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Abstract

Point-of-interest (POI) recommendation becomes a valuable
service in location-based social networks. Based on the norm
that similar users are likely to have similar preference of
POIs, the current recommendation techniques mainly focus
on users’ preference to provide accurate recommendation re-
sults. This tends to generate a list of homogeneous POIs that
are clustered into a narrow band of location categories (like
food, museum, etc.) in a city. However, users are more in-
terested to taste a wide range of flavors that are exposed in
a global set of location categories in the city. In this paper,
we formulate a new POI recommendation problem, namely
top-K location category based POI recommendation, by in-
troducing information coverage to encode the location cate-
gories of POIs in a city. The problem is NP-hard. We develop
a greedy algorithm and further optimization to solve this chal-
lenging problem. The experimental results on two real-world
datasets demonstrate the utility of new POI recommendations
and the superior performance of the proposed algorithms.

Introduction
The increasing popularity of location-based social net-
works (LBSNs), e.g., Foursquare, GyPSii and Loopt, en-
courages more and more users to share their experience
for point-of-interest (POI) in a cyber world (Zheng 2011;
Zheng et al. 2010a). When users visit a POI such as store,
museum, etc., they post their physical locations, comments
and tips that compose a set of check-in data in the registered
LBSNs. The quick aggregation of data naturally generates
valuable service of POI recommendation that instructs users
on exploring new places.

Most of the existing work on POI recommendation dis-
covers users’ preference implicitly through relating similar
users on previous check-in activities in LBSNs (Konstas,
Stathopoulos, and Jose 2009; Ye et al. 2011b; Ye, Liu, and
Lee 2012; Yuan et al. 2013), and offers a list of POIs to users.
Due to the limited budget (like time, money, etc.), users may
visit K POIs that are ranked in terms of their relevance to
users’ preference in the recommendation. The recommenda-
tion, called conventional top-K POIs in this paper, tends to
generate a set of homogeneous POIs (e.g., all about restau-
rant), which are often similar to the majority of the POIs

visited by the previous users. However, users are often inter-
ested to be recommended with a set of heterogeneous POIs
that can cover the different types (e.g., food, sports, etc) of
locations in the targeted city.

P5[0.50, (American Restaurant)]

P6[0.30, (Coffee Shop)]

P4[0.76, (Mall, American Restaurant)]

P3[0.80, Mall)]
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P8[0.40, (Monument)]

P2[0.78, (Mall)]

Figure 1: A place with eight POIs (�). Each POI is denoted
by one tuple in which the number scores its relevance to a
user and the term describes its location category.

Considering the example of eight potential POIs in Fig. 1,
the top-3 POIs, {P1, P2, P3}, are highly scored as they are
the most relevant to the user’s historical check-ins. How-
ever, the resulting recommendation is rather monotonic and
concentrates only on mall in a new place. In contrast, the
POIs, {P3, P4, P7}, would be a better recommendation list
as they achieve high relevance scores and simultaneously
provide more flavor of the city, including mall, restaurant
and museum, to users. For instance, tourists would like to
enjoy shopping while browsing through museums or histor-
ical monuments around the city. The recommendation needs
to consider a wide range of location categories that pro-
vide global features of the city. Note that LBSNs, such as
Foursquare, categorize locations in a city and personalize
the POI search. Hence improving information coverage on
different categories is to exploit valuable information in LB-
SNs thereby providing a better POI recommendation.

As recognized in Foursquare, most of locations in a city
can be categorized into different types such as mall, Austrian
restaurant, coffee shop and so on 1, and these categories rep-
resent different characteristics of the city. Users would like
to explore new types of locations that have not been visited
by them. In Fig. 2, we confirm this observation in two real-

1https://developer.foursquare.com/categorytree
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Figure 2: Ratio reports users’ incline to exploring new location
categories over time.

world datasets containing check-ins in Singapore (SIN) and
Austin (AUS) respectively over one time period. We com-
pute the ratio of new location categories (in contrast to those
in the previous month) to all ones visited by an user for
each month and report the average value for all users. Fig. 2
shows that the users explore around 25-30% (Y -axis: Ra-
tio) new location categories for most of the months (X-axis:
Month) in both datasets. The peaks appear due to a signif-
icantly larger number of check-ins made in the particular
months. The existing POI recommendation methods tend to
recommend a user the POIs that belong to the same set of
categories as those visited by the user.

In this paper, we aim to improve the conventional top-
K POIs on information coverage of location categories in
the recommendation. We formulate the issue as one multi-
objective optimization problem solving which recommends
top-K location category based POIs (LC-POIs). The top-K
LC-POIs optimize both their information coverage of a place
and their relevance to users in the recommendation.

Following the same spirit of user-based collaborative fil-
tering methods (Zheng et al. 2010b; Ye et al. 2011b), we
compute relevance of POIs by gauging users’ similarity
based on their previous check-in activities. The technique
has been well studied and adapted successfully in POI rec-
ommendation. Meanwhile, as optimizing information cov-
erage expects a list of POIs to jointly enclose different lo-
cation categories in a place, we resort to information cov-
erage function for the computation purpose (El-Arini et al.
2009). Since all locations are categorized into several types
in check-ins, we compute the degree to which one POI cov-
ers a category by counting how often the POI is checked as
the category in the data. It represents the popularity of the
POI labelled by the category in a city. We further weight the
coverage degree with the category popularity.

Solving top-K LC-POIs problem is rather challenging as
in principle we need to enumerate all possible sets of K
POIs that can be retrieved from check-ins. However, we ob-
serve that the objective function, which models both infor-
mation coverage and relevance, satisfies attractive property
of submodularity (Nemhauser, Wolsey, and Fisher 1978) and
monotony. By exploiting the property, we propose a greedy
algorithm that is guaranteed to produce a near-optimal solu-
tion of top-K LC-POIs. To speed up the recommendation,
we improve the efficiency of greedy algorithm by pruning
the POIs with low relevance and information coverage. We
also evaluate performance of the proposed algorithm on two

real-world datasets.

Related Work
Most of POI recommendations follow the classical user-
based collaborative filtering techniques that score POIs in
terms of similarity between users’ check-in activities (Zheng
et al. 2010b; 2009; Ye, Yin, and Lee 2010). The techniques
are further improved by taking into account social and ge-
ographical influence in the recommendation (Gao, Tang,
and Liu 2012; Ye, Liu, and Lee 2012; Cheng et al. 2012;
Liu et al. 2013).

Location content becomes an important input for im-
proving LBSN service as it provides more semantic in-
formation to recommender systems (Noulas et al. 2011;
Ye et al. 2011a; Bao, Zheng, and Mokbel 2012; Liu and
Xiong 2013). To overcome the data sparsity problem, Yin
et al. (Yin et al. 2013) utilized local features (e.g., attrac-
tions and events) to improve the model learning and infer-
ence procedure for the recommendation purpose. In paral-
lel, Ye et al. (Ye, Zhu, and Cheng 2013) exploited region
categories to predict the most likely location of users given
their previous activities. In this paper, location categories are
considered as important features in the recommended POIs,
which become another dimension on evaluating recommen-
dation performance.

One relevant topic is on the diversity of recommenda-
tion systems (Zhou et al. 2010; Zhang and Hurley 2008;
Yu, Lakshmanan, and Amer-Yahia 2009). Qin and Zhu (Qin
and Zhu 2013) used an entropy regularizer to characterize
the item diversity in order to improve the top-K prediction.
Lathia et al. (Lathia et al. 2010) exploited the temporal char-
acteristics of user ratings and improved the diversity of rec-
ommended lists. Yin et al. (Yin et al. 2011) focused on min-
ing and ranking the diversified trajectory pattern in social
media while Zhang et al. (Zhang et al. 2014) diversified the
spatial search results to improve service in road networks.
To be best of our knowledge, the diversity of POI recom-
mendations has not been explored so far. Our work may
contribute into attractive research on diversifying POI rec-
ommendations.

Problem Formulation
Existing POI recommendation techniques compute a score
for each POI and recommend the highly ranked ones. As the
recommended POIs are computed based on most of users’
personally relevant information, we call the resulting scores
as the relevance measurement in the recommendation. We
will utilize the well-developed techniques to compute the
relevance function.

Finding top-K LC-POIs is to optimize the relevance and
information coverage of a set of POIs based on check-in
data. We provide a sample of check-ins in Table 1. As some
of the previously available check-ins lack proper categories,
we locate the POIs through the reference of latitude and lon-
gitude and label them with the well-defined category hierar-
chy in Foursquare.

We first choose the state-of-art POI recommendation tech-
nique to compute the relevance function. Subsequently, we



Table 1: Sample of User Check-in Sequences.
User-ID Check-in Time POI-ID (Lati., Long.) Category

user-1 20120603, 17:23 POI-2 (1.31,103.85) Mall
user-2 20120605, 08:23 POI-1 (1.31,103.85) Zoo
user-1 20120703, 22:23 POI-3 (1.29,103.84) Bar
· · · · · · · · · · · · · · ·

formally develop information coverage function and define
a multi-objective optimization problem for top-K LC-POIs
recommendation. We prove hardness of the new recommen-
dation problem.

POI Relevance
As suggested in most of the previous research, the relevance
computation follows user-based collaborative filtering meth-
ods and can be implemented in a unified framework (Ye et
al. 2011b). It is further improved by considering the tempo-
ral information in check-ins (Yuan et al. 2013).

Let L = {l1, · · · , lm} be a set of POIs. For a given user u
at time t, we compute the relevance score for a POI in Eq.1.

R(lj) = ↵⇥ ctu,t,lj + (1� ↵)⇥ csu,t,lj (1)

where ctu,t,lj is the recommendation score that user u will
visit lj at time t and is computed based on the similarity of
users’ check-in activities, csu,t,lj the spatial influence of u’s
previously visited POIs and ↵ the tuning parameter. Time
t can be some day, e.g., Monday, or a particular time, e.g.,
night.

The relevance score R(L) for a set of POIs is the sum of
scores for all POIs. It is computed in Eq. 2.

R(L) =
X

lj2L

R(lj) (2)

Note that the relevance function in Eq. 2 is one of
the state-of-the-art methods (UST: the user-spatial-temporal
unified framework) for POI recommendation (Yuan et al.
2013). It recommends conventional top-K POIs based on
the relevance factor. Our proposed method is equally appli-
cable if other methods of computing the relevance are used.

Information Coverage
Information coverage considers how a set of POIs, L =
{l1, · · · , lm}, collectively enclose different location cate-
gories derived from check-ins. In general, one category con-
tains a set of POIs and one POI may be labelled with mul-
tiple categories in check-ins. The degree to which one POI
covers a category reflects the popularity of the POI in the
corresponding category. The larger degree of covering all
categories, the more information the set of POIs provide in
the recommendation. A POI enjoys different popularity of
being in one category when it is checked at different time
points. We consider time-aware information coverage in this
paper.

Let A = {a1, · · · , aq} be a set of location categories and
wt

aq
(>0) the weight of category aq at time t. We compute

the information coverage of a set of POIs in Eq. 3.

I(L) =
P

aq2A w

t
aqcov

t
aq (L) (3)

where covtaq
(L) measures the degree to which category aq

is covered by at least one POI in the set L at time t. Thus we
compute covtaq

(L) below.

cov

t
aq (L) = 1�

Q
lj2L[1� cov

t
aq (lj)] (4)

where covtaq
(lj) is the degree to which POI lj covers the

category aq at t.
The popularity of a POI labelled by the category aq is

implied by the number of checks-in that the POI receives at
aq . To equally prioritize POIs with a high volume of check-
ins, we compute covtaq

(lj), which is proportional to users’
check-ins of lj in the average check-ins labelled by aq , in
Eq. 5.

cov

t
aq (lj) = min[

nct
l
aq
j

1P
lj

1
⇥
P

lj
nct

l
aq
j

, 1] (5)

where nct
l
aq
j

is the number of check-ins that are made at lj
and labelled by category aq at time t.

P
lj
1 is the number

of POIs visited at time t and
P

lj
nct

l
aq
j

counts all check-

ins labelled by aq at t. covtaq
(lj) is 1 if nct

l
aq
j

exceeds the
average number of check-ins labelled by aq .
Example 1. Given 3 POIs (l1, l2 and l3) labelled by aq in
one city, the numbers of check-ins are 50, 100 and 150 re-
spectively on l1, l2 and l3 at time t. Hence the average num-
ber of check-ins labelled by aq is 100 for POIs at time t.
Subsequently we get: l1 covers aq with a degree 0.5 while l2
and l3 cover aq completely (with a degree 1).

In general, a city is featured by its local attractions of
categories that become common in check-ins. To offset the
focused categories, we adapt the TF-IDF (Term Frequency-
Inverse Document Frequency) technique to compute the cat-
egory weight wt

aq
in Eq. 6.

w

t
aq =

nctaqP
aq

nctaq
⇥ (lg

P
aq

ztaq

ztaq
+ ⌧) (6)

where nctaq
(=
P

lj
nct

l
aq
j

) is the number of check-ins la-

belled by aq at t and ztaq
counts the number of city in which

at least one POI is labelled by aq at t. We set ⌧ = 1P
aq

zt
aq

to maintain a positive value of wt
aq

.
As the information coverage function needs to consider

the joint influence of a set of POIs, it differs from the rel-
evance function (in Eq. 2) that can be calculated separately
for each POI.

Top-K LC-POIs Recommendation
We proceed to formulate the top-K LC-POIs recommenda-
tion problem. The two factors, namely relevance and infor-
mation coverage, are objectives that shall be balanced when
we expect to optimize the recommendation list. For a given
user u, the problem is to find a set of POIs that maximize
the scoring function �(L) by computing their relevance and
information coverage in check-in data. Formally the top-K



LC-POIs recommendation is modeled as one multi-objective
optimization problem below.

Given :D,K,�, u, t

Objective :
maxL✓D,|L|=K �(L) = (1� �)⇥R(L) + � ⇥ I(L)

(7)

where L ✓ D retrieves all POIs, denoted as POI-ID, from
check-in data D, and �(� 0) is a tradeoff between relevance
and information coverage measurements.

The limited number (K) of POIs to be recommended
is supplied by a user who may have limited budget (e.g.,
time and money) in a visit. Another parameter � is deter-
mined by the user’s plan on either exploiting some areas (fol-
lowing her/his personal experience) or exploring the entire
city (tasting all flavor of a city). Intuitively, � is set to be
small when the user has visited the city for several times and
expects to focus on some specific areas in a new visit. This
however depends on the user’s personal interests.

We observe that the top-K LC-POIs recommendation is a
complex combinatorial optimization problem with two ob-
jectives. We prove it to be NP-hard.
Proposition 1. The top-K LC-POIs recommendation prob-
lem formulated in Eq.7 is NP-hard.
Proof. We develop the proof by converting the problem into
a unit cost version of the budgeted maximum coverage prob-
lem (Khuller, Moss, and Naor 1999). Given a unit cost ver-
sion of the budgeted maximum coverage (UBMC) problem
instance ' : a collection of sets S = {S1, S2, · · · , Sm} with
a unit cost C, a domain of elements X = {x1, x2, · · · , xn}
with associated weights {w1, w2, · · · , wn}, and a budget B,
we can construct a top-K LC-POIs recommendation prob-
lem instance ! by setting � = 1, K = bB/Cc and I(S0)
corresponds to the total weight of the elements covered by
S0. Hence, S0 is the set having a maximum weight in ' iff
S0 is the top-K LC-POI set of !. As the UBMC problem has
been proved to be NP-hard, the top-K LC-POIs recommen-
dation problem is NP-hard as well. ⌅

Property Analysis and Greedy Algorithm
It is rather difficult to solve the top-K LC-POIs recommen-
dation problem. By leveraging the monotone submodularity
of the scoring function (�(L) in Eq. 7), we present a greedy
algorithm to find top-K LC-POIs and improve its efficiency.

Monotone Submodularity
Let V be a finite set. A set of function F : V ! R is called
submodular if it satisfies the diminishing returns prop-
erty (Nemhauser, Wolsey, and Fisher 1978), F (B

S
s) �

F (B) � F (B̂
S

s)�F (B̂), for all B ✓ B̂ ✓ V and s 62 B.
F (B

S
s) � F (B) is the marginal increase of F when an

element s is added into B. Submodularity characterizes the
notion that supplementing elements to a small set B pro-
vides more than doing it to a larger set B̂.

To prove the monotone submodularity of �(L), we first
analyze the properties of R(L) and I(L) respectively. The
relevance analysis is straightforward because R(L) com-
putes scores for every POI independently in Eq. 1.

Proposition 2. The relevance function R(L) is monotone
and submodular.
Proof. Let L1 ✓ L2 ✓ L and li 2 L. For any li 62 L1, we
compute

R(L1
S

li)�R(L1) = [R(L1) +R(li)]�R(L1) = R(li)

As the relevance score for a POI is nonnegative, R(L) is
monotone. Similarly, we have R(L2

S
li)�R(L2) = R(li).

This leads to R(L1
S

li) � R(Li) � R(L2
S

li) � R(L2).
Hence the relevance function R(L) is submodular. ⌅

Intuitively, users know more about a city when they visit
more places in a city. However, visiting one place after trav-
eling a small part of the city provides more knowledge to
them than visiting the place after traveling a larger part of
the city. This indicates the property of information coverage
function on the monotone submodularity. We formulate it in
Proposition 3.
Proposition 3. The information coverage function I(L) is
monotone and submodular.
Proof. Let L1 ✓ L2 ✓ L and li 2 L. For any L1 and
li 62 L1, we compute

cov

t
aq (L1

S
li)� cov

t
aq (L1) =

Q
lj2L1

(1� cov

t
aq (lj))�Q

lj2L1
S

li
(1� cov

t
aq (lj)) = cov

t
aq (li)

Q
lj2L1

(1� cov

t
aq (lj))

Since both covtaq
(li) and covtaq

(lj) are in the range [0,1],
we get covtaq

(L1
S

li) � covtaq
(L1). Thus covtaq

(L) is
monotone. We proceed to compute

[covtaq (L1
S

li)� cov

t
aq (L1)]� [covtaq (L2

S
li)� cov

t
aq (L2)]

= cov

t
aq (li)

Q
lj2L1

(1� cov

t
aq (lj))(1�

Q
lj2L2�L1

(1� cov

t
aq (lj))

We have covtaq
(L1

S
li) � covtaq

(L1) � covtaq
(L2

S
li) �

covtaq
(L2). Hence covtaq

(L) is submodular.
In Eq. 3, I(L) is a linear combination of covtaq

(L)

weighted by wt
aq

(>0). The monotone submodularity is
closed under a linear combination with a nonnegative
weight. This concludes that the information coverage func-
tion is monotone submodularity. ⌅

Given the above propositions, we obtain the attractive
property of the scoring function �(L) in Proposition 4.
Proposition 4. The scoring function �(L) is monotone sub-
modularity.
Proof. It follows that �(L) is a linear combination of R(L)
and I(L) both of which are monotone submodularity and the
weighting parameter � is nonnegative. ⌅

Greedy Algorithm and Its Optimization
Greedy Algorithm. As shown in Proposition 1, finding top-
K LC-POIs is NP-hard in the recommendation. However,
the monotone submodularity property suggests a greedy al-
gorithm with theoretical guarantees for maximizing a multi-
objective function (Nemhauser, Wolsey, and Fisher 1978).
In Alg. 1, the greedy algorithm starts with an empty set
of POI (line 1) and repeatedly adds the POI incurring the
largest marginal score increase to the POI set L until |L| =



K (lines 5-7). The algorithm can achieve near-optimal solu-
tions of top-K LC-POIs with a (1- 1e ) approximation on the
optimal score.

Since the greedy algorithm needs to check all of the POI
candidates in every round (line 6), the time complexity is
O[K|D|T (�(L)), where |D| is the size of check-in data and
T (�(L)) the run time for computing the scoring function.
Pruning Optimization. The large size of check-ins (|D|)
prevents a quick response from the greedy algorithm on find-
ing top-K LC-POIs in real time. We improve its efficiency
by pruning the POIs having a small relevance and informa-
tion coverage value. The operations of Pruning Optimiza-
tion are embedded in the greedy algorithm (lines 2-4). The
POI to be pruned has a smaller value of �(li) compared to
the score R(lk) of the Kth POI that is ranked by the rele-
vance measurement in check-ins. With a general setting of
K ⌧ |D|, the operations prune a significantly large num-
ber of POIs. Meanwhile, the pruning maintains the solution
quality of the greedy algorithm. We prove the property.

Algorithm 1: Greedy Algorithm with Pruning Opti-
mization

Input: D, K, �, u, t
Output: A set of POIs, L, with |L|=K

1 Initialize L=;;
2 Compute �(li) for each li 2 D;
3 Rank D in decreasing order of R(li);
4 Prune the POI set Lpru = {li|�(li) < (1� �)⇥R(lK)}

where lK is the K

th POI ranked by the relevance score;
5 for j = 1 to K do
6 lj  argmaxlj [�(L

S
lj)� �(L)];

7 L L

S
lj ;

8 return L;

Proposition 5. Pruning Optimization preserves the solution
quality of the greedy algorithm.
Proof. Assume that there exists a POI la 2 Lpru belong-
ing to top-K LC-POIs recommendation LK�1

S
la, where

LK�1 is top-(K � 1) LC-POIs recommendation. Let Lrel

be top-K relevant POIs set (containing the first K POIs of
sorted D in line 3 of Alg. 1), lb be the POI meeting lb 2 Lrel

and lb /2 LK�1
S

la. As (1��)⇥R(la)+�⇥I(la) < (1�
�)⇥R(lb), �(LK�1

S
la) < �(LK�1)+(1��)⇥R(la)+

� ⇥ I(la) < �(LK�1) + (1� �)⇥R(lb) < �(LK�1
S

lb).
Thus, we get a better K POIs recommendation LK�1

S
lb,

it contradicts the assumption. This implies that each POI in
Lpru is not a candidate of top-K LC-POIs. Hence it is safe
for Pruning Optimization to prune the POIs. ⌅

Experimental Study
We conducted a series of experiments to study the top-K
LC-POIs recommendation problem and demonstrated per-
formance of the proposed approaches compared to state-of-
the-art recommendation techniques.

Experimental Settings
Datasets. We used two real-world check-in datasets. One
was collected from Foursquare which was made in Sin-

gapore between Aug. 2010 and Jul. 2011 (Yuan et al.
2013). The other one is from Gowalla which was made
in Austin between Nov. 2009 and Oct. 2010 (Cho, My-
ers, and Leskovec 2011). Each check-in contains the afore-
mentioned attributes in Table 1. To fill in the missing val-
ues of Category, we implemented the tool based on the
Foursquare APIs. For both datasets, we removed users
who have checked in fewer than 5 POIs, and then removed
POIs that were checked by fewer than 5 users. After pre-
processing, the Foursquare dataset has 189,306 check-ins
made by 2,321 users at 5,412 POIs, and the Gowalla dataset
contains 201,525 check-ins made by 4,630 users at 6,176
POIs. For each user, we randomly mark off 20% of his/her
visited POIs as the testing data to evaluate the recommenda-
tion methods. The recommendation is done for a user given a
specific time Day. To compute Eq. 6, we extracted Gowalla
check-ins made in 162 cities from the dataset provided by
Cho et. al (Cho, Myers, and Leskovec 2011).
Comparative Recommendation Techniques. We imple-
mented both the greedy algorithm (GA) and its improved
version with the pruning optimization (GA+PO) to find top-
K LC-POIs. Additionally, we adopt the CELF optimiza-
tion (Leskovec et al. 2007), which is widely used to improve
the efficiency of GA, in the implementation of GA+PO. For
the comparison purpose, we implemented a random algo-
rithm (Random) which selects K POIs from the dataset ran-
domly and repeats the procedure for a sufficient number of
times (10,000). Note that all of the four algorithms recom-
mend top-K LC-POIs.

To demonstrate the quality of top-K LC-POIs, we im-
plemented the state-of-the-art method (UST) that recom-
mends conventional top-K POIs solely based on the rele-
vance score. All methods are implemented in JAVA, and ex-
periments are conducted on a Windows PC with a 4-core
Intel i7-3770 3.4GHz CPU and 8 GB memory.
Performance Metrics. The evaluated recommendation
methods aim to find top-K LC-POIs to the targeted user
by computing the scoring function and then rank candidate
POIs accordingly. We employ the Shannon entropy (Cover
and Thomas 1991) as a measurement (div@K) to show the
category diversity of the recommended POIs in Eq. 8.

div@K = �
P

aq

|laq
j |
K ln(

|laq
j |
K )

lnK
(8)

where |laq

j | is the number of POIs labelled by the category
aq .

Meanwhile we use pre@K and rec@K to measure how
many POIs in the recommended POIs correspond to the
hold-off POIs in the testing data and how many POIs in the
hold-off POIs in the testing set are returned as the recom-
mended POIs respectively (Yuan et al. 2013).

Performance of Methods
Effectiveness of Methods. We compare the recommenda-
tion quality of three methods (GA, UST and Random) with
the settings of �=0.3 and 0.2 respectively in Foursquare and
Gowalla. Note that GA and its enhanced versions (GA+PO
and GA+PO+CELF) recommend the same top-K LC-POIs.



Fig. 3 shows that GA improves the diversity of UST by
around 35% in Foursquare and 13% in Gowalla. Mean-
while, it keeps around 97% precision and recall of UST on
both datasets. Although Random achieves the best diversity,
it leads to an extremely low recommendation precision and
recall. Overall the results demonstrate that Random can not
offer a good recommendation while GA improves the cate-
gory diversity of UST significantly and achieve similar pre-
cision and recall as UST does.
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Figure 3: Comparison of the diversity, precision and recall
of top-K POIs recommended by the methods.
Efficiency of Methods. We compare the methods (GA,
GA+PO and GA+PO+CELF) based on run time each takes
to identify top-K LC-POIs in two datasets. Fig. 4 shows
the run time of the methods varying � with K = 15. GA
consumes much more time than other methods. A large
� shrinks the pruned POI set, which results in the in-
crease of the run time for GA+PO. Fig. 5 exhibits the run
time of the methods varying K with a fixed � (0.3 on
Foursquare and 0.2 on Gowalla). The run time of GA+PO
and GA+PO+CELF is small and stable while the run time of
GA grows quickly as K increases.
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(b) Gowalla and K = 15

Figure 4: Comparison of methods varying � on run time
Effect of Parameter �. The parameter � balances the rel-
evance and information coverage factors in the POI recom-
mendation. If � = 0, top-K LC-POIs become conventional
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 0

 10

 20

 30

 40

 50

 60

 70

 80

5 10 15 20 25

R
u

n
 t
im

e
 (

m
s
)

K

GA
GA+PO

GA+PO+CELF

(b) Gowalla and � = 0.2

Figure 5: Comparison of methods varying K on run time.

top-K POIs, and if � = 1, top-K LC-POIs maximize the in-
formation coverage. Fig. 6 shows the effect of � with K = 5
on the recommendation. With the increase of �, the diversity
grows while the precision and recall decrease. Tuning � in
this fashion allows top-K LC-POIs to be customized and
optimized for needs of different users or communities.
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Figure 6: Effect of parameter � with K = 5.

Conclusion
With the observation of users’ interests in exploring new lo-
cation categories, we improve the POI recommendation by
introducing information coverage into the recommendation
measurement. We formulate the top-K LC-POIs recommen-
dation problem and prove its monotone submodularity prop-
erty. To solve the new problem, we propose a greedy al-
gorithm with (1- 1e ) theoretical bound and improve it using
one pruning optimization. We empirically demonstrate the
quality of top-K LC-POIs recommendation as well as the
performance of our proposed methods. Further research can
be conducted on improving POI recommendation through
users’ explicit feedback in LBSNs.
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