definition of r   and r¡   and the nondegeneracy of

Henceforth W and Wv will be identified as in Proposition 2.
Given any Cartan matrix A = (Aij)i €J we can form a realization of A

[Kac, MP]. By definition this consists of a vector space V and subsets of lin-
early independent elements ñ = {à,},eJ C V, ñv = {af}ieJ C V* such that
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ON INFINITE ROOT SYSTEMS 667

(à;, âj) = A¡j . This immediately gives rise to a set of root data 3 with Cartan
matrix A . For RD4 we can set I = J and {7¡}i& = ñ and {y,V};Gi = nv .

Given a realization of ,4 we can construct a Lie algebra q(A) from ^4 whose
Cartan subalgebra is V* and whose set X of real roots (respectively coroots) is
WY1 (respectively WVf). Thus in the case of a realization we can identify the
set of real roots (coroots) with the set of real roots (coroots) of a Kac-Moody
algebra. In particular,

X = X+UX_,        XV = X+UX_

(both unions disjoint).
It is possible to prove that this partition into positive and negative parts exists

without appeal to the Lie algebra (see [Ljg] and [MP]). In any case, we will later
see that this positive-negative duality also holds for arbitrary sets of root data
3 = (A,V,V\Y1,Y1\ (-,.)). _

Let 3 be a set of root data and let 3 = (A, V, V*, ñ,ñv , (•,•)) be the
set of root data obtained by means of a realization of A as we have described
above. A set of root data 3 of this form will be called the universal covering of
3 . All the objects naturally associated with 3 carry tildes. There are unique
linear maps

satisfying
y/(a¡) = a;.,        y/  (à; ) = ai     for all / € J.

Proposition 3. Let the notation be as above.
(i) The mapping r  i-» ra   extends uniquely to a group isomorphism a:

W -» W.
(ii) Relative to a, y/ isa (W, W)-equivariant map ; i.e., for all w eW the

diagram

w a(w)

Qk^Qk
commutes. Likewise y/y is (W,W)-equivariant.

(iii) For all veQK, ùv € (%
,_   ,v,      ,    ~      v„v.(v,v ) = (y/v,\p v ).

(iv)  ip : X —► X and y/   : X   —> X    are bijections.
(v) ker^ = {Ä€ßK|<Ä,oJ) = 0 V/eJ}.

In particular, if A has linearly independent rows then y/ is infective. Similar
statements hold for \py  ( use rows of A ).
Proof. If the homomorphism a exists it is clearly unique. Let /, j e J. Then

% • &i ̂  «i - ("iy"j)&j " "i - Aijäj
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668 R. V. MOODY AND A. PIANZOLA

while
% '■ ai >-» ai - Aijaj ■

This shows that for all jx, ... ,jn e J

(*) rñ   "'rz. <*,- = >   cnä, => r    •••r   a¡ = Y^c a..
j€J j€J

(The reverse implication is not immediate because the c. on the right-hand
side may not be unique.) From (*) it is easy to conclude that o exists and that
the diagram of (ii) commutes.

Suppose that w e W and o(w) = 1. Then for each /, ^(ujq() = a¡..
Writing wàj = l^Cjàj where all c, have the same sign we obtain Yicjaj = ai.
This contradicts WIP unless c, = 1 and c = 0 for j ¿ i. Thus wà = a   for* j •* * ii
all /. But this is well known to imply w = 1 [MP].

(iii) This is obvious.
(iv) Suppose a, ß c X, a ^ ß, and ^à = ^yS. By (ii) it follows that

y/à. = y/y for some y ,¿ à. and some je J. Now ^y G X+ or
y/y e X_  and in either case a   = y/y will contradict WIP. Having
established that the restriction of y/ to X is injective, we use the fact
that

y/ï=y/Wn= Wy/ñ = WU. = X
to conclude that y/ is a bijection of X onto X.

(v) This is a simple calculation.   D

Corollary. In a set of root data the following wonderful union property holds

(WUP) X = X+ u X_    and   Xv = X^ u X^

( the unions being disjoint ).

Proof. X = y/1 = y/(ï+ UXJ c X+ uX_ , which shows that X = X+ uX_ . That
X+ n X_ = (0) follows from WIP.    D

Given a e X there is a unique à e X such that y/à = a (Proposition 3(iv)).
Writing à = J2 c¡a¡ we can write a = J2 c¡a¡ where all the ci e Z and all have
the same sign. We call a = J2 c¡a¡ the natural expression of a in terms of n.
Since n need not consist of linearly independent elements, a can in general be
expressed in many ways in terms of the {a(} , even with all coefficients of the
same sign. However, the natural expression is unique and we will use it when
studying the geometry of root data.

We can use Proposition 3 to transfer standard results from 3 to 3. In
particular:

(a) W is a Coxeter group with Coxeter generators r,/'eJ.
(b) Defining for each w e W

Sw:={ael+\w-Xael_},
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ON INFINITE ROOT SYSTEMS 669

we have card(S ) = l(w) where / is the usual length function, and if w =
r   •••/•

J\ Jn

S., = 0#îi) = l.

(c) For i,j eJ and w e W,

wat = ±aj «■ wrtw     = r.

(d) There is a unique W'-equivariant bijection
-V

(•)   : X —>I
such that

Furthermore

and

v(«,.)= a,     for alii e J.

v(•):£+-x;

(a,(a)v) = 2   for all a G X.

In the sequel (a) is denoted simply as a . (This notation is consistent
with (a )v = «J •) For proofs of these facts one may refer to [MP].

We finish this section with a few words about parabolic subroot data. Let I
be a nonempty subset of J and let

^ = {«,1/61},       U¡ = {a)\i€l}.

If we let AY be the submatrix of A corresponding to I it is clear that

Dl = (Al,n1,nv,v,v\ (.,.))

satisfies RD1-RD3. We shall see in §6 that RD4 also holds ' and hence that Z>j
is a set of subroot data of D. The Weyl group of Dl is the parabolic subgroup

Wx := (ri | i € I)

and its root and coroot systems are given by

x^^n,,     xIv = ^InI'.

We will let Xj    and X^   stand for the obvious objects.
The standard results about parabolic subgroups (see [Bbk] and [Ctr]) also

hold in our present situation. For the purpose of this work, however, all we
need is the following technical fact.

1 See §6, Theorem 1. That D\ has property RD4 depends only on two technical lemmas about
lattices (§6, Lemmas 4 and 5).
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670 R. V. MOODY AND A. PIANZOLA

Proposition 4. Let lei be nonempty. If a el. is such that

a = zZciai

in natural form (see Corollary to Proposition 3, infra) then a e Xj.
Proof. We maintain the notation of Proposition 3. By assumption à =
X¡í€lc;Q, G X. We assume that ht(a) > 0 and reason by induction on ht(a)
to conclude that à G S, = ÍTjfíj. Write àv = £\gI djàv where d > 0. Then

2= (à,àV) =^d](à,aj)
j&

and hence (à,ày) > 0 for some i el. Thus r(à G Xj by induction and hence
à G Xj. Finally

a = y/à G (¿/Xj = ^(í^ñj) = If^ = X,.    n

3. Imaginary roots

Let X be the root system of a set of root data 3 = (A, n, nv , V, Vy ,

If tp G Q, a G X, and ratp = tp + ua for some ueZ, then the root string
between tp and ratp is defined as

( {(p ,tp + a, ... ,tp + ua}   ifw>0,
[<Pyray>]:= \ ._\ {tp ,tp-a, ... ,tp+ ua]    ifw<0.

A subset O of Q is said to have the root string property RSP relative to X if
(RSP1)      Icî>;
(RSP2)     whenever tp e <P and q G X then [tp, raç>] c O.

There is a unique minimal subset A of F with RSP relative to X. In fact,
if we define inductively

A0 = X,    An = {ß\ß e [tp,ratp] for some a G X where tp G An_,}

then A0 c A, c • ■ •  and A := [j An has the root string property and is minimal.
Henceforth A denotes this minimal set with RSP relative to X. We call A

the root string closure of X. We often denote A\X by imX.

Proposition 1.  Aw W-invariant.
Proof. We show that An is IT-invariant by induction on n . This is clear for
A0. For An , let ß G [tp, ra<p] where tp G An_, , a e X. Let w eW. We have
ß = tp + ka where k e [0, u] and (tp, av) = u. Then

[wtp,wratp] = [wtp,wraw~Xwtp] = [wtp ,rwawtp] c An

(by the induction assumption wtp e An_,). Since [wtp,wratp] = [wtp,wtp +
uwa], it follows that wß = wtp + kwa e [wtp ,wratp] c An .   D
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on infinite root systems 671

Proposition 2. // X = reA where A is the root system of a Kac-Moody Lie algebra
then the root string closure of X is A.
Proof. Let O denote the root string closure of X. We already know that A d
reA and A has RSP. Thus $ c A. We show that A+\0> = 0. Similarly
A_\<D = 0.

If A+\<P t¿ 0 choose ß e A+\<P of minimal height. Note that ht/? > 1.
Then by [Mdy] either

(i) there exists a eU such that htraß < ht/?, in which case raß e® so
also ß e <P by Proposition 1 or

(ii) for all a g n,  (/?,av) < 0 and for at least one a e U we have
ß - a e A+ .   In this case /? - a e <ï> and since  (ß - a,a ) < -2,
£G[£-a,ra(/?-a)]c<D.    D

Let 3 he a set of root data as above and let 3 be its covering. We maintain
the notation of §2, Proposition 3.

Proposition3. Let A and A be the root string closures of I. and X and let {An}
and {An} be the sets as defined above that define A and A respectively. Then

y/An = An   for all neN and y/A = A.
Proof.   y/\ = yfL = X = A0 . Suppose that (M„_, = An_,.

For X e Q, X e Q with y/X = X and for à e X, a G X with y/à = a we
have

À      -^-,     X

r¿ r,x

X + sa -y X + Sa
and y/([X,r¿X]) = [X,raX].

Thus if ß e An , ß e [X,ràX] for some X e Àn_, , à e X, and ß = y/(ß) G
[X,raX] c An .  Conversely if ß e An  then ß e [X,raX] for some X e An_, ,
a G X, and choosing preimages X e An_,, à e X we find ß e [X,ràX] with
y/ß = ß . This shows ^An = An for all n G N and hence that ^A = A.    D

Remark. The map y/:A—yA need not be injective. For example, consider the
Cartan matrix

2      -2-14-34"
/?'•=       ~2 2      -2    -14-14      -2 2      -2

-34-14      _2 2.
which, as we saw in Example 1, is of row rank 3. With the notation of Ex-
ample 1 the set  T = {ßQ,ßx,ß2,ß3}  provides us with a set of root data
3' = (B', Y, Tv , V, Vv , (•!•)). Call the resulting root system X' and observe
that ß0 - 3ßx + 3ß2 - ß3 = 0.
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672 R. V. MOODY AND A. PIANZOLA

Let 3', with root system X , be a covering of 31 and let A and A' be
the root closures of X and X'. We know that X' -^ X' is injective. However,
A -^ A' is not injective. Indeed y := ßx + ß2 + ß3 + ßA has connected support
and satisfies (y,/?,v) < 0, i = 1, ... ,4. Thus y G A' by the well-known
criterion of Kac [Kac]. For the same reason 33y ± n(ß0 - 3/?, + 3ß2 - /?3) e À'
for |«| < 10 and all 21 of these roots have the same image in A'.

Corollary.   y/\¡m~ : imX - imX and y/~x(imX) n A = imX.

Proof. Suppose that y e imX and y := y/(y) e X. Using W we can suppose
that y = q( G n. Writing y = XXà , all c of the same sign, we have
y = Y1 cja, — ai y which contradicts WIP.

Conversely let y G imX. If y/(y) = y and y e X then y g X, which
contradicts imX = A\X.   a

4.  MORPHISMS AND EXTENSION OF THE BASE FIELD

Throughout this section 3 = (A, Ï1, nv , V, Vy , (•, •)) and 3' = (A1, YÍ,
n'v , V', V,v , (•, •)) will denote two sets of root data over K. We will use the
symbol ' to denote the objects of 3'. For example,

By a morphism of 3 into 3' we will understand a pair (tp ,<pv) of linear
maps

(p ■ QK -> Q'K   and   tpy : Q^ -* Q'KW

such that

(MORI) tp(Yl) c n'   and   tpv(Uv) c n'v ,
(MOR2)       (x,y) = (tp(x),tpy(y))'   for all x e QK and y c Q^ .

Observe that the covering map is a morphism. The concept of isomorphism
and automorphism between sets of root data is defined in the obvious fashion.
Observe that the ambient spaces V and V', Vv and V,y are not required to
be isomorphic.

Let (tp,tpy) be a morphism of 3 into 3'.  It is easy to verify that for
a g n, a' g n'

tp(a) = a o tp(a ) = a    ,

and hence that
tp : n — n'   and   tp* : nv -* n'v

are injective maps. In view of this we will henceforth identify J with a subset
of J'.
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Lemma 1. Let (tp ,tpy):3 —► 3' be a morphism. Then
(i) tp maps X injectively into X' ;

(ii)  tp(A) c A'   where A and A1  denote the string closures of X and X'
respectively;

(iii)  W can be identified with a subgroup of W'.

Proof. Let 3 and 3' be the universal coverings of 3 and 3' respectively.
We then have the following commutative diagram:

(f,vv

where (tp, tpy) is given by the subalgebra relationship between the Kac-Moody
Lie algebras of 3 and 3'. The lemma now follows from §2, Proposition 3
and §3, Proposition 3.   D

Next we consider the set of root data obtained by extending or restricting
our base field K. Let F be a field containing K. Identify Yl and Y\. with
subsets of VF := V <g>K F and FFV := Fv ®K F respectively in the obvious way
and extend (•, •)   F-linearly to a (necessarily nondegenerate) pairing

(•,->F:KFxFFv-*F.

Then
GrF •— t A ft ttv   i F »    F   '\  '  'F

F:=(^,n,nv,FF,FFv,(.,.)F)

is clearly a set of root data over F.
Here is how we restrict a set of root data to the field of rational numbers

Q. Recall that by RD4 there exist {y;};6l c Q and {yy}v C Qv each linearly
independent over K such that

ß = 0Zy;    and   ßv = 0Zy,v.
i& /el

It follows that (y¡ ,yy) e Q for all i,j el. It is not hard to find a set M D I
and rational spaces

UQ:=®Qßj,        t/Qv:=0Q/?;
j€M j€M

and a nondegenerate pairing

(■,)Q:UQxU^Q

such that
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for all i ,j e I. (For example, set K = lui' where i' := {/' | i € 1}. Let {ßk}keK
and {ßk}k€K be the chosen bases of the Q-spaces UQ and UX respectively
and define (•, -)Q : UQ x Uq —y Q by setting for all i,j el and i, / G i'

(ßi,ß])Q = (vi>y])>
(ßiyßr)Q = Su = (ßil,ßJ)Q,
</?,,/?;>Q = o.

Then (•, -)Q is as desired.) Let

ßQ:=0Z/?,    and   ßQ'=0Z/?,v.
i€l i€l

We identify n and n with subsets of QQ and Ql respectively in the obvious
way: if a. = ^2ci-7i m Q then a¡ is identified with ]Cc;,/?, in Q„, and
similarly for a^ . Clearly

(al,a])Q = Aij

for all /' ,j G J. It follows that

3Q = (A,n,n\uQ,u^,(.,.)Q)
is a rational set of root data with root system X. Note that Q = J2a<=z Za = Go
so that Q can be identified with QQ . Similarly Qv can be identified with ß~ .
Note that c/Q and UX are not required to be subsets of V and Vv .

Remark. The following observations will be used in §6. Let 3 be a set of root
data over K as above. For convenience we will refer to the above constructions
as field manipulations of D. We note that

1. After obvious identification the root and coroot lattice together with their
roots and coroots (and hence also n and nv) remain unchanged under field
manipulation.

2. The geometric triple (Q,QV , (•,•)) remains unchanged under field ma-
nipulations.

We admit that this terminology is loose but its meaning is nonetheless precise.
From these considerations it is clear that

3QK~3   and   3QKQ~3Q.

Definition. If 3 = (A ,n,nv , V, Vv , (• ,•)) is as above, by a set of subroot
data of 3 we will understand a set of root data of the form

3' = (B, r,rv,v,v\ (.,.))
where B is a certain matrix, T c X, and Tv c Xv . An example of this is
given by the Maxwell Demon. Important for us in §6 is the fact that subroot
data transfer via field manipulations. More precisely, we will make use of the
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following fact. If 31 is a set of subroot data of the real set of subroot data
£>qR then 3' corresponds to a set of subroot data of 3QKQK ~ 3 .
Remark. We can define an abstract root system as follows: A subset X of a
K-space V is called a root system if X is the set of real roots of a set of root
data of the form (A,Y\,Yly ,V ,Vy ,(■,■)).

5. The geometry of a set of root data

Let 3 = (A, n, nv , V, Fv , (•, •)) be a set of root data over R. We maintain
all the notation of the previous sections. Throughout the present section we will
assume that dimR(F) = n is finite. Because of RD2 and RD4 we have

(a) dimR(Fv) = «;
(b) J is at most countable (though not necessarily finite);
(c) Q = 0i=1 Zy,. and ßv = 0¡=1 Zy;v for some {y,.} c Q and {y,v} c ßv

linearly independent over R.
Henceforth we will think of both V and Vy as topological vector spaces by

o _
identification with R" . If S c R" then S and 5 will denote the interior and
closure of S respectively.

Let heVy , h^O. Then H := {x e V \ (x, h) = 0} is a hyperplane of V.
H decomposes the set V\H into two open half-spaces

H* = {xe V\(x,h)e±R>0}.
Two points x and y of V\H are said to be on the same (respectively opposite)
sides of H if x and y lie (respectively do not lie) in one of these two open
half-spaces. If x and y in V\H lie on opposite sides of H we say that H
separates x and y.

Given av G X^ define HaV := {x eV\(x, av) = 0}. Let H = {HaV \ a e
X+} . Following [Bbk], define an equivalence relation ~H on V by:

For all x and y in V set x ~H y if and only if for all H e H either
(i) x and y belong to H or
(ii) x and y lie on the same side of H (in particular, neither x nor y lies

in H).
Clearly wHaV = HwaW = H_waV and hence W acts on H. Thus W acts

on the quotient set V/ ~ .
The fundamental chamber F of 3 is defined by

F := {x e V | (x, a¡) > 0 for all j e J}

= {XG V\(x,aV) >0forallaGX+}.

For each subset I c J define a set F, by

Fx:={xe V\(x,a])>0if j £ I and (x,a]) = 0 if j G 1} .

Note that F = F0 and that each of the Fx is a convex cone.
Since the elements of nv are not necessarily linearly independent, there is

no guarantee that Fx^0 for all I c J. However,
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Proposition 1.
o o _

(i) fjí0. Moreover F = F.
(ii) For ail k e J we have that F,k, supports the hyperplane HaV .

(iii) F = UICJiv
Proof, (i) Let y^, ... , y¡ be as in RD4. The set A = {x e V\(x, y;v) > 0,
1 < / < /} is open and nonempty. Since X^ c ®'=1 Ny;v it is clear that Acf.
Thus F° ¿ 0. We claim that for all 0 < t < 1

tF + (l-t)F°cF°.

Since the left-hand side is open it will suffice to show that it lies in F. Now
if y G F then (x, aj) > 0 for all j e J. Let y e F° and 0 < t < 1. Then
(tx + (1 - t)y ,aj) > 0 for all je J. This establishes our claim. Finally, if

x G F and y e F° then ]x ,y] c F0 so that x G F0 .
(ii) Let B be an open ball in F. For each x e B, rkx satisfies the inequal-

ities
(rfcx,aj)>0,        j£ k.

The same goes for every point of the interior U of the convex hull of B u rkB .
Now U xx Hay is a nonempty subset of F,k, , from which (ii) follows.

(iii) Let xef,. If y e F then ]x,y[c F. Thus x G ]x,y[ C F. This
shows that (JIcJ Fx c F . The reverse inclusion is clear.   D

Proposition 2. For each subset 1 of J for which Fx =¿ 0, Fj w a« equivalence
class of ~H.
Proof. Let xEf, and let x denote the equivalence class of x in V. Evidently
x c Fx since Fl is defined by a subset of the relations defining x. Now suppose
that y e Fx and let av G Xv . Since //qV = //_qV we can suppose that av e X+
and write av = S,€jc,aJ > c; > 0 • Then (x,av) = 2^_,-ejc_/(-'[:>aJ) ̂  0 with
equality if and only if j e I whenever c./O. It follows that (y, a ) > 0, and
(y, av) = 0 o (x ,ay) = 0. Thus either x and y both lie in HaV or both lie
on the same side of //qV . This proves y ~ x .   D

Proposition 3. Líí I.l'cJ an¿ /eí uj G IT. If wFlxxF1, ¿ 0 then I = i',
uj^j = Fj, = Fj, and w e Wx. Moreover w fixes Ft pointwise.
Proof. This is standard [Bbk]. The key observation is that l(r¡w) < l(w) =>
wF. c H~ .     DI Q¡

We introduce the standard terminology as found in [Bbk]. Since W permutes
the set of hyperplanes H, W preserves the equivalence relation ~H and hence
permutes the equivalence classes of ~H . In particular, each of the sets wFY,
I c J, is an equivalence class if it is not empty.   We call these particular
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equivalence classes facettes. The union of all the facettes is the Tits cone

Sf:= \J{wFx\weW, le J}
= \J{wF\weW}.

Since each Fx is a cone it is evident that 3? is indeed a cone. Furthermore,
o

Sf is IT-invariant. Since F contains an open subset of V, the interior Sf of
3? is nonempty. If two facettes wFx and w'Fx, intersect nontrivially, then,
by Proposition 3, I = i'. Thus each facette has a well-defined subset I of J
associated with it called the type of the facette. The facettes of type 0, which
are of the form wF0 = wF, are called the chambers of %?. These are precisely
the facettes that contain open subsets of V. The facettes of type {/'} , ¡el,
are called faces of Sf.

From Proposition 1 (ii) it follows that every face supports a hyperplane and
it is elementary that faces are the only facettes supporting hyperplanes.

The faces F,¡, , i G J, all lie in F . Indeed these are the only faces lying in
F, for if x e F then x e Fx for some I. If also x G wF¡.. for some w eW
and jeJ then by Proposition 3, {j) = I and wf,., = F,,, . The faces lying
in wF for any w are then {iuF{|., | / G 1} . These are called the faces of the
chamber wF. The hyperplanes wHaV supported by these faces are all called
the walls of the chamber.

Example 5. We begin by showing that the chambers of the Demon are not open.
We maintain the notation of Examples 1 and 3. For a point aa0 + bax + ca2
to belong to F we must have

(aa0 + bax+ca2,ßk) >0   for all k e Z.i0-ruu.x -r<-u.2,Hk

Using the expressions for ßk   this translates into

-2ak2 + 2(c - b)k + (a - b) > 0   for all k e Z.

Thus -a, - a2e F but it is clear that no neighborhood of -a, - a2 can be
contained in F.

What follows is a description of the chamber geometry of the Demon in the
Poincaré model of the upper half-plane.

The interior of the Tits cone Scf for the root system defined by
"2-2       0'

A=     -2       2    -2
.0-2        2.

is the set of points x = (x0, x,, x2) satisfying
2 2 2x0 - 2x0x, + x, - 2x,x2 + x2 < 0,       x, < 0,

with fundamental region F bounded by the rays through (0,-1,-1), (-1,
-1,-1), (-1,-1,0). Projectivizing and setting X- = (x;/x, )-1 , / = 0,2, we
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have Jf/Rx given as the interior of the disk X2+X2 < 1 . Identifying this with
the disk £> = {z||z|<l}cC, the three rays determine the points —1,0, - i
whose convex hull is the image of F. One passes from the Klein model to
the Poincaré model by the transformation z i-> 2z/(l + z~z), which fixes the
boundary of D pointwise. Following this by the Möbius transformation z y-y
i(z + \)/(-z + 1) we arrive at the upper half-plane model of the hyperbolic
plane %?. The fundamental region is now the triangle with vertices 0, i, 1
respectively. The reflections r., i = 1,2, appear here as inversions in the circles
whose diameters are 0, 1 and 0, oo respectively, namely

r, : z y-y z/2z - 1,       r2: z y-y -z,       r2rx : z —> z/1 - 2z.

The walls of the fundamental chamber C of the Demon are given by the hy-
perplanes Ha , a = (r2rx) a0, k G Z. In %?, Ha   appears as the orthogonal

ksemicircle y with diameter [-1,1]. The translates of this by (r2rx) yield the
semicircles on diameters [l/(2n + I),l/(2n - I)], n eZ. This realizes the
fundamental region of the Demon as the connected region C in white beneath
the semicircle y (see Figure 1). Inversion in y yields the fundamental region as
the extended black region C in which its infinite symmetry is clearly revealed.
One observes that O is not separated from C by any wall of C, nor is it on
a wall of C. Thus the ray R+(0, - 1, - 1) lies in the fundamental region of
the Demon (in R ) while the ray R+(-l, - 1,0) lies only in its closure. The
Tits cone for the Demon is, as a point set, exactly the set Sf.

The geometry of the Demon we have described is related to the Schwarz
triangle with vertices in -1, 1, oo and sum of its interior angles equal to zero
[Ctd, p. 184].

For each I c J let Wx be the parabolic subgroup

WY := (r, | / G I).

Proposition 4. Let the notation be as above. Then
(i) Sf = {x G V | (x, av) < 0 for a finite number of a e X+} .

(ii) Sf is a convex cone.
A similar result applies to Sf   .

Proof. The proof is the usual one (see [Kac, MP]).   D

Proposition 5. Let x ,y e %?. The following are equivalent.
(i)  There exists w e W such that both x and y belong to wF.

(ii)  There exists no hyperplane of H separating x and y.

Proof.
(i) =► (ii) Clear.
(ii) => (i) Consider the open interval ]x,y[. We claim that if p,q G]x,y[

then p ~ q . For if not we may assume that there exists H e H such that either
p e H+ and q e H~ or p e H and q e H~ , and it follows in either case that
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H separates x and y. Since ]x,y[c 3f it follows that ]x,y[ is included in
one equivalence class of 3?. Thus

]x,y[ewFl

for some w eW and I c J. Hence

[x ,y] c wFx = wFx c wF.

Proposition 6. Let x, y e 3f and w e W.
(i)  There exists a finite number #(x,y) of hyperplanes of H separating x

and y.
(ii) If x e F and y = wx then #(x ,y) = l(w).

Proof. Recall that the elements of H are in one-to-one correspondence with
the elements of X+ . Since W stabilizes both 3? and H we can assume that
x G F and y = wz for some z e F . Let av G X+ . Then

HaV separates x and y •»
(x,av) > 0 and (y,av) < 0 o

(x, a ) > 0 and (z ,w~ a ) < 0 «•
, v,       „        ,      -1   V      _V(x, a ) > 0 and w    a   e X_ o-

(x,a ) > 0 and w" a el_ o

(x,av) > 0 and aeSw.

Both (i) and (ii) now follow from the fact that CardSw = l(w). (See §2.)    □
o

Proposition 7. Let x e 3f. The set

Hx:={HeH\xeH}

is finite.
o

Proof. Let B be a closed ball about x such that B c 3f. Assume that
{//■}.= 1 ̂  c H is a sequence of distinct hyperplanes such that x G H{ for
all />0.

Let Si := Hj\(\Jjj¡(Hj n H.)). By Baire category each S¡ is infinite. Fix
i and let y e Sr We claim that L(y) := {(1 - X)x + Xy \ X e R\{0}} c St
(i.e., the line through x and y lies entirely in S¡ U {x}). Indeed L(y) C //,,
so if L(y) çt S j there exist X # 0 and j ¿ i such that (1 - X)x + Xy e Hj.
But ( 1 - X)x G // . Thus Xy e H; and hence y G H.. This contradicts the
assumption y G Sl and establishes our claim.

The line L(y) intersects the frontier of B at two (diametrically opposed)
points that we will denote by ci and di. We have shown that for all i / j

(*) ci,dieHi   and   c;,i/, g //,.
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However, it is clear that if j ¿ 1  then //.  separates c,   and dx.   This
contradicts Proposition 6 and hence establishes our result.   D

Proportion 8. Let 3? be the Tits cone and let F be its fundamental chamber.
(i) For all x,y e 3f the closed interval [x,y] lies inside the union of

finitely many facettes.
(ii) If w eW and I c J are such that wFl nF/0 then w eWx and w

fixes Fj pointwise.
(iii) If w eW fixes x e 3f then w fixes pointwise the facette containing

x.
(iv)  The following conditions hold.
(FD1) W acts simply transitively on the set of chambers.
(FD2) If x e3f there exists a unique z e F such that x e Wz.
In particular, F is a fundamental region for the action of W on 3f.

Proof. The only part that needs some explanation is (i). Let x ,y G 3?, x £ y .
The open interval ]x ,y[ is cut by precisely those hyperplanes separating x and
y, of which there is only a finite number. Each cut point lies in a single facette
and so also does each open interval between two cut points. Finally, x and y
each lie in a single facette,   o
Remark. At this point we have established the axioms of [MY] (notably Propo-
sition ll(i), (ii)).

If 7 is a nonempty subset of V we define

Hy := {H G HI Y C H},
WY := {w G W | wy = y for ail y e Y},
[Y] := the subspace of V spanned by Y.

Proposition 9. Let Y be a nonempty subset of 3f and let K = {~}H€H H. There
exist w eW and I c J such that

(i)  WwFl = WY = WK = wWlW'x ;

(ii)  Hy=uj{//QV|aVGXIv}.

In particular, the following three groups are equal:
1. the elements of W that fix Y pointwise;
2. the subgroup of W generated by all reflections ra such that ra fixes Y

pointwise;
3. the subgroup of W generated by all reflections ra such that Y c HaV .

Proof. Choose x e[Y]xx3f such that x £ H for all H e H\Hy. By means
of W we can assume that x G F, for some I c J. By Proposition 8(ii)

w{x} = wx = wFl.

Let qv G X^ be such that //qV g Hy . Then x G [Y] o (x,av) = 0. Write
a   = 12cjaj y c. eN in natural form (see §2). Using the definition of Fx we
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find that cj = 0 if j' £ I. Thus qv g X^ (§2, Proposition 4). On the other
hand

aVeï,V»(i,aV)=0^xe HaV => HaW G Hy .

Thus Hy = {//qV I av G XJ . It follows that for all i el, ra fixes K pointwise
and hence that WFl c WK . The rest of the proof is standard.   D

Corollary. If r e W is a reflection then r = ra for some a el..

Proof. Let H be the hyperplane of fixed points of r. It is trivial to see that
° ° H

Hxx3f^0 and hence Hxx3f spans H. By the proposition, W    is generated
by the reflections ra for which H = HqV . It follows at once that a is unique,
up to sign, and hence that w = ra.   D

o

Proposition 10. Let x e 3f.
o

(i)  There exists an open convex set B in 3f containing x and satisfying

(*) HxxB^0oxeH   forallHeH.
o

(ii) If B c 3f is open and convex containing x and if B satisfies (*) above
then for all w e W we have wB xx B ^ 0 «■ w e WM .

Proof, (i) Let /,,..., In be closed intervals in linearly independent directions
o

of V lying entirely in 3f and containing x in their interiors. Each I. lies
inside the union of finitely many facettes (Proposition 8(i)) and each of these
facettes intersects L either in a relatively open subinterval or in a point (since
facettes are convex). Let z- , ... ,z¡.     be the points obtained in this fashion.

J\ J*U)
Note that if H e H intersects the interior of I',. at a single point p then p = z.j ji
for some 1 < / < k(j). Let /  be an open subinterval of L chosen so that

x G Jj   and   z. $. J¡   for all 1 < i <k(j) whenever z.. ^ x.

The above discussion shows that for all H e H

HnJj¿0oxeH.

Then the convex hull B of the set 7, U • • ■ U Jn is by construction a set satisfying

o
(ii) Let B c 3f be an open convex neighborhood of x satisfying (*). As-

sume that wB xx B ^ 0. If wx ^ x then there exists H e H separating x
and wx. By assumption then B and wB lie on opposite sides of H. Thus
wB xx B = 0 . It follows that wx = x and hence that w e Wx    .    a

Next we state without proof equivalent conditions for finiteness of a set of
root data.
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Proposition 11. The following are equivalent:
(i) the Cartan matrix A is of finite type,

(ii) there exists w e W with wF = -F ;

(iii) Oek;
(iv) 3? = V ;
(v) the number of facettes is finite;

(vi) the number of chambers is finite;
(vii) W is finite;

(viii) X is finite;
(ix) X is a finite root system.

The next two results are based on [Ljg] and [MY].

Proposition 12. Let x e3f. Then

xek^W{x}   is finite.
o

In particular the stabilizer of any facette in 3? is finite. If Yl is finite then

W{x} is finite &xek.
o o

Proof. Suppose that x e 3f. Let B be an open ball with x G B c 3? and
satisfying (*) of Proposition 10. Any chamber with x in its closure meets B
and it follows from Proposition 7 that the set of such chambers is finite. Since
W^x' permutes these and the action is faithful, W^x' is finite.

t \ °Now suppose that n is finite and let us prove that Wix' finite => x e3f.
We can assume that x e Fx for some I c J.  We let nj := {q; | / g 1} and
rij := {a( | i € 1}. Let Ax := (A¡.)¡  £l be the submatrix of A obtained from
I. Then

3l = (Al,Yll,YYx,V,V\ (.,-))
is a set of root data.

The Weyl group of Dx is the parabolic subgroup Wf. For 3X the funda-
mental chamber is

F(I) := {y e V \(y,a*) > 0 for all i e 1}
and its Tits cone is
(*) ¿r(I)= (J wJñ.

Suppose that W{x) is finite. Since W{x} = Wh = Wx (Proposition 12) it
follows that Wx is finite. Then by Proposition 11
(**) 3?(l) = V.

Furthermore, since x c Fj we have (x,av) > 0 for all av e nv\n,v and
since Wxx = x, (x, wav) > 0 for all w eWx and av G n^n^ . Hence

xeC:={yeV\(y, waw) > 0 for all weWx, aV g nv\n,v} .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



684 R. V. MOODY AND A. PIANZOLA

Since C is defined by finitely many inequalities, there exists an open ball B
about x lying entirely in C.

Let y e B. By (*) and (**) there is a w e Wx with wy e F(I). Thus
(wy,av) > 0 for all av G n^ . Since (wy,av) > 0 for all a e Yiv\Y^
(because y e B) we have wy e F c 3f.  Thus y e 3f and in conclusion

B c 3f and x g 3?.   o
O

Proposition 13.   W acts properly discontinuously on Sf \ in other words, given
o

any pair of compact subsets U and V of 3f, the set {w e W \ wU xx V / 0}
is finite.
Proof. We may cover each of U and V with a finite number of closed balls

o
Bx lying in 3? that satisfy the hyperplane condition (*) of Proposition 10(i):
Hf~)Bx^0=>xeH. In particular, by Proposition 7, only finitely many
hyperplanes of ß? meet each of these balls. It suffices then to prove that if U
and V are closed balls and only finitely many hyperplanes of %? meet U and
V then the set {w e W \ wU n V ^ 0} is finite. Now in this case one shows
that U is covered by finitely many facettes. The same goes for V. The relation
w U xx V / 0 indicates the existence of facettes W, £?' with

WxxU¿0,       W'x~xV¿0,       wW = W'.

The same pair (W ,W') can occur for only finitely many w e W since w'fê =
'W =>■ w eW"   and W°   is a finite group (by Proposition 12).    D

6. Subroot systems
Let 3 = (A, n,nv,F,Fv, (-,-)) be a set of root data over K. In this

section we assume that dimK V = dimK Vy = n is finite. We maintain all
previous notation and terminology for 3. Recall that a nonempty subset ß
of X is called a subroot system if for all a, ß e X

a,fieQ^rJen.
The main result of this section is

Theorem 6. Let 3 = (A,Yi,if ,V ,VV ,(■,■)) be a set of root data over K.
Let X be the root system of 3 and let Q c X be a subroot system. Then
there exist a Cartan matrix B and a subset T of X+ such that if we define
Tv = {qv I a e T} then (B, T, Tv , V, Vy , (•, •)) isa set of root data with root
system Ci.

The proof of this theorem will be given later as a consequence of a series of
preliminary results. Because of the remark about subroot systems made in §4 it
will suffice to establish Theorem 6 in the case when K = R. We will henceforth
assume that this is the case.
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Define an equivalence relation ~n on V as before but now using the set of
hyperplanes Hn := {Ha | a e Q} . Since HflcH we have

x ~H y =^ x ~n y   for all x, y G V.

The set of chambers relative to Q is defined by WQ:= {C\C is an equivalence
class of ~Q on V and there exists a nonempty open subset U of V such that

r/cCni*}.
A/o/e If F' is a chamber of 3 then f'cC for some equivalence class C of
~n on V. Clearly C is a chamber relative to £2. In particular ^ ^ 0.

A face of a chamber C is an equivalence class of ~Q on F that lies in C
and supports a hyperplane /faV G Hn. In this case we also say that HaV is
a wall of C. Note that if Q = X then all these concepts coincide with those
defined before. The first aim is to prove that walls exist.

o

Let Wn := (ra \ a e fi). Since WQ stabilizes Hn and 3f we see that WQ
stabilizes Wn.

o
Given x ,y e3f we let

#n(x, y) = Card{// G Hn | H separates x and y) .

Note that #a(x,y) is finite by §5, Proposition 6.
o o

Lemma 1. Let C eWa and let xeCn3f. Let ye3f\ \JHeHa H. Then there
o

exists an open ball B about y in 3f such that #n(x,y) = #a(x,z) for all
zeB.

o

Proof. Take B to be an open ball about y in 3? as in (*) of §5, Proposition
10.   D

Recall that if x ,y e V , x ^ y , the (open) ray from x through y is defined
by

R(x ,y) := {x + t(y - x)\t eR>0}.
o o     _

Lemma 2. Let C eWa. Let x eCx\3f and y e 3f\C. If B is any open ball
o      _

about y in 3f\C then the cone of rays 31 (x) = \JbeB R(x, b) cuts at least one
face of C in an open subset of that face.
Proof. Let Z c B be a set of representatives of the lines of 31 (x) ; that is,

(a) b e B => 3z G Z such that R(x, b) = R(x, z) and
(b) z,,z2gZ; z, ^ z2^R(x,zx) ± R(x,z2).
If z G Z the closed interval [x, z] is covered by finitely many classes of ~n

(§5, Proposition 8), one of which is C (since x e C). Clearly Cn[x,z] =
o

[x, c(z)] for some c(z) e[x ,y]. Moreover c(z) e 3f and there exists av(z) e
Qv such that c(z) e HaV.z).
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For each av e Hv let Z(av) = {c(z) \z eZ and c(z) e HaV}. Then there
exist a g Q such that Z(a ) spans an affine subspace of dimension n - 1.
(For otherwise 32 , which is open, would be the union of a countable number
of closed subsets of dimension n - 1, namely

32 =   (J   (32 xx (affine span of x and Z(av))).)
Qvenv

Thus Z(aw) generates HaV as an affine space for some av G Qv . Let c(zx),
... ,c(zn) e Z(ay) be an affine basis of HaV . If S denotes the open simplex

o _

with the c(zt) as vertices then S is open in HaV , S c HaV xx3f and S c C.   o

Corollary. Walls in W^ exist. Moreover, if C and C' are distinct chambers of
Wa then there exists a wall separating C and C'.
Proof. Let Ce?a (we already know that Wa / 0).  It will suffice to show

o o
that 3f çt C. To see this notice that if x e Cxx3Z as above and a e Q. then

o
r x e3f but r x é C.    Da a       r-

Fix C eWn. According to the last corollary C has at least one wall. Let T
be defined as follows:

T := {a e Cl | HaV is a wall of C and (x, qv) > 0 for all xeC}.

Let
Wr:=(rJaeT).

Proposition 3. Let the notation be as above. Then
(i)  Wr acts transitively    on Wn ;

(ii)   WrT = Q and WrTv = fiv ;
(iii)  ((a,ßv))a ßET is a Cartan matrix.

Proof, (i) Let C' e&n. It is clear that the cardinal #a(x,y) with x e C and
y G C' is finite and independent of the choice of x G C and y e C'. We
denote this number by #(C ,C') and reason by induction on it to show that
wC = C' for some w e WQ .

If #(C ,C') = 0 then C = C' by the last corollary. Assume N := #(C, C') >
0. Let U be an open subset of V such that U c C' n3f. Fix x G C \~\3?. By
Lemma 2 we can find y elf such that the open ray R(x ,y) meets a face of
C. Let HaV , av e T , be such a face. Let {x,, ... ,xn) e]x ,y[ be the distinct
points at which a hyperplane of Hn cuts [x, y]. We order these points starting
from x (see Figure 2). Let z g]x, ,x2[ where x2 := y if n = 1 .

Then z er C (this is because H>v is the unique hyperplane of Hn going
through x, since x, lies in a face). Since [raz,ray] is cut by N-l hyperplanes
we have #(C ,r C') = N - 1 . By induction rawC = C' for some w e WT .

2 Once we have established Theorem 6 it will follow from §5, Proposition 8(iv) that the action
of Wx on Wçi is simply transitive.
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X

Hoc
Figure 2

(ii) Let ß G il. Let x G H„v xx3f be chosen so that x ^ H whenever
H G Hn\{HaV} . By considering a ball around x as in §5, Proposition 10, we
see that x lies on a face of some chamber C' relative to Cl and that Hßv is a
wall of this chamber. By (i) we can write C' = w~ C for some w e Wr . Then
wHßv = Hwßv is a wall of C and hence ±wßv e Tv . Thus ßy e WTTy . By
using the bijection (-)v (see §2) we conclude that /? G WrT = Q,.

(iii) Let /? G T. We claim that H„v is the unique hyperplane of Hn sepa-
rating C from r„ C. For suppose H v separates these two relative chambers.
Then

(*) (x,yv)>0   and   (x,yv) - (x,/?v)(/?,yv) < 0

for all x e C (we may have to replace y by -y if necessary).
o

Choose x inside an open subset of V lying in C n 3f. Then we can find
an open ball B about r„x with B c r„C such that the cone of rays from x
to this ball B cuts HßV in an open subset S of H„v . Choose z e S such
that z ^ 77 v . If we now let x approach z in (*) we reach a contradiction.
This establishes our claim. In particular, if a e T , a =/= ß , then HaV does not
separate C and foC. Thus

(**) (x,av)>0   and    (x,av) - (x,ßy)(ß,aV) > 0   for all x G C.

If we now let x  approach a point of //aV   not in  H„v   we conclude that
(/?,aV) < 0 as desired.    D

This last proposition contains most of the information needed to establish
Theorem 6. However, we still need a result about lattices to eventually show
that RD4 holds.

O

Lemma 4. Let L be a lattice in Rn and C a convex cone. Suppose that C^0.
o

Then C contains a basis of L.
o

Proof. Since C contains balls of arbitrary large diameter (being a cone) we
o o

have LnC/0. Because C is a cone it follows that there exists v { e LnC
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suchthat u,  is primitive. Extend u, to a basis {vx,v2, ... ,v } of L. For
o

N sufficiently large  A/u, + u. G C for all  2 < i < n  and it is clear that
{u,, A/u, + v2, ... , A/u, + vn) is a basis of L.   D

Lemma 5. Let L be a lattice in Rn and let C be a closed convex cone in Rn .
o

Suppose that the dual cone C+ has nonempty interior C+ . For example, this is
true [Rkf] if

(i)  C n -C = (0) (i.e., C is proper);
(ii) C is defined by a finite number of inequalities (i.e., C is polyhedral).

There exists a basis {vx, ... ,vn} of L such that the real cone generated by
this basis contains C.
Proof. Let L* be the Z-dual of L. The dual cone to C is

C+ := {x G R" I (x ,v) > 0 for all u g C}.
o

By assumption C+ ^ 0. By the previous lemma there exists a basis {v*, ... ,
o

u*} of L* contained in C . Let T be the real cone generated by this basis:
T = J2"=\ R>ov* y and let T+ be its dual. Then

;=1

where {vx,... ,vn} is a basis dual to {v*, ... ,v*} . Now T c C+ => T+ d
C++ = C while {v*, ... ,v*} is a basis of L* => {u,, ... ,vn} is a basis of
L.  a
Proof of Theorem 6. To the subroot system Q of X we have attached the
6-tuple (B, T, Tv , V, Vv ,(-,-)), which has been shown in Proposition 3 to
satisfy RD1-RD3 and is known to have Q as its root system. All that remains
to be shown is that RD4 holds. Let y,, ... , y¡ be as in RD4 so that

/ /
ß = 0Zy;    and   nc0Ny,.

i=i (=i
Let C be the real cone of V generated by {y,, ... , y¡} . Set

Q' = J2Za   (root lattice of n)
aen

and let C' := V'nC where V1 :=R®zß'. Note that C' is a proper polyhedral
cone of V' and that ß' is a lattice of V'. By Lemma 5, ß' contains a basis
{y[, ■■■ ,y'm} whose real cone contains C'. Finally T c X c C and hence
T c C'. Thus

(/ m \ m \ m

Similar considerations apply to T   .
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Corollary 1 (see also [Ddh]). Let S c X and let Ws = (ra\a e S). Then Ws
is the Weyl group of a set of root data. In particular, Ws is a Coxeter group.   D

Corollary 2 (see also [KW]). Let XeVy and let

XA:={aGX|(a,A)GZ}.

Then X   is the set of roots of a set of root data.      o

7. CONJUGACY OF BASES

Definition. Let
3 = (A,n,n\v,vv, (.,.))

be root data with root system X. We assume that V is finite dimensional. A
subset T of X is a base of X if with

B:=((a,ßv))aJ3er

we have
3r:=(B,r,r\v,v\ (-,.))

is a set of root data with corresponding root system equal to X.

Thus with the notation of the definition we have
(a) B is a Cartan matrix;
(b) X = WrT where Wx := (ra\aeT);

o
(c) V admits a fundamental chamber C relative to T and C ^ 0 whenever

the base field is R ;
(d) n is a base of X.

It is also clear that
(e) nv and Tv are bases of Xv .

Definition. Let X be the root system associated with root data 3. A subset
S1 c X is decomposable if

S = Sx U S2,        5, ¿ 0, S2 ¿ 0
and for all y, G Sx , y2eS2, we have (y,,y2) = 0 (=> ryjx = y, => r^ =
r r   => (y2, y^) = 0). Otherwise X is indecomposable.

Let 3 = (A,Y1,Ylv ,V,Vy , (■,■)) be a set of root data for X and let T be
a base of X.

Proposition 1.  n indecomposable o X indecomposable <=> T indecomposable.
Proof. Suppose that T decomposes into T, U T2 with (a,ßy) = 0 for all
a e T,, /? G T2. Then with the obvious notation we have W = Wr Wr , the
elements of Wr¡ and Wr^ commute, ^T,(T2) = T2, ^(T,) = T,',

(0) = <IFTi(T,),T2v) = (^^(ï,),^) = (^(T,),^^)),

3 We do not know under which conditions 2/1 admits a finite base.
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and
X=ITT(T) = ITTi(T,)UlTT2(T2)

is a nontrivial decomposition of X.
Conversely, if X decomposes as X, u X2 then set T, := T n X-, i = 1,2. If

T2 = 0 then (X,X2) = (ITTi(T,),X2) = (0), which is impossible («eï^
<a,av)¿0).

Since n is a base this argument applies equally well for n .    D

Theorem 2. Let 3 be a set of root data as above and let X be its root system.
Assume X is indecomposable. If T and T' are two bases of X then there exists
an element w of the Weyl group of 3 such that either wT = X' or -wT = T'.

Corollary. The Cartan matrices of any two bases of an indecomposable root sys-
tem X are equal to (up to reindexing the rows/columns). In particular the Cartan
matrix is an invariant ofL.   o

Let X be the root system of 3 . By an automorphism of X we shall under-
stand a pair (a ,ay)e AutK(ßK) x AutK(ß^) satisfying
Aut 1:   (tX = X and ctvXv = Xv ,
Aut 2:   (exa)v = ctvc*v for all a el,
Aut 3:   (x ,y) = (ox, crvy) for all x G ßK and y G ß^ .

Let Aut(X) denote the group of such automorphisms and identify W inside
Aut(X) via W i-» (w , w  ) .

Corollary. Let the notation be as above. Then

!T<Aut(X),        W xx Aut(3) = {1},    and
Aut(X) = W ■ Aut(^)    if X is finite,
Aut(X) = {±1} • W • Aut(3)   if X is infinite.   □

Proof of Theorem 2. Using the results of §4 we can assume that our base field
is R. Let F and C be the fundamental chambers for U and T. It suffices
to show that WC xx (±F) ^ 0, for in that case, seeing that both wC and F
(or -F) are equivalence classes for ~H, wC = ±F for some w eW. The
walls then being identical, ±u; Y = n.

o

If A is of finite (respectively affine) type, then the interior 3f(YY) of the Tits
o

cone is V (respectively an open half-space of V). In either case 3f(Yl) xx F or

k(Yi) xx (-F) ? 0 and hence WCn (±F) + 0 .
We can suppose then that A, and similarly the Cartan matrix B of T is

of indefinite type. By the last proposition, A and B are indecomposable.
Introduce a set JT in 1-1 correspondence with T and write

T = {Q(|/GJT}.

Let 3' and 3 be sets of universal root data for B and A with corresponding
root lattices ß and ß. Then using the obvious notation there are linear maps
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y/', yi for which
ÖR    *   ß,   ¿    ÖR
T      *     T

n   ^    n
X'     =>     X     £      X

imÀ'    -»    imA   «-   imÀ.

Choose I c JT with the following properties:
(a) I is finite and B1 := (Bij)i €I is indecomposable;
(b) B   is indefinite;
(c) Tl:=^{ai\iel) spans ßR

(although ßR and ßR may be infinite dimensional, ßR is finite dimensional).
Since B   is indecomposable and indefinite there is an imaginary root y G

imA'   (positive relative to T) such that
(i) supp(y') = 1;
(ii) (y,ayj) < 0 for all ; G I (see [Kac]).
Let y/'(y) =: y e imA and choose y e imA with y/(y) = y.
Now

(y,a])<0   for all j e JT

(by construction and because supp(y') = I) and hence

(y,a])<0 for all; G JT,

with strict inequality on I. However, we claim that

(y,aj) < 0 for all; G JT.

For suppose that (y, a. ) = 0 for some ;'(e JT\I). Write

f' = z2Ct&'l' C:>0-
«61

Then
y = z2cia¡

¿61
and

0 = (y, qJ) = J3 ^.(a,., aj) => (a;, a¡) = 0   for all i el.
¿61

But a   lies in the span of Ï, so 2 = (a-,a.) = 0. This contradiction shows
that -y G C.

Since no hyperplane H   meets C,

(*) (y,aV)/0   for all a G X.

Now y g imA+  (relative to n). Suppose that y g imA+. Choose w e W so
and therefore

(wy,à ) <0   for all à e Yl.

that ht~(wy) is minimal and therefore
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Then _
(*) => (wy,av) < 0   for all ¿Gn

^ (wy,av) <0   for all a eYl
=> -ujy G F.

Thus -wy e FxxwC. If ye imA_ we conclude similarly that wy e -wCxxF.
This is what we wanted to prove.

Finally, there is no w e W with ujF = -F (in the nonfinite case) since
then wl.+ = X_ , contradicting the finiteness of the length function l(w).   Q
Remark. Maxwell's Demon shows that Aut(T) can be infinite. More precisely,
one can show that for the Demon Aut(T) ~ Aut(3)/±W is infinite dihedral.

We finish this section by describing an algorithm for computing bases of
subroot systems. Let 3 = (A, Yl, nv , V, Vv , (•, •)) be a set of root data. Let
X be its root system and let Í2 be a subroot system of X. Let ß,, ß2, ... be a
total ordering of Í2 n X+ in such a way as to respect increasing height (relative
to the natural expression in terms of FI). A base T of Q can be found by
setting

(i)  jJ,eT,
(ii) if n > 1 then ßn ¡î T if and only if

/*„n (£>/?,.) ¿(0).

In other words, T is constructed so as to satisfy WIP.

8. Relations with Lie algebras

Let 3 = (A, Yl, nv , V, Vw , (•, •)) be a set of root data over K with associ-
ated (real) root system X. We construct a Kac-Moody-like Lie algebra over the
K as follows: form the free Lie algebra c on generators ei,fi, ¡eJ, and form
the free product Vv * e where V is given an abelian Lie algebra structure.
Now factor out the well-known relations for all ij'eJ and for all h e V

[h,eß = (aj,h)ej,
[h,fj] = -{aJ,h)fi,

(adei)-Ai,+Xe] = 0 = {adft)-A"+lfj   if i*j.
We denote this Lie algebra by q(3) . It differs somewhat from the usual def-
inition of a Kac-Moody algebra inasmuch as {a. | / e J} is not required to
be linearly independent in V. Otherwise g = g(3) has the usual root space
decomposition

0=09°,        9°=V\

where X* is the root string closure of X. The real roots of g relative to  V
are precisely the elements of X.
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Following the conventional definition from finite-dimensional theory, we
have

Definition. Let 3 be root data with root system X and let 3' be a set of
subroot data with root system X'. We say that 3' is closed in 3 and X' is
closed in X if

a,ßet, a + ßel=>a + ßet.

Proposition 1. Let 3 be a set of root data with root system X and let 3' be a
set of subroot data of 3 with root system X'. The following are equivalent.

(i) 3' is closed in 3.
(ii) Ifr is any base of l! then \/a,ßeT, a-ß <£ X.

(iii) The subalgebra of q(3) generated by V    and the root spaces {ga | a e
±T}, where T is any base of X', ¿s a homomorphic image of q(3')
by a homomorphism that preserves root spaces and maps V   c q(3')
identically onto itself in f.

Proof, (i) => (ii) Let T be a base of X' and suppose that a, ß e T and a-ß e
X. Then rß(a - ß) = rßa + ß e X. Since rßa,ß e X' so does rßa + ß by
assumption. Thus also a - ß e X', which violates WIP.

(ii) => (iii) Let g = ß(3). For each a e T, ±a e X so ga + Kav + g"a
is isomorphic to si2(K). Let ea e ßa , fae g_a with [ea,fa] = ay . Given
a, ß e T, a ^ /?, let us show that a - ß £ A (namely the root string closure
of X). Otherwise y := a - ß e A\X so that X is not of finite type. By §3,
Proposition 3, we can choose y G A\X such that y —y y . We may assume that
y G A_ . Choose w e W such that wy satisfies (wy ,aj) > 0 for all j eJ.
Then by §2, Proposition 3, we have (wy ,a ) > 0 for all f e J. Thus wy is
in the closure of the fundamental chamber and hence y lies in the Tits cone
3?. Now rß(a-ß) = a + nße3f with n =-(a,ßv) + l > 0 since a,ßeT.
Thus a-ß and a + nß both in 3f implies that a G 3f by convexity. Thus
w a is dominant for some w e W and therefore X is of finite type, contrary
to assumption. (This argument assumes that k = R and X is indecomposable.
We leave to the reader to check that this assumption can be made without any
loss of generality.)

Having established that a - ß £ A we have

[ea,fß] = Saßa/.

The identities [h,ej = (a,h)ea, [h,fj = -(a,h)fa for all a e X, h e Vv
are obvious. Since adeu is locally nilpotent in g and since [fa,eß] = 0 if
a ^ /?, it follows from s (2-theory that

(ad<?J eß = 0
and likewise that

(ad/J-^7^0.
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Thus there is a surjective homomorphism

2(3') - f
that is the identity map on V    and maps root spaces onto root spaces.

(iii) =► (i) Let a, ß e X' and suppose that a + ß e X. Then in g(3) the
a-string through /? contains a + ß, so [gQ,g^] ^ (0). Since ga,g^ C f, the
corresponding root spaces Qa and $ß in g(3') satisfy [g/af,g'^]^ (0) and
hence a + ß is a root of g(3'). Thus either a + ß e if , which is what we
want, or a + ß is an imaginary root in the string closure A' of X'. But then
2(a + ß) e A' and hence 2(a + /?) G A. This is impossible since a + ß e X.    D

Conjecture. The homomorphism in part (iii) of the proposition is an isomor-
phism. It is evident that the kernel a of this map is a ß-homogeneous ideal of
8(3') which intersects Fv trivially; that is, o is a radical ideal. Thus in the
symmetrizable case a = (0) and we indeed have an isomorphism. In the case
that T is a subset of n it is an isomorphism in any case [MP].

Corollary. Let I'd be a closed subroot system of the root system X. Then the
subalgebra of q(3) generated by the root spaces ga, a el!, is a homomorphic
image of q(3') by a homomorphism which preserves root spaces and maps Vv
identically onto itself. This is an isomorphism if A is symmetrizable.   D

Example 6. Consider Examples 1 and 3. The set of subroot data 3' is closed
in 3 and Q is a closed subroot system of X. This is easily checked by
applying Proposition 1 (ii) to T. Thus in the rank 3 hyperbolic Lie algebra
q(3) , the subalgebra generated by the root spaces ga , a e Í2, is an isomorphic
image of q(3') . A comparison of q(3') and the usual Kac-Moody Lie algebra
q(B ,R) defined by a realization of the Cartan matrix B is interesting. The
Lie algebra q(B ,R) has an infinite-dimensional diagonal subalgebra fj which
includes 0q€T, Kav where T' is a set in 1-1 correspondence with T. Since B
has row rank 3, f) has additional elements that serve to make the elements of T
appear as linearly independent functionals on \). The derived algebra q(B ,R)
has diagonal algebra 0q€T, Kq . There is an obvious homomorphism y/ of
q'(B ,R) onto g(3) in which 0aGT, Kav —> Vv . The kernel of this map is a
codimension-3 ideal in 0a€ï, KQ which is in fact the center of q'(B ,R). In
the first place the radical of q'(B ,R) is (0) and hence the kernel of y/ lies in
0a€T, K^ . Then it is obvious that ker y/ must be central. But the center of
q(3') is (0) since the row rank of B = 3 = dim Vv .

Example 7 (The Leech lattice and the Monster Lie algebra). The reader is re-
ferred to [CS, Chapters 28 and 30] for more details.

The unique unimodular lattice of signature (1 ,-1) in 26-dimensional real
space V is

24 Ï

J2X,-X25G2Z\A25'1 := \x = (x0, ... ,x24;x25)GZ26u(Z + i)26
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with associated symmetric bilinear form
,     I     > _     2 2   _     2

Let
w:= (0,1,2, ...,24;70),

which is isotropic, and define the set of Leech roots

n:={xGA25,1|(x|x) = 2, (x|uj) = -1}.

The Leech roots form a set which is in natural 1-1 correspondence with the
Leech lattice. Furthermore

L:={(x|y)|x,yGn}

is a Cartan matrix (indexed by the infinite set Yl).
We claim that

Jt:=(L,n,U,V,V, (•!•))
is a set of root data.  Axioms RD1-RD3 obviously hold.  We sketch how to

25   1prove RD4. First, the Leech roots generate A ' as a lattice. This is easily
seen from the list of Leech roots in Chapter 28 of [CS]. We have to find a

ye   i

basis for A ' that contains n in its positive cone. We use the method of §6,
Theorem 1. According to [CS], if Ylk := {x e Yl\x2i = k} then k > 0 and no
is a base for a root system of type D25. Let • denote the usual scalar product
in R (coordinates indexed from 0 to 25) and let e25 be a unit vector along
the x25 axis. The closed convex cone

C = ix G R26

contains all x G R26 with x25 > 1 and (x | x) < 2. In particular C D (Jk>l nfc .
The dual cone C+ of C has nonempty interior.

yc 7fS
Let R denote the subspace x25 = 0 of R and let F be a proper closed

polyhedral cone in R containing no (it exists because no is a base for D25).
Let E = Ex R>0 be the prism above E. Then the dual E+ of E is E+ x R>0
where E+ is the dual of F. It is clear that U := (C+)° xx (F+)° / 0 since
(C+)° is completely symmetric with respect to the x25-axis. Thus U contains a
basis B = {uQ, ... , u25} for the dual lattice A25 , (relative to •). Then a basis
{u0, ... ,u25} of A25 , dual to B has the property 2^R>0w( D CUE dYI so
n c E^oz>o"/- This Proves RD4- We have Aut(n) ~ Co^ (the Conway
group extended by all translations of the Leech lattice).

The resulting Lie algebra g(^#) is the Monster Lie algebra of [CS, Chapter
30] (already reduced so that the diagonal subalgebra is of dimension 26).
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