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1. Introduction 

An important discussion of minimal repair models is given in 

the review paper Bergman ((1985),p.24). Here the time ~ to failure 

of a device under study is assumed to have an absolutely continuous 

cumulative distribution function F and failure rate function r. 

In the terminology of Bergman (1985) a statistical minimal repair of 

the device means that if a failure occurs at time t then, after 

the repair, the survival probability to time t+s equals 

(1-F(t+s))/(1-F(t)) and the failure rate function equals r(t+s), 

s~O. However, the author points out that we have to distinguish 

between statistical minimal repair, and physical minimal repair in 

which case the failed unit is restored to the exact physical condi­

tion as it had just before the failure. He argues that if the popu­

lation, from which the device is taken, is not homogeneous, then 

each failure gives us some information on the subpopulation to which 

the device belongs. 

This difference is made clearer by Arjas and Norros (1987) who 

simply use the term "black box" minimal repair for statistical mini­

mal repair. To them (and to me) this seems to be a rather abstract 

notion for a device consisting of several components by simply ask­

ing: How does one repair a black box without knowing what is in­

side? A main point of these authors is that the notion of minimal 

repair must be related to the information at hand. The paper Aven 

(1983) on optimal replacement under a minimal repair strategy is in 

this spirit and generalizes earlier work by Barlow and Hunter 

(1960). Some further references to papers in this area are given in 

Bergman (1985) and Arjas and Norros (1987). 

In the latter paper minimal repair transformations are shown to 

be special cases of a general transformation of hazard rates. Further-

more, it is shown that the "black box" minimal repair modeling leads 
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to a stochastically longer total life length than the socalled 

F-minim~l repair, where F stands for the information which identi­

fies the state of the considered device. In the first part of the 

present paper we question the fruitfulness of the F-minimal repair 

concept of Arjas and Norros (1987). For instance it is indicated 

that for a system of components this does not incorporate the natu­

ral minimal repair based on information on the component level. For 

the case of independent components, some results are also given 

comparing "black box" minimal repair of a system with the natural 

minimal repair based on information on the component level. 

The socalled Natvig measure of the importance of a component in 

a coherent system was introduced in Natvig (1979). This measure is 

for the case of components not undergoing repair proportional to the 

expected reduction in remaining system lifetime due to the failure 

of the component. In Natvig (1982) this reduction was interpreted as 

the increase in remaining system lifetime due to a "black box" mini­

mal repair of the component at its time of failure. Note that a 

"black box" minimal repair of a single component device is not an 

abstract notion. A further treatment of this measure is given in 

Natvig (1985) and in Norros (1986). The latter cleverly applies a 

martingale approach to treat the case of dependent components. 

In the second part of this paper we consider the reduction in 

remaining system lifetime due to the failure of a specific module of 

several components and explore the relation to the reduction in 

remaining system lifetime due to the failure of a component inside 

the module. Again this former reduction also equals the increase in 

remaining system lifetime due to a minimal repair of the module at 

its time of failure. The expected value of this reduction/increase 

is proportional to the Natvig measure of the importance of the module 

as treated in our papers mentioned above. In his Ph.D. thesis Xie 

(1987) considers this measure and treats, for the case of independent 



- 4 -

components, without any reflection this minimal repair of the module 

as a "black box" minimal repair. On the basis of this some results 

are derived. Here we argue, as implicit in our earlier papers and as 

Arjas and Norros (1987), that the minimal repair of the module often 

more reasonably should be based on information on the module's com­

ponents. (These arguments were in fact presented by this author as a 

faculty opponent in the disputation of Xie's thesis before seeing 

the ideas of Arjas and Norros (1987).) This leads to results dif­

ferent to the ones derived by Xie (1987). 
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2. Objections to the F-minimal repair concept of Arjas and 

Norros (1987) 

We start by reproducing the main steps of Arjas and Norros 

(1987) leading to the F-minimal repair concept. Consider a probabi­

lity space (C,1,P), and an increasing family of sub-a algebras F = 

(Ft)t)O of jr. Let S be a totally unpredictable finite F-stop-

ping time and denote by N = (N ) the 
t t)O 

counting process Nt = 1 {t)S}' t)O. Let 

compensator of N. 

corresponding single point 

AF F 
= (At)t)O be the F-

S is viewed as the life length of a device and ~ as the 

available information at time t. While F is completely general, 

as a special case, the history generated by N is considered. This 

is denoted by ~ - <9 ) ~ is minimal in the sense that for any - t t)Q" 

other history F such that S is an F-stopping time, 9t C ~ 

must hold for all t. The G-compensator of N, AG, now satisfies 

t) 0, ( 2 • 1 ) 

where R(t) =- ln F(t) (F(t) = P(S>t)) is the cumulative hazard 

function corresponding to s. 

Consider now the change of distributions which arises from 

"exactly one minimal repair, taking place at the first failure. 

Under the ~-history, where this corresponds to the "black box" 

minimal repair, the transformed survival function is given by 

a~(s>t) = F(t) - jt(F(t)/F(s))dF(s) 
0 

= F(t) (1+R(t)) (2.2) 

The corresponding G-compensator, B~, becomes from (2.1) and (2.2) 

B: = ln(F(t/\S)(1+R(ti\S))] 

=A~- ln(1+A:) 
(2.3) 
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For a general history F the F-minimal repair is defined 

through the ~-compensator, BF, given by 

B~ = (2.4) 

As we see this definition it is a pure mathematical generaliza-
~ F 

tion of {2.3) just replacing the compensator A by A. Further-

more, for a device of components there seems to be no reason that 

the above defined F-minimal repair concept should incorporate the 

natural minimal repair based on information on the component level. 

A somewhat surprising result in Arjas and Norros (1987) is that the 

transformed life length corresponding to the F-minimal repair is 

stochastically shorter than the one corresponding to the "black box" 

minimal repair. However, one should have in mind that the above de-

fined F-minimal repair concept is not as general as one might wish. 

To clarify this, consider the simple binary system of three 

independent binary components depicted in Figure 2.1. 

2 

1 
3 

Figure 2.1. A simple binary system. 

Let the i th component have an exponential life length distri-

bution with failure rate A., i=1,2,3. Define ~ and F as the 
l. 

histories generated respectively by observing when the system fails 

and when each component fails. If S is the life length of the 

system, the corresponding ~-compensator follows from (2.1) 

t; - A2 ( t 1\S ) - AJ ( t 1\S ) - ( A2 + AJ ) ( t 1\S ) 

At = A1 { t 1\S ) - 1 n ( e + e - e ) ( 2 • 5 ) 
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Let now Si be the life length of the i th component, 

i=1,2,3 and consider the following event 

s 2 < s 3 = s < s 1 (2.6) 

Then parallel to (2.1) the F-compensator, evaluated on this event, 

takes the form 

- A.2 t - A.3 t - ( A-2 + A.3 ) t 

t!'= t 

ln(e + e - e ) O<:t<:s 2 

ln(e -A.2S2 -A.3S2 -(A.2+A.3)S2 
A- 1 ( tAS) - + e -e ) 

+ A. 3 ((tAS)-s2 ] s 2 <:t 

From (2.4) we now get on the same event 

-A. t -A. t -(A. +A. )t 
A.1 t - ln(e 2 + e 3 - e 2 3 ) 

- A-2 t - A. t - ( A. + A. ) t 
- ln[l+A.1t - ln(e + e 3 e 2 3 ) ] 

'Al {tAS) 

0 <:t <:s 2 

-(A.2+A.3)S2 
e )+A.3 [(tAS)-s 2 ] 

(2.7) 

The natural minimal repair based on the information on the 

component level given by (2.6), is a "black box" minimal repair of 

the third component at s 3 . The corresponding compensator is 

B*F = 
t 

- A- 2 t - A.3 t - ( A- 2 + A.3 ) t 
A.1t - ln(e + e - e ) O<:t<:s 2 

ln(e-A.2S2 + e-A.3S2 -( A.2+A.3)S2 
A-1 { t AS 1 ) - e ) 

+ A3 [ (tAS I )-S2] S2<:t (2.8) 
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Here s• is the time of the final breakdown of the system given by 

where s· 
3 

is exponentially distributed with failure rate 

independent of and 

and 

Noting the difference between (2.7) and (2.8) it is clear that 

in general the F-minimal repair concept does not incorporate the 

natural minimal repair based on information on the component level. 
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3. Comparison of "black box" minimal repair of a system with the 

natural minimal repair based on information on the component 

level 

Consider a system consisting of n components. 

= {: 
if the i th component functions 

X. ( t) 
l. 

if the i th component 

Assume also that the stochastic processes 

are mutually independent. Introduce 

X(t) =(X (t), ..• ,X (t)) 
1 n 

and let 

is 

={: 
if the system functions 

4>(X(t)) 
if the system is failed 

failed 

at time 

at time 

at 

at 

Let (i=1, •. ,n) 

time t 

time t 

t 

t 

Now let the i th component have an absolutely continuous life 

distribution F. (t) with density 
l. 

f. (t). Then the reliability of 
l. 

this component at time t is given by 

P(X. (t)=1) = 1 - F. (t) def F. (t) 
l. l. l. 

Introduce 

Then the reliability of the system at time t is given by 

P(~(X(t)=1) = h(K(t)), 

where h is the system's reliability function. The following nota­

tion will be used 

{ •.,x) = (x 1 •.. ,x. 1 , •,x. 1 , •.. ,x ) 
l. - 1.- 1.+ n 

We also assume the structure function ~ to be coherent. For an 

excellent introduction to coherent structure theory, we refer to 

Barlow and Proschan (1975a). 
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The following random variables are of key interest when concen­

trating on system behaviour after a minimal repair. 

X = remaining system lifetime just after the failure of the system, 

which, however, is immediately "black box" minimally repaired. 

Y. = remaining system lifetime just after the simultaneous failure 
~ 

of the i th component and the system. This component is, how-

ever, immediately "black box" minimally repaired. 

As in Natvig (1979,1982) let 

H-1 ( ) = . t u 
~, 

F. (t+u) 
~ H~ t(u) = 0 

~, F. (t) 
~ 

X 

~(u) 
X X 

- 1 - n 
= (Hl,t(u), .•. ,Hn,t(u)) 

X 

Note that the vector ~(u} gives the conditional reliabilities of 

the components at time t+u, given the state vector of the compo-

nents, ~, at time t. Furthermore, let 

I(i}(t) = h(1.,F(t))- h(O.,F(t)) 
B ~- ~-

be the Birnbaum (1969} measure of the importance of the i th compo-

nent at time t, which is obviously the probability of the component 

being critical for system functioning at t. Finally let 

I(i) 
B-P 

= (''' f.(t) I(i) dt 
0 ~ B 

be the Barlow and Proschan (1975b) measure of the importance of the 

i th component. This is the probability of a simultaneous failure 

of the i th component and the system or the probability of the i th 

component "causing" system failure. 

If we denote the life distribution of the system by F(t) with 

density f(t), we have 

F(t) d~f 1-F(t) = 1-h(~(t)) 
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f(t) = 
n oF. ( t) 
L (-1) 0 [Fi(t)h(1.,F(t))+(1-F.(t))h(O.,F(t))] ~t 

i=1 oF.(t) ~- ~ ~-
~ 

n . 
I r<~>(t)f.(t) 

i=1 B ~ 
= 

The following theorem is now more or less straightforward under the 

stated assumptions. 

Theorem 3.1 

P(X>u) = f~f(t)F(t+u) dt, 
o F(t) 

u ) 0 

1-x. x. 
P(Y. >u) 

~ 
= f~f. (t) L [~(1. ,x)-~(0. ,x)] IT F.(t) J F.(t) J 

0 ~ ( 0 ) ~ - ~ - '+' J J i'.! )"1"~ 

(1.,x) 
x h(~ ~- (u))dt 

1-x. x. 
= J~ f. ( t) L [ H 1 . , X)- H 0. , X) ] IT F. ( t) J F. ( t) J 

0 ~ ( 0 ., X) ~ - ~ - j 4:i J J 

Especially 

P(Y.>O) 
~ 

~ -

F.(t+u) (o,,x) 
~ - ~-

X ~--- h ( 1 i 1 !!t ( U) ) d t 1 

F. (t) 
~ 

u ),0 

(i) 
= 1B-P 

Also the following random variable is of interest. 

Y = remaining system lifetime just after the simultaneous failure of 

a component and the system. The component is, however, immedi-

ately 11 black box,. minimally repaired. 

Then obviously 

P(Y>u) = 1 P(Y.>u)I~~~ 
i=1 ~ 

The only stochastic comparison we have arrived at is the fol­

lowing. 
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Theorem 3.2 

Let the i th component be in series with the rest of the 

system. Then 

Proof. 

P(Y.>u) <:P(X>u), 
1. 

In this case 

- - -
F(t) = Fi(t)h(li,F(t)) 

f(t) = £. (t)h(l. ,F(t) > 
1. 1. -

F. (t)..L h(l. ,F(t) > 
1. ot 1. --: 

) f. ( t) h ( 1 . IF ( t) ) = f. ( t) F ( t) /F. ( t) 
1. 1.- 1. 1. 

Hence 

F. (t+u) 
P(Y. >u) = fa:>£. (t) 1. h(1. ,F(t+u) )dt 

1. o 1 Fi(t) 
1. -

" 
fa:> f(t) F(t+u)dt = P(X>u) 
0 F(t) 

u ) 0 

However, what we are really interested in comparing is P(X>u) 

and the conditional survival distribution 

P(Y.>u) 
P(Yi>uiYi>O) = P(Y~>O) , 

1. 

u > 0 

P(X>u) is the survival distribution of the system after a system 

failure and an immediate "black box" minimal repair of the system . 

P(Y.>uiY.>O) on the other hand is the conditional survival distri-
1. 1. 

bution of the system based on the information that the i th compo-

nent has "caused" system failure follawed by an immediate, natural 

"black box" minimal repair of this component. In Egeland (1988), 

using numerical integration techniques, it is shown for a parallel 

system of two independent components having exponentially distri-

buted life lengths with failure rate A1 and A2 , that 
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for all u > 0 if A1 = A2 = 1, whereas the strict inequality is 

reversed for all u > 0 if A = 1 
1 

and A2 = 3. This again indi-

cates that the stochastic comparison result of Arjas and 

Norros (1987) is mostly of mathematical interest. 
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4. On the reduction in remaining system lifetime due to the 

failure of a specific module 

As in Natvig (1979,1982) introduce the random variable 

Z. = reduction in remaining system lifetime due to the failure of 
1 

the i th component. 

In the latter paper this reduction was interpreted as the increase 

in remaining system lifetime due to a "black box" minimal repair of 

the i th component at its time of failure. 

Let the coherent system $ have the modular decomposition 

{~,xk}:= 1 and introduce the random variable 

Z = reduction in remaining system lifetime due to the failure of 
~ 

the k th module. 

Again this reduction also equals the increase in remaining system 

lifetime due to a minimal repair of the module at its time of 

failure. Since a module consists of more than one component, we feel 

that this minimal repair should not be of the "black box" type as in 

Xie (1987). Having in mind what is going on physically the minimal 

repair of the module should rather be interpreted as a "black box" 

minimal repair of the component in the module that "caused" its 

failure. This was done in Natvig (1979,1982) and will also be our 

approach in this paper. What we will explore in this section is the 

relation between z. for i E~ and ZM • 1 k 

Let now 
i m. 

{Kr} r!:l be the set of minimal cut sets containing the 

i th component. Introduce the following events 



where 

where 

II 
s<r 

m. 
u~ 

r=1 
u 

tE(O, Q)) 

max (x. )=1 
. . J 

'EK~-K~ 
J s r 
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u 
uE[O, CD) 

A 
r,t,.R.,u,!_ 

A = {X. (t-)=1 ,X. (t)=O} r,t, .t,u,!. ~ ~ 

n {x1 (t+u-)=1,x1 (t+u)=O} n { 0 {xj(t+u)=O}} 

j EK~- {i I .t} 

n {< • i'X(t+u)=( • i'!.>} n 
K K 

B. = 
~ 

r r 

m. 
u~ 

r=l 

{x. ( . ) (t+u)=l } 
~ m~n.rep. 

u 
(• i'!.) 

K 
r 

Ki-{i} 
r H 1 . I 0 I X) =1 

~- -

II 
s<r 

(X . ) =1 
J 

B = {X.(t-)=1,X.(t)=O} r,t,.!_ ~ ~ 

n {<· i'~(t)) = 
K 

<· ;'!.>} n { n. {x.(t)=o}} 
K~ jEK~-{i} J 

r r r 

We then have: 

{Z.>O} = A.U B. 
~ ~ ~ 

( 4. 1 ) 

Note that in the A. (B. ) event the i th component is an element 
~ ~ 

of a minimal 
i 

failure by cut set K that would have caused system 
r 

the failure of the .R. th (i th) component if the i th component had 
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not been minimally repaired. Since several minimal cut sets contain­

ing the i th component can fail simultaneously, we have chosen 

( • • 1 X) 
~­

Kr 
such that II 

s<r 
(x.) = 1. This ensures the 

J 

A and the B events to be disjoint. We must have 
r,t,.t,u,.! r,t,.! 

K!-{i} 
~(li,Q ,,!) = 1 to ensure that no minimal cut set, not contain-

ing the i th component, fails by the failure of the .t th component. 

Especially we get for the case of independent components 

m. 
P(Z.=O) = 1 

~ 
I~ f<D I 

r=1 0 ( • . 1 X) 
~-

II 
s<r 

max ( x.} 
. . J 

Kr 
. EK~-K~ 
J s r 

x. 
F. (t+u) J) x II F. (t+u) 

J . J 
j EK~- {i, .t} 

r 

Ki-{.t} Ki-{i} F.(t+u) 
r r ~ 

~(1.t,Q ,!_)~(1i,Q ,,!)f.t(t+u)------- du 
F. <t > 
~ 

1-x. x. Ki-{i} 
J - J r } + II (F.(t) F.(t) ) II F.(t)$(1.,0 ,x) f.(t)dt 

. J J . J ~- - ~ 

jtK~ jEK~-{i} 

as in the correction to Natvig (1982) except for missing the term 

Ki-{i} 
~(li,O r ,!_) there. The absolutely continuous part of the distri-

bution of z. is given in Lemma 2.1 and Theorem 2.3 of the latter 
~ 

paper. 

We now turn to the more difficult z~ and introduce the 

events 
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ul. 

r=1 

u 

u 
tE[0 1 ..,] 
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.u 
.tEl<~-~ 

u 
( • • 1 X) 

l. -
Kr 

II 
s<r 

max (x .)=1 
. . J 

j EK1 -K1 
s r 

C = {X.(t~)=1 1 X.(t)=O} r 1t1.t1u1y 1x 1. 1. 

c I 

r1tl.tluly1_! 

n {X a ( (t+u)-)=1 1 X0 (t+u)=O} n { . n {X. (t+u)=O}} 
~ ~ j EK~- { i, .t} -~ J 

n {<· . 1 X(t))=(· . ~y>} n { . n {x.(t)=o}} 
(Mk-K~)c- (Mk-K~)c jE(K~-{i})nMk J 

n {<· .,X(t+u)) 
Kl. -

r 

= (• .,x)} n {x.(. )(t+u)=l} 
Kl. - 1. ml.n.rep. 

r 

We then have 

{zM >O} = 
k 

U {C.UB.} 
i E~ 1 1 

( 4. 2) 

Note that in the C. event the .t th component must lie outside the 
l. 

module M since the i th component is the one that would have 
k 

caused module failure if it had not been minimally repaired. 
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Especially we get for the case of independent components 

m. 
P( z =0) = 1 - I 

~. i~ 
p 

r=1 

II max (x.) 
. . J 

jEK1 -K1 
s r 

s<r 

1 -y. y .-x . x . 
JCD J - - J J - J II. F.(t) II . F.(t) (F.(t)-F.(t+u)) F.(t+u) J 
0 j E (K~- {i}) ~ J j E~ -K~ J J J J 

1-x. x. 
[F.(t+u) J F.(t+u) J] 

J J 

i i -
K -{J.} K -{i} Fi(t+u) 

. II (F. (t+u)) 41(1 0 ,0 r ,x) 4>(1. ,0 r ,x)f 0 (t+u) du 
j EK~- { i I J. } -~ J A - - ]. - - A F i ( t ) 

II 
s<r 

max ( x.) 
. . J 

. EK1 -K1 
J s r 

Ki-{i} 
~(1.,0 r ,x)}f.(t)dt 

]. - - ]. 

1-x. x. 
II (F.(t) JF.(t) J) II F.(t) 

. J J . J 
j*K~ jEK~-{i} 

as is a somewhat simplified and again slightly corrected version of 

the expression given in the correction to Natvig (1982). Again the 

absolutely continuous part of the distribution of Z~ is given in 

Theorem 2.6 of the latter paper. 

It is now not hard to realize that z~ = z. 
]. 

for i E ~ iff 

the event c.u B. occurs. Hence 
]. ]. 

( 4. 3) z~ = I I z. ( I z. 
iE~ 

C.UB. ]. 

iE~ 
]. 

]. ]. 
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Especially 

EZM_ ( L EZ. 
K iE~ ~ 

(4.4) 

which was shown for the case of independent components in Natvig 

(1979). 

From (4.3) it also follows that z > 0 
Mk 

implies the existence 

of i E Mk such that Zi > 0. The reverse implication is on the 

other hand not true. Assume for i E ~ that A. occurs with 
~ 

1 E K;-~, and hence from (4.1) that {z. >0}. We can, however, not 
~ 

guarantee that the failure of the i th component causes the failure 

Ki-{i} 
$(1.,0 r ,x) = 1 
~- - and i E Ki the 

r' of the module ~· Since 

module cannot fail before the i th component at time t. It can, 
i 

however, fail after t along with say m E ~ n Kr at time t+v < 

t+u (assume for instance that the module is a parallel system). 

Since we can not guarantee that X . (t+u) = 1, the event 
m(m~n.rep.) 

c 
m is not necessarily occuring. In addition B is not occuring 

m 

since we do not have n (X.(t+v)=O) due to the fact that 
. J 

x1 (t+u) = 1. 

j EK~-{m} 
r 

Finally let Mk be a series system. Then we must have 

( • • I y) = 
(M -K~)c 

k r 

( • ,1). It is now not hard 
(Mk-{i})c-

to see that C. =A .. Hence from (4.3) and (4.1) 
~ ~ 
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z~ = L IA us z. = 
-K. i E~ i i 1 
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L I {z a·} z. 
iE~ i> 1 

{Zi>O}iE~ are disjoint, we get 

ZM = L z. 
k i E~ 1 

Especially in this case 

EZM.. = L EZ. ' 
--.K i E~ 1 

( 4. 5) 

(4.6) 

which follows from Theorem 3.7 in Natvig (1979) for the case of 

independent components. In this case also the existence of 

such that Z. > 0 implies 
l. z~ > o. 

i E M 
k 
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5. Some comments on the Natvig importance measure of modules 

as treated in Xie (1987) 

In Natvig (1979) the socalled Natvig measure of the importance 

of the i th component of a coherent system was introduced as 

n 
I (i) I ~ 

N = EZ. 1.. EZ. 
1 j=l J 

( 5 • 1 ) 

Correspondingly the Natvig measure of the importance of the k th 

module was introduced as 

(5. 2) 

Note that the importance of a module is relative to the specific 

modular decomposition it is a member of and depends hence totally on 

the whole modular decomposition. 

In Natvig (1985) the following simplified expression for 

was arrived at for the case of independent components 

EZ. 
1 

Xie (1987) suggests the following alternative to (5.2) 

n 
= EZ I L EZ. 

~ j=l J 

EZ. 
1 

(5.3) 

(5. 4) 

He claims it to be more reasonable, which we certainly doubt. It is, 

however, more convenient mathematically when comparing for instance 

(') (Mk) 
IN 1 for i E ~ and IN' . In fact this boils down to comparing 

EZ. for i E M and EZ , as in (4.4) and (4.6), so why bother 
1 k Mk 

with the normalization at all in this approach? 

When computing (5. 4) Xie ( 1 987) is using as numerator 

Ez* J'S> FM (t) (-ln 
- (~) 

(5.5) = FM (t))IB (t)dt, 
~ 0 k k 

where F~ is the life distribution of the module. (5.5) is just a 
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copy of (5.3) treating the module Mk as a component. Hence (5.5) 

gives the expected increase in remaining system lifetime due to a 

"black box" minimal repair of ~ at its time of failure. We have 

already questioned whether this is the right approach. A result of 

Xie (1987), when comparing (5.3) and (5.5), is that 

* EZi ( EZ~ for i E ~ 

Then the following question arises. Is this also true in general for 

our definition of EZ ? The answer is no as we shall see. 
Mk 

For the case of independent components the following expression 

is given for EZ~ in Theorem 3.7 of Natvig (1979) 

EZ = 
~ 

1 -x . x . ( 1 . , x) ( 0 . , x ) 
II F. (t) J F. (t) J fco(h(H 1 - (u) )-h(H 1 - (u)) ]du f. (t)dt 

J J 0 -t -t l. j :fi 

As remarked in Natvig ((1985),p.47) conditioning on the states of 

the components outside the module at the time of failure of the 

module, is unnecessary. Hence we get 

EZ~ = 

1-x. x. 
X II F.(t) J F.(t) J JCD 
j~-{i} J J 0 

~ (1.,x ) 
(h(~ 1 - (u)M ,F(t+u)) 

k 

(5.6) 

As a little digression the same reduction technique can be 

applied to the expressions for G~ (u,v) and in Theorem 

2.6 of Natvig (1982) giving the absolutely continuous part of the 

distribution of Z . Note that this is also done in the event 
~ 

in Section 4. Similarly there is no need for conditioning on the 

c. 
l. 
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component states at all in the expressions for and 

in Lemma 2.1 of Natvig (1982) giving part of the absolutely 

continuous distribution of z .. 
~ 

G ~(v) 
~ 

Consider now the simple system of Figure 2.1 and let the two 

components in parallel constitute the module ~· From (5.3) and 

(5.6) we easily get 

EZ 
2 (5.7) 

By now letting F1 and F3 be the exponential distribution with 

failure rate A and F 2 the exponential distribution with failure 

rate A/2, we get after some straightforward calculations 

125 128 
EZ~ = 900A < 900A = EZ2 

Hence we have given a reason for our negative answer. 

A final question, having (4.4) and (4.6) in mind, is whether 

the following relations are true or not for the case of independent 

components 

EZ * .. 
Mk 

whereas for 

* EZ = 
~ 

l EZ 

iEMk 
i 

M as 
k 

l EZ. 
iEMk ~ 

( 5. 8) 

a series module 

(5.9) 

Both relations are claimed to be true in Xie (1987). The proof for 

(5.9) is correct whereas (5.8} is mixed up with (4.4) as proved in 

Natvig (1979). 
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To establish a counterexample to (5.8) consider the same example 

as above with an exponential life length distribution of the i th 

component with failure rate A. i=1,2,3. By applying (5.5) and 
l. 

(5.7) we want to find A1 , A2 , A3 such that 

This inequality is established in Egeland (1988) for A1= A2= 0.5, 

A3= 8 by using numerical integration techniques. Similarly the 

reversed inequality is established for A = A = 0. 5, A = 1. 
1 2 3 
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