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ON INFINITESIMAL ISOMETRIC DEFORMATIONS

KETI TENENBLAT1

Abstract. We consider an analytic /i-dimensional submanifold M of the

Euclidean space EN, where N = n(n + l)/2, and we prove the existence of

analytic, nontrivial, infinitesimal isometric deformations, in a neighborhood

of any point of M, which admits a nonasymptotic tangent hyperplane.

1. Introduction. Rigidity and isometric deformation problems have been

extensively investigated for surfaces in the three dimensional Euclidean space.

The theory for submanifolds of the Euclidean space, with codimension one,

was developed by E. Cartan [2]. As for submanifolds with higher codi-

mension, very little is known besides the classical rigidity theorem of

Allendoerfer [1], which imposes an extremely strong hypothesis on the

submanifold. In this paper we consider analytic, «-dimensional submanifolds

M of the Euclidean space EN, where the dimension N = n(n + l)/2 and we

investigate the infinitesimal isometric deformation problem.

In §2, we obtain the system of partial differential equations, which

determines an infinitesimal isometric deformation. This is the linearized

version of an isometric deformation.

In §3, we introduce the concept of asymptotic tangent hyperplane at a

point of M and we characterize the set of all such hyperplanes.

Finally in §4, we prove the following

Theorem. Let M be an n-dimensional, analytic submanifold of EN, N = n(n

+ l)/2, with the induced metric and such that the inclusion i: M —» EN is

nondegenerate. If x E M is such that there exists a nonasymptotic tangent

hyperplane at x, then there is a neighborhood of x in M, which admits an

analytic nontrivial infinitesimal isometric deformation.

Other results, involving the notion of asymptotic submanifolds, can be

found in [3], [4] and [5].

I am grateful to Professor S. S. Chern for suggesting this problem and my

colleague C. E. Harle for helpful comments.

2. Infinitesimal isometric deformations. In this paper, all manifolds and

maps are assumed to be analytic. Consider an immersion/: A/-» EN, where

M is an /i-dimensional manifold and EN is the Euclidean A/-dimensional
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space. We define a deformation of the immersion /, to be a map F: I X M -»

EN, where / = [ —e, e] for some £ > 0, such that for each / G I, the map Ft:

M^>EN given by Ft(x) = F(t, x) is an immersion and F0 = f. Each

immersion F, induces a Riemannian metric g, on M. A deformation F is said

to be an isometric deformation if g, = g0 for each t G /. Now we consider the

linearized version of isometric deformation. A deformation is said to be an

infinitesimal isometric deformation if (d/dt)g,\l=0 — 0, i.e. for all vector fields

X,YonM

i (F,,(X), Flt(Y))

where < , ) denotes the Euclidean metric.

Let F be a deformation of an immersion/: M -> EN. For each x E M, let

Z(x) be the tangent vector to the curve tv-*F(t, x) at / = 0. We call Z the

deformation vector field of F. We say that F is a trivial deformation if there

exist a skew-symmetric matrix A and a vector v such that for all x E M,

Z(x) = Af(x) + v.

It is not difficult to see that a deformation F is an infinitesimal isometric

deformation if and only if for all tangent vector fields X, Y on M

(DxZ,Y) + (X,DYZ) = 0 (1)

where D denotes the usual connection in EN (we have identified M with

f(M)). If we denote Z = T + B, where T and B are respectively the

tangential and normal components of Z, then equation (1) is equivalent to

(VXT, Y) + (VYT,X) + 2(s(X, Y), B) - 0 (2)

where V denotes the Riemannian connection on M and s the second

fundamental form.

Let x„ .. ., x„ be a coordinate system defined in a neighborhood F of a

point x E M. We denote by 3/3x, the coordinate vectors and gtj = <3/9x„

8/8x/>, 1 < z, / < zz. We choose an orthonormal frame £, on V, a = n +

1,. .., N, normal to M. We adopt the following indices convention

1 < ij, k < n,        n + 1 < a, ß, y < N,

and the summation convention with regard to repeated indices. If we consider

T = f'3/3x, and B = b"^,, then equation (2) is equivalent to the system

3^ dt±
g¡k dx¡ +&k J3^

where 1 < i < / < n and h¡¡ = <j(3/3jc„ 3/3x,), £,>•

3. Asymptotic hypersurfaces. Let M be an zz-dimensional submanifold of

EN, N = n(n + l)/2, with the induced metric and such that the inclusion z:

M -» EN is nondegenerate. For a fixed point x G Ai, an /-dimensional,
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0 < / < n, linear subspace L of the tangent space TXM is called asymptotic if

there exists a vector | normal to TXM, such that for any X, Y G L, (s(X, Y),

£> = 0. If / = n — 1 we have an asymptotic hyperplane at x. An /-dimensional

submanifold V of M, I < n, is called asymptotic at x G V if 7^ K is asymptotic

and asymptotic if this is true for each x E V. The notion of asymptotic

submanifolds in a more general context can be found in [3].

The asymptotic hyperplanes at x E M can be characterized as

follows:choose an orthonormal frame e,,..., eN defined on a neighborhood

of x, such that ex,. .. ,e„ are tangent to M and e„+1, .. ., eN are normal to

M. Let ux,. .. ,uN be the dual frame. We denote by H" the second

fundamental forms with respect to this frame, i.e. s(X, Y) = H"(X, Y)ea.

From the theory of a submanifold of an Euclidean space, we know that

wa = 0 on M and Ha = hfu' ® J, h¡¡ = hß. It follows from the definition,

that an (n — l)-dimensional linear subspace of TXM, given by u¡u' = 0 is

asymptotic if and only if there exists aa E R, not all zero, such that aaH" = 0

when restricted to the hyperplane u¡u>' = 0. It is not difficult to prove that this

is equivalent to saying that there exist aa, c, G R not all zero, such that

aaHa s u¡u' ® cj<¿>.

This reduces to a homogeneous equation in u, of degree n, P(ux, ...,«„) = 0,

which can be described as follows: we consider the matrices

fo- •    Ç-

0 0

0 0
Vi     S+2

0

0 up

where 1 < p < n - 1 and U. has the first (p - 1) rows equal to zero.

(4)

¿o =

Afl+l L/1+ 1
11 "22

/!,, «22

nn

hi

+ i

4-2

Lfl+l A"+l
"fip+l       "pp + 2

lN ¡,N
npp + l       "pp + 2

Ln-t-1
hpn

K"* (5)
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1 < p < n — 1. Then

P(ux, w2."«) = det
i/o

A, An-l

= 0. (6)

Hence the asymptotic hypersurfaces of M are the solutions of the first order

partial differential equation defined by P(ux, . . . , u„) — 0.

In our theorem, we prove that there exist nontrivial, infinitesimal, isometric

deformations in a neighborhood of any point of M, for which the polynomial

P(ux,.. . ,u„) = 0 is not an identity.

4. Proof of theorem. The proof is essentially based on the Cauchy-Kowa-

lewsky theorem.

(a) Let x,,. . ., x„ be a coordinate system defined in a neighborhood V of

x in M, such that the coordinate vectors 3/3x, are orthonormal at x, i.e.

g¡j(x) = 8¡j. Moreover we choose an orthonormal frame £, in V normal to M.

We have to prove the local existence of a vector field Z = i'3/3x, + ¿za£,,

which satisfies the system of differential equations (3). This system can be

written in matrix notation as

2 Q'-P- +Rt + 2Db = 0
1 = 1 ÖXi

(?)

where

/ =

t"

,    b =

,71+1

Q' and R are N x n matrices and D is an TV x (N — n) matrix.

By assumption the inclusion of M in EN is nondegenerate, hence the

matrix D is of maximal rank N — n. Therefore we can consider (7) as

2
1=1 ô'

3X;

r

R
t + 2

d

D
¿> = 0 (8)

where D is a nonsingular square matrix in D. It follows that

-?-8"(,?,«1|ti'}

Substituting this relation in the first set of equations in (8) we get

2 (<,' - dD-iQ')£ + (r- dD~xR)t = 0.
/=!

(9)

(10)

This is a system of zz equations with zz unknowns to which we apply the

Cauchy-Kowalewsky theorem.
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The characteristic equation for (10) is given by

det Sfr'-do-'ß'H-
1=1

= 0. 01)

In (b) we prove that at the point x this equation is equivalent to

P(ux, . . . , un) = 0 given in (6). Therefore the characteristic hypersurfaces of

the system (10) are the asymptotic hypersurfaces of the manifold M.

We consider a hypersurface S of M, which is not asymptotic and contains

x (exists by assumption). We observe that if a deformation vector field Z is

trivial, then the tangential component of Z is of the form

ZU
j,k \

+ V,
9jct

g
kj_

a*.. (12)

where /': M -» EN is the inclusion map, A is a fixed skew-symmetric matrix, v

is a vector in EN and gkJ is the inverse matrix of gkj. Since the space of vector

fields of the form (12), along the submanifold S is finite dimensional, we can

always choose an analytic tangential vector field tJd/dxj in a neighborhood of

x along S which is not of the form (12). With this initial condition fixed, it

follows from the Cauchy-Kowalewsky theorem, that locally there exists a

unique analytic tangential vector field satisfying (10) and the initial condition.

Next using (9) we determine the normal component and hence we get a

nontrivial deformation vector field Z. Therefore for e > 0 sufficiently small

and V a neighborhood of x in M, the map F(r, y) = i(y) + rZ(y), r E

( - e, e) and y E V is a nontrivial infinitesimal isometric deformation of the

inclusion i: M —> EN.

(b) It remains to prove that at x (11) is equivalent to (6). To fix ideas we

assume the following order for the indices i,j of the system of equations (3):

i = / = 1, . . ., n;    i = 1,/ = 2, . . ., n;

i = 2,j = 3, . . . , n, . . ., i = n - \,j = n.

With this order, we can describe the matrices D and Q' of equation (7) as

2D =

2      'Ar

An-l

Q'-

GLi

where   'A0,. . ., 'An_x are the transpose matrices of (5); G0 is an n X n

matrix defined by
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Gk-
0 0
2g1(      2g2,

0 0

0

0

2&,

0

where the nonzero elements are on the z'th row; and Gp, 1 < p < « — 1, is an

(n — p) x zz matrix defined by

if p<i   GL =

0       0

0       0
g\p    gip
0       0

0       0

if/-i   CL'-

£w+i

Si,+ 2

0

0

o
~>(z -;z)throw,

Äll'+l

#717 + 2

ÖItI Ô7I71

if p > z  g; = o.

With the same notation as in part (a) we consider the product of the

matrices

/„     -dD~x

0     D~x

2,y«,   2d

2,ß'",    2TJ

2,(q'- dD-lQ')u,       0

27;N-n

where /„ denotes the zz X zz identity matrix. Therefore h, satisfy (11) if and

only if

det 2ô'",   2D = 0. (13)

Now we remark that the coordinate system was chosen, such that at x,

g¡j(x) = 8¡j and it can easily be verified that
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2ô'(*M =

where 'UQ • • •  'U„ _, are the transpose matrices of (4). Therefore it follows

from (13), that at x (11) is equivalent to (6).   Q.E.D.
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