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Introduction. Let M be a differentiable manifold with an affine
connection of class C. For each point p in M we denote by L the
group of all linear transformations of the tangent space M at p.
The infinitesimal linear isotropy group K is the subgroup of L
consisting of all linear transformations of M which leave invariant
the torsion tensor (T), the curvature tensor (R), and all their suc-
cesive covariant differentials (VT), (WT), -.., (VR), (VR), 3.
Let A(M) be the group of all affine automorphisms of M, H the
subgroup of A(M) consisting of all elements of A(M) which fix the
point p, and dH the linear isotropy group determined by H. In

2, we shall investigate sufficient conditions that dH-K at each
p in M, and treat some applications. We discussed similar problems
in a Riemannian manifold 6, 7. Throughout this note we make
use of the summation convention.

1. Preliminaries. Lemma 1. Let M be a differetiable mani-

fold wih an ane connection of class C. If f e H, hen (df) e K
at each p in M.

Proof. Let B be the frame bundle of M, and let the structural
equations be

f induces on B a transformation f in the natural way. Taking a
coordinate system {x, ., x} around p in M, we introduce a coordi-
nate system {x, ., x, X,..., X} in B. Then we have

pP-YXXT,
P,,,.. -X X

where the matrix [Y is the inverse matrix of X and Tq are
the components o the torsion tensor T with respect to the coordinate
system. Since f is an affine automorphism of M, we have

Denoting by ]]a]] the matrix defined by (df)(O/OxO-a(/Ox), and
by ]]b]] the inverse matrix of a], we get from (1) that
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ba,a T(z(p))- T(x(p))- V VTq(X(p)) V VTi(x(p)).imm m
These mean that (df) leaves invariant the torsion tensor at p and
all their succesive covariant differentials. Similarly we can show
that (df) also leaves invariant the curvature tensor at p and all
their succesive covariant differentials.

Let M be an analytic maniold with an analytic affine connection.
Take a normal coordinate system {x, ..., x} at o in M, whose coordi-
hate neighborhood is U. Let k be an element of Ko, and [anJ the
matrix defined by k(/x)-a.(/x). Then we can choose V, a
connected open neighborhood of o in U, such that the transformation

f defined by
y-a.x(i 1, 2, ..., n)

is a diffeomorphism from V into U. Let Fo be the rame {o, (8/OX)o,
.., (8/SX")o}. For each p e U(po) we put F-voFo where Vo is

the parallel translation along the unique geodesic rom o to p. Thus
we have an analytic local cross section I rom U into B. By putting

P.--IP, S. IS, we obtain analytic unctions P(x), S.(x)
on U. Then we have or tx-(tx, ..., tx)

(0)2(/t ),:0P(x)-x x,V vT
Remarking that k belongs to Ko, for y-a.x we have the ollowing.

t VqT(0)
=a ax x"v
iAATPl= v... VT(O)

-abb 8t P tx-( / ,( ).

On the other hand, P.(O)- T.(O)--T(O)-abbP(O). P(x)
being analytic on U, we may assume that

n=0

Consider the transormation f" y-a.x. Then we have

Pi(ty)- (t/n ) (o/ot)P.(ty)
n=0 t=0

abb 0 Ot P txE (t/n.) ( / ,( ).
n=O t=O

Therefore we have
2 P abbPa(tx).

Similarly we can prove that
s s(y)-abbbS(tx)

Consider the forms O(x, dx), O.(x, dx) defined by 0-I#, 0.-I#.
on U. We substitute tx for x, then the following (4) and (5) hold
as is well known.
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0 xdt+ (t, x, dx) - dx)O-O(t, x
(4)

(0, x, dx)-O, .(0, x, dx)=0.
’/t-dx + xj.+Pj.(tx)x

(5)
,./t S.(tx)x .

-z Then we haveWe substitute in (5) y=a.x -a., .=.
from (2) and (3),

O/t dy +y.+P(ty)y,
oei./ot- si.(ty)ye.

Since (0, y, dy)-O, .(0, y, dy)-O, according to the uniqueness
theorem of differential equations, we have

t ,dx),o(t, y, dy) e’(t, x, dx), .(t, y, dy) ( x
which are equivalent to

O(x dx) 0 abO (x dx)O(y, dy) a (, dy)-
Thus we get the following.

Lemma 2. Let M be an analytic manifold with an analytic

ane connection, o a point in M, and k an element of Ko. Then
there are a connected open neighborhood V of o and a diffeomorphism
f from V into M, such that

where k(O/X)o-a.(O/OX)o and b.]] is the inverse matrix of
Any open subset of M has an affine connection induced from

that of M.
Lemma 3. Let M be an analytic manifold with an analytic

ane connection, o a point in M, and k an element of K,. Then
there are a connected open neighborhood V of o, and an ane iso-
morphism f from V into M such that f(o)-o.

Proof. Let U be the normal neighborhood of o in Lemma 2,
and I the local cross section from U into B. Let f be the diffeo-
morphism from V into M induced by k in Lemma 2. It is clear
that f(o)- o. Denoting by w the components of the affine connec-
tion in the coordinate system, we have

2.-dx,
(2) X8-dX+wX.
Consider the family of frames {F} on U which we considered in
Lemma 2. Denoting each vector of F by L-l(O/x), we define

x by
k3 X-Xl

Applying $foI on (1), we get from Lemma 2,
l)a-a(4) (f

Let be the transformation induced in B by f. Then it is clear that
fX.-ai2.

Applying $] on (3) we get from (3) and (4),
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5 afx aix.
Applying 3I on (2)
(6) ’l -dl+wl.
From (3) and (6) we get
(7) ~X-dX+OX.
Applying on (7), we get rom Lemma 2 and (5) f-. It is
clear that f=. Thereore f is an affine isomorphism rom V
into M.

2. Main theorem and its applications. In this section we
denote by G the identity component of a Lie group G.

Theorem 1. If M is a connected, simply connected, analytic
manifold wish a complete analytic affine connection, then dH--K
at each p in M.

Proof. We have proved in Lemma 1 that dHcK for each p
in M. Let k be an element o K,. By Lemma 3, k induces an
affine isomorphism f rom V into M, where V is a connected open
neighborhood of p. Since M is a connected, simply connected analytic
manifold and the connection is complete analytic, this affine iso-
morphism f can be uniquely extended to an affine automorphism
f’(5 p. 255). Clearly f’(p)-p, and (df’)-k. Thereore we have
KcdH.

Corollary. Let M be the manifold in Theorem 1. Then each
element k e K induces a unique affine automorphism f on M such
that f(p)-p and (df) k,

In act, let g be an affine automorphism of M such that g(p)-p,
and (dg)-k. Then rom f(p)-g(p) and (df)- (dg), we get f= g
on M(5 p. 254).

In 1927, E. Cartan proved the ollowing theorem (1 p. 84).
Let M be an affine locally symmetric space. If a linear trans-

formation of M leaves invariant the curvature tensor R at p, then
this induces a local affine isomorphism in M.

We shall treat this problem globally by imposing some conditions
on M.

Theorem 2. Let M be a connected, simply connected, complete
affine locally symmetric space, then K-dH at each p in M.

Proof. Since VR=0 and T=0, M is considered to be an analytic
manifold with an analytic affine connection (5 p. 263). By Theorem
1, the conclusion ollows.

Denoting by h(p) the linear holonomy group of M at p, h(p) is
the restricted linear holonomy group.

Lemma 4. Let M be an affine locally symmetric space, then
h(p) is contained in K at each p in M.



No. 73 Infinitesimal Linear Isotropy Group 557

Proof. Take a local coordinate system {x, ., x} around p.
Since M is considered to be an analytic manifold with an analytic
affine connection, the Lie algebra of h(p) consists of the following
matrices 53.

R,R, where (R,). .,).

We express each element of K by a matrix with respect to the base
{(O/Sx), ..., (8/8x)}. Since T=O and vR=0, K consists of all
matrices ]]a.]] which satisfy baaa,(R)-(R,), where [[b.][ is the
inverse matrix of ]a.]]. Therefore the Lie algebra of K consists of
all matrices ]]. which satisfy

(R)+p(R(R)+(R) )=0.
Since M is locally symmetric, from the Ricci identities,

-R R -0,V,VR.-VV,R.-R,R-R,,R-R,R
(R,)(R (R (R (R,)+)+ + (Ri,,) (R)(R) O.

These mean that the Lie algebra of h(p) is contained in the Lie
algebra of K. Therefore we have h(p)cK.

Theorem 3. Let M be a connected, simply connected, complete
ane locally symmetric space, then the linear holonomy group h(p)
is contained in dH at each p in M.

Poof. Since M is connected and simply connected, h(p)=h(p).
By Theorem 2, K=dH at each ,p in M. Therefore the conclusion
follows from Lemma 4.
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