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Abstract—In this work we consider a target tracking scenario
where a moving observer with a bearings-only sensor is track-
ing a target. The tracking performance is highly dependent
on the trajectory of the sensor platform, and the problem is to
determine how it should maneuver for optimal tracking per-
formance. The problem is considered as a stochastic optimal
control problem and a number of sub-optimal control strate-
gies are presented based on the Information filter and the de-
terminant of the information matrix as the optimization objec-
tive. Using the determinant of the information matrix as an
objective function in the planning problem is equivalent to us-
ing differential entropy of the posterior target density when it
is Gaussian. For the non-Gaussian case, an approximation of
the differential entropy of a density represented by a particle
mixture is proposed. Furthermore, a gradient approximation
of the differential entropy is derived and used in a stochastic
gradient search algorithm applied to the planning problem.
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1. INTRODUCTION

Optimal trajectory for bearings-only tracking is a classical
nonlinear estimation problem. The problem is to estimate the
state of a target given a number of noisy measurements. The
sensor platform is free to maneuver, and the problem is to
find the optimal trajectory that maximizes the tracking and
estimation performance.
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The optimal observer trajectory is in [16] computed by max-
imizing mutual information. Dynamic programming is used
to minimize the determinant of the error covariance of a tar-
get with linear dynamics over the entire measurement se-
quence from a bearing-only sensor. Furthermore an enumer-
ation brute force method with optimal pruning is developed
for minimizing the trace of final target error covariance. The
Fisher information matrix (FIM) is in [23] used as the ob-
jective function. The optimization is done in a dynamic pro-
gramming framework, where target and observer are modeled
as Markov chains. The resulting problem is a Partially Ob-
servable Markov Decision Problem (POMDP) for determin-
ing the optimal control law of the observer. The computa-
tional complexity is very large and only very small problems
can be addressed. In [10] and [11] different information-
theoretic distributed control architectures for searching and
localizing targets are proposed. [10] is using an Information
filter framework similar to our approach, and [11] is using the
mutual information computed from a particle set representing
the target density.

As in our work, [20] uses a Stochastic Approximation (SA)
approach to solve an observer trajectory planning problem
where the gradient is estimated from a particle mixture. In
[18], SA algorithms and particle filters are used in a similar
manner to our work for maximum likelihood parameter esti-
mation.

We note that most approaches in this research area are based
on some kind of measure from information theory. FIM,
CRLB, mutual information, and entropy are all strongly re-
lated. Furthermore, similar problem definitions can be found
under a broad range of different terms, among others, “sensor
scheduling”, “target motion analysis”, and, “observer trajec-
tory planning”.

Outline

In Section 2 we define the problem of planning for optimal
estimation (tracking) performance used in this paper. Sys-
tem and observation models are defined and a general opti-
mization problem is formed that must be solved for optimal
estimation performance. In Section 3 the general estimation
equations are introduced. These equations are fundamental
in all target tracking and estimation applications. The general
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planning problem is then discussed from a stochastic optimal
control point of view, and two well known sub-optimal ap-
proaches are introduced.

The estimation performance measure is the main subject of
this paper, in particular we investigate two information mea-
sures. In Section 4 a linearized version of the problem is
considered and the resulting EKF filter is combined with an
information matrix criterion. In Section 6 the more general
Particle filter is used as the estimator and this requires another
choice of information measure. This measure is an approxi-
mation of the differential entropy derived in Section 5 and
a stochastic gradient algorithm is proposed. Finally, conclu-
sions are drawn in Section 7.

2. OPTIMAL TRAJECTORY FOR
BEARINGS-ONLY LOCALIZATION

In this section we define the problem of planning for optimal
estimation performance used in this paper. The task is to lo-
calize a nearly stationary feature with a bearings-only sensor.
The sensor is attached to a platform moving in the xy-plane
with constant speed. The proposed planning problem is a sim-
plified target tracking scenario, but it still contains important
and interesting aspects of a general target tracking problem.

The target is assumed to be a slowly moving target and mod-
eled as a random walk

xk+1 = f(xk, wk) = xk + wk (1)

where the state xk = (ηk, ξk)T is the position of the target
and the process noise is wk ∼ N (0, Q).

The state elements of the sensor platform state vector xs are
the position and the heading, xsk = (ηsk, ξ

s
k, ψ

s
k)T. The dy-

namic model is a basic constant speed model with rate of
change of heading uk = ωk as the control signal. Thus, the
dynamic model is given as

xsk+1 = fs(xsk, uk) = xsk +

 v cos(ψsk)
v sin(ψsk)
ωkT

 (2)

where T is the sampling time and v is the speed. Note that
the sensor platform model is deterministic and that we always
have perfect state information about xsk. This means that we
assume that we have neither disturbances nor navigation er-
ror.

The observation model is the relative angle between the sen-
sor platform and the target, i.e.,

yk = h(xk, xsk, ek)
= arctan2(ξk − ξsk, ηk − ηsk) + ek (3)

where ek is the measurement noise modeled as ek ∼
N (0, R).

In the planning problem we search for a control input se-
quence

πM−1 , {uk}M−1
k=1 (4)

that minimizes some expected loss. Constraints on the control
signal are defined by the set U , in this work we assume that

U = {u | − umax ≤ u ≤ umax}. (5)

The loss function L(xM ) is a function of a random variable1

xM ∼ p(xM |IM , I0) where I0 represents all information,
e.g. measurements, received up to time 0, and IM is a ran-
dom variable representing all future information that will be
received up to time M . The target density p(xk|Ik) is com-
puted by an estimator, the target tracker, see the estimation
theory section below. Thus, the loss function maps a target
state to a scalar metric usable in an optimization framework.

To keep notation as simple as possible, we always assume
that the planning is performed at time k = 0. Thus, in case of
replanning the time index is reset and the time for the replan-
ning is 0.

The general planning problem can now be defined as

min
πM−1

E[L(xM )|I0]

s.t. uk ∈ U
xk+1 = f(xk, wk)
x0 ∼ p(x0|I0)
wk ∼ N (0, Q)

xsk+1 = fs(xsk, uk)
xs0 = x̄s0
yk = h(xk, xsk, ek)
ek ∼ N (0, R).

(6)

3. ESTIMATION THEORY AND STOCHASTIC
OPTIMAL CONTROL

In this section we present some background theory funda-
mental for our work. First we give some fundamental re-
sults in estimation theory that are the base in target track-
ing algorithms. Since we consider the planning problem as
a stochastic control problem we also give a brief introduc-
tion to stochastic control theory. In particular, the terminal
stochastic control problem is considered and two sub-optimal
approaches, Certainty Equivalence Control (CEC) and open-
loop feedback control (OLFC), are introduced. In Section 4
these approaches will be applied to our planning problem.

The discussion in this background section is on a rather gen-
eral level. Thus, the variables and functions are also general
despite similar names as in other parts of this paper.

1The lower-case x is here a random variable. The notation may be unclear,
the actual meaning of a variable, random or non-random, is given by the
context.
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General Estimation Theory

Consider a rather general dynamic model defined as

xk+1 ∼ p(xk+1|xk) (7)

where xk is the state. Furthermore, let the observation model
be defined as

yk ∼ p(yk|xk) (8)

and let Y k = {y1, y2, ..., yk} be the set of all observations up
to time k. The general state estimator is derived from Bayes
rule

p(x|y) =
p(x)p(y|x)

p(y)
(9)

and can be expressed as the recursive update formula

p(xk|Y k) = p(xk|yk, Y k−1) = α−1
k p(yk|xk)p(xk|Y k−1)

(10)
and the one step ahead prediction

p(xk|Y k−1) =
∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1. (11)

The normalizing factor αk is

αk = p(yk|Y k−1) =
∫
p(yk|xk)p(xk|Y k−1)dxk. (12)

However, there are only a few cases when it is possible to
derive analytic solutions of these equations. One case is the
linear Gaussian case, leading to the well known Kalman fil-
ter and the Information filter [13]. In the general case, nu-
meric approximations are necessary and one popular tech-
nique is to approximate the density p(xk|Y s) by a particle
mixture, containing N particles {x(i)

k|s}
N
i=1 with associated

weights {w(i)
k|s}

N
i=1, as

p(xk|Y s) ≈
N∑
i=1

wik|sδ(xk − x
(i)
k|s) (13)

where δ(.) is the Dirac delta function. This approximation
leads to the Particle filter (PF) [9] [6], and it can be shown
that the larger the number of particles is, the better the ap-
proximation will be.

Finite Horizon Stochastic Optimal Control

The information gathering problem of a platform with a
bearings-only sensor can be viewed as a terminal stochastic
control problem. See [3] for a more detailed presentation of
stochastic optimal control.

Consider a system where the state evolves as the discrete-time
stochastic system

xk+1 = f (xk, uk, wk) (14)

where k = 0, 1, ...,M − 1 is the time, and wk represents
the random disturbances and uk is a control signal. From the

system, only imperfect information of the state is available
through the observations

yk = h (xk, ek) (15)

where ek represents the random errors in the observations.
Now the objective function is naturally described as a func-
tion of the final state. In some cases additional loss on the
way is necessary to consider, but we ignore that in this work.

The information available for the controller at time k is

Ik−1 = {x0, y1, u1, ..., yk−1, uk−1}, (16)

i.e., the initial state and the history of all previous control and
measurements. An admissible control law can then be defined
as a function of available information, i.e.,

πM−1 = {u1(I0), u2(I1), ..., uM−1(IM−2)}. (17)

The planning problem is now represented by (14), (15) and
the expected loss, i.e.,

min
πM−1

J(x0, π
M−1) = E

[
LM (xM )|I0

]
s.t. uk ∈ U

xk+1 = f
(
xk, uk(Ik−1), wk

)
yk = h (xk, ek)

(18)

This is a terminal information form version of the finite hori-
zon stochastic optimal control problem [3].

At the core of optimal stochastic control is the “principle of
optimality”. As stated by Bellman: “Whatever any initial
states and decision [or control law] are, all remaining deci-
sion must constitute an optimal policy with regard to the state
which results from the first decision” [1]. The dynamic pro-
gramming algorithm is based on the principle of optimality.
First the optimal problem for the last stage is solved and then
the extended problem with the last two stages is solved, and
so on until the entire problem is solved. However, in general
it is often impossible to find closed form solutions even to
the small sub-problem at each stage. A standard solution is
to search for approximate numerical solutions by discretizing
the problem, but as Bellman observed this method is suscep-
tible to the “curse of dimensionality” where larger problems
are prohibitive both computationally and in required memory
storage.

An optimal feedback control law will not only steer the sys-
tem in accordance with the reference signal. In addition, the
control law will show probing and caution behavior. Probing
represents actions to enhance estimation precision in order to
improve overall performance in the future. Caution is acting
so as to minimize the consequences of erroneous assumptions
about the state of the environment. Both these components
are often in conflict with the error reducing part of the control
law and control laws including this compromise are denoted
dual control. The dual control problem was first discussed by
Feldbaum [8].
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Partially Observable Markov Decision Problems (POMDP)
have received much attention during the recent years. Typ-
ically the state space, action space, observation space, and
planning horizon all are finite and the solution becomes a
piecewise-linear and convex function over the belief space.
The first algorithm for an exact solution to POMDP was given
by Sondik in [21]. More efficient algorithms have been de-
veloped [12] and during the last years, many approximative
methods have been proposed to handle the complexity of
POMDPs, but still only rather small problems can be han-
dled.

Certainty Equivalence Control

For linear quadratic Gaussian (LQG) problems it is possible
to find a closed form solution to the general Dynamic Pro-
gramming problem. The solution of the LQG problem can be
separated into two stages, first an estimation part, and second
solving a non-stochastic optimization problem. This separa-
tion is very convenient and is called the certainty equivalence
principle. However, for general problems this principle does
not hold.

A popular suboptimal control scheme is to use Assumed Cer-
tainty Equivalence (ACE), i.e., to assume that the certainty
equivalence principle is holding and consider the estimation
and the control independently. The Certainty Equivalent Con-
trol (CEC) can be summarized as follows: Given an informa-
tion vector I0, an estimator produces a typical value of the
state and the disturbance

x̂0 = E[x0|I0], ŵk = E[wk|x̂k, uk], (19)

respectively. The problem to solve is then a perfect informa-
tion problem, i.e., the deterministic version of (18),

min
πM−1

LM (xM )

s.t. uk ∈ U
x0 = x̂0(I0)

xk+1 = f(xk, uk, ŵk(xk, uk))

(20)

and use the first element in the control sequence as control
input, and then repeat. Time 0 is always the time when the
planning is performed.

A problem with ACE is that dual control properties such as
probing and caution are missing. Thus, ACE is not well suited
for sensor planning problems since Certainty Equivalent Con-
trol (CEC) will not take the possible future information profit
into account.

Open-loop Feedback Control

Another approximation is open-loop feedback control
(OLFC). Unlike the CEC which computes the estimate
x̂, OLFC is instead computing the probability distribution
p(xk|Ik) and thus taking the uncertainty about xk and the dis-
turbances into account. However, OLFC is very “pessimistic”
since it selects control input as if no further information will

be received. Hence, the name is OLFC since the method is
performing feedback from the current measurement, but is
assuming open loop control over the remaining steps.

The OLFC method contains the following steps. First com-
pute the conditional probability distribution p(x0|I0). Then
find a control sequence that solves the problem

min
πM−1

E [LM (xM )]

s.t. uk ∈ U
x0 ∼ p(x0|I0)

xk+1 = f(xk, uk, wk(xk, uk))

(21)

Use the first element in the control signal as the control input,
and then repeat. As before, time 0 is always the time when
the planning is performed.

4. AN INFORMATION FILTER APPROACH

In this section we use the information form of the well known
Extended Kalman filter to implement a sub-optimal CEC
planner. An advantage of this approach is that the resulting
optimization problem is deterministic.

The Information Filter

The Kalman filter is the optimal filter, in the minimum square
error sense, for linear systems (14) and (15) with Gaussian
noises w and e. The Kalman filter maintains a state vector
x̂k and its covariance matrix Pk. The Information filter [13]
is equivalent to the Kalman filter, but instead of maintaining
a state vector and a covariance matrix, the information filter
maintains the information state îk = P−1

k x̂k and the infor-
mation matrix Yk = P−1

k .

A popular approach to handle nonlinear models is a lin-
earized version of the Kalman filter called (Schmidt) Ex-
tended Kalman filter (EKF). The EKF is based on a Taylor
series expansion of (14) and (15) as

Fk =
∂f(x, 0)
∂x

∣∣∣∣
x=x̂k|k

, (22)

Gk =
∂f(x̂k|k, w)

∂w

∣∣∣∣
w=0

, (23)

Hk =
∂h(x, 0)
∂x

∣∣∣∣
x=x̂k|k−1

. (24)

The EKF can also be given in an information form called Ex-
tended Information Filter (EIF). The update and prediction
equations of the information matrix in an (Extended) Infor-
mation filter are

Yk|k = Yk|k−1 +HT
k R
−1
k Hk (25)

Yk+1|k = (FkY−1
k|kF

T
k +GkQkG

T
k )−1 (26)

where Rk and Qk are the covariances of the measurement
noise and process noise, respectively. Note that the update
step is additive and this is one major reason for the popularity
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of the information form, especially if information from sev-
eral sensors must be fused in the filter [17]. We also note that
in the linear Gaussian case the information matrix is equiva-
lent to the Fisher information matrix that is used for bounding
estimation error by the Cramer Rao Lower Bound (CRLB).

CEC Planner based on Information Filter

The Information filter is now used to define a CEC version of
the planning problem (6). The “quality” of the state estimate
is captured by the information matrix Y(t) = P−1

k , where Pk
is the covariance of the position of the target, i.e.,

Pk = E[(xk − Exk)(xk − Exk)T]. (27)

In this section we will use a loss function defined as the de-
terminant of the information matrix. The reason for this is, as
we will see later in Section 5, that in the Gaussian case, the
negative differential entropy is a monotonic function of the
determinant of the information matrix. The loss function is
then

L(XM ) = −detYM (28)

where the state vector Xk is the augmented vector

X =
(
xT, (xs)T, Y11, Y12, Y22

)T
(29)

where Yij denotes the element of Y lying on the intersection
of the ith row and the jth column. Note that Y21 is omitted
since Y is symmetric.

The information matrix is updated according to the EIF filter
equations in (25). The Jacobian of the observation model (3)
is

Hk = ∇xk
h(xk, xsk, 0)

∣∣∣∣
xk=x̂k

=
1
r̂2k

[
−(ξ̂k − ξsk), η̂k − ηsk

]
(30)

where r̂k =
√

(η̂k − ηsk)2 + (ξ̂k − ξsk)2 is the distance be-
tween the sensor and the target.

Thus, the planning problem is

min
πM−1

L(XM ) = −detYM
s.t. uk ∈ U

x0 = x̂0

xk+1 = f(xk, 0)
xsk+1 = fs(xsk, uk)
yk = h(xk, xsk, 0)

Yk+1 = g(Yk)

(31)

where g is the EIF equations in (25) and (26). To solve this
problem we will use a gradient search algorithm that is intro-
duced next. Simulation results are then given after that.

Gradient Search Algorithm

Consider the problem of minimizing a loss function L(θ).
Most numerical minimization methods are using an iterative
procedure

θ̂(k+1) = θ̂(k) + akg(θ̂(k)) (32)

where ak > 0 is the step size and g is the search direc-
tion. One example is the steepest descent algorithm where
the search direction is determined by the negative gradient

g(θ) = −∂L(θ)
∂θ

. (33)

There are other methods, e.g. the Newton-method, with faster
convergence rate, but they require computation of the Hessian
of the loss function and those methods are therefore not con-
sidered in this work. Depending on which information of the
gradient that is available, the steepest descent methods can
be divided into two groups. Either the loss function is known
and differentiable and the gradient can be derived analytically
or the gradient is not directly available and one has to com-
pute an approximation of the gradient from measurements of
the loss function.

Simulation Result of Information Filter Planner with known
Target Position

Let us first make the unrealistic assumption that the error of
the initial target position is zero and that the measurements
are perfect, i.e., the target position estimate is the true posi-
tion. The problem is not stochastic and a deterministic gradi-
ent search algorithm will perform well. However, the prob-
lem is both non-linear and non-convex so the starting point
is important and there is no guarantee that the solution is the
global optimum.

In Figure 1 three different simulations with different planning
horizon are shown, see Table 1 for simulation parameters.
The planning horizon lengths are 1, 4, and 8 sampling periods
respectively. Note that replanning is done after the whole pre-
vious plan has been executed. In practice, replanning should
be done as new information is received. The shortest plan-
ning horizon gives a “greedy” and shortsighted behavior of
the sensor platform. The path is shaped as a spiral because of
the trade-off between maximizing the base-line relative the
target and getting closer to the target. However, if the plan-
ning horizon is increased, the vehicle initially travels more
directly towards the object.

The resulting path of the greedy planner in Figure 1 can be
explained by the contour plot in Figure 2. The contour plot
shows the “information surface” after the measurement up-
date at the sensor position marked with a star. In other words,
given the target estimation covariance shown as a dashed er-
ror ellipse, the plot shows the determinant of the information
matrix after one new measurement update in a new position.
We can see that taking a measurement from a position more
perpendicular, with respect to the major ellipse axis, is much
better than from a position along the extension of the error
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Figure 1. Information filter planning with perfect measure-
ments, i.e., zero estimation error. The trajectory of the sensor
platform for three different planning horizon lengths.

Table 1. Parameters of Simulation 1 and 2.

Target position x = (0, 0)T [m]

Initial target covariance P = diag[502, 502]

Initial sensor position xs = (−100,−100)T [m]

Sensor platform speed v = 10 [m/s]

Measurement variance R = (1π/180)2 [rad2]

Process variance Q = 0

ellipse. The greedy planner goes in the direction where the
slope of the information surface is the largest.

Simulation Results of CEC Information Filter Planner

In Figure 3, three other simulations, where the position of
target is concurrently estimated from the measurements, are
shown. The same parameters (Table 1) as in Figure 1 are
used. If the estimated position in each planning step is con-
sidered as the true position in the planner, then the planning
problem is still deterministic. However, even if the global op-
timum is found, this may not be the best overall solution due
to the estimation error.

OLFC Information Filter Planner

The form of the planning problem above is well suited for us-
ing with a target tracker maintaining the covariance or infor-
mation matrix of the target’s position, e.g. Extended Kalman
Filter. If the target tracker instead is a Particle filter (PF), then
the information matrix first has to be computed from the cur-
rent PF state with obvious degradation of the information in
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−80

−60

−40

−20
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y
Figure 2. The “information surface” after the first measure-
ment update. Target covariance shown as a dashed ellipse and
current sensor position as a star.
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Figure 3. CEC Information Filter planner. The trajectory
of the sensor platform for three different planning horizon
lengths.
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the estimator.

We here propose an heuristic approach that can be used with
a PF target tracker, but also with an EKF if samples are
drawn based on the target covariance. First, select N parti-
cles, which represent different hypotheses about the state of
the target, and associate a covariance matrix P (i) to each of
them. For all of the particles, do the calculations as in the
single estimate case and obtain resulting information matri-
ces Y(i)

M . Let all particle states be augmented into a new large
vector χ = ((x(1))T, (x(2))T, ..., (x(N))T)T. If all particles
are independent, the covariance matrix is a block diagonal
matrix

Π = E[(χ− Eχ)(χ− Eχ)T] = diag[P(1), P(2), ...,P(N)]
(34)

and the information matrix is also block diagonal

Ω = Π−1 = diag[Y(1),Y(2), ...,Y(N)] (35)

where Y(i) = (P (i))−1. The loss function is then given as

L(XM ) = −det ΩM = −
N∏
i=1

detY(i)
M . (36)

Taking the logarithm of the product, we get

lnL(XM ) = −
N∑
i=1

ln detY(i)
M (37)

that can be used in an equivalent optimization problem, but
with better numerical properties.

One question is how the information matrices Y(i)
0 should be

defined. An ad-hoc proposal is to use the information ma-
trix Y0 from the estimator weighted by 1/N , since the sum of
N normal distributed random variables with mean µi and co-
variance P/N is distributed as N (

∑N
i=1 µi,

∑N
i=1 P/N) =

N (µ, P ) where µ =
∑N
i=1 µi. However, by inspecting (37)

we realize that this weight will not affect the result of the op-
timization problem.

Thus, we have the following optimization problem

min
πM−1

−
N∑
i=1

ln detY(i)
M

s.t. uk ∈ U
x

(i)
k+1 = f(x(i)

k , w
(i)
k )

x
(i)
0 ∼ p(x0|I0)

w
(i)
k ∼ N (0, Q)

xsk+1 = fs(xsk, uk)
xs0 = x̄s0
y
(i)
k = h(x(i)

k , xsk, e
(i)
k )

e
(i)
k ∼ N (0, R)

Yk+1 = g(Yk)
Y0 = P−1

0 /N

(38)

and, given the samples x(i)
0 ,w(i)

k and e(i)k , this problem is, like
the CEC problem, deterministic.
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Figure 4. OLFC Information Filter Planner. Trajectory of
the sensor platform.

Simulation Results of OLFC Planner

The simulation result is shown in Figure 4 for two cases, plan-
ning horizon length 1 and 4. The number of particles is 100.
The result is similar to the previous simulations for this ba-
sic example, but it is reasonable to believe that this approach
will perform better in a more complex scenario. The longer
horizon case differs slightly from run to run, depending on
the actual realization of the particle set. This is also why
the length 8 case is not shown in the figure. This approach
also has a “singularity” problem with the determinant crite-
rion when the plan of the sensor platform path is very close
to a particle location. This can be overcome in the 3D case
when particles and the sensor platform are separated on dif-
ferent altitudes or with a suitable adjustment of the criterion.

5. DIFFERENTIAL ENTROPY OF DENSITY
REPRESENTED BY A PARTICLE MIXTURE

The CEC Information filter planning problem (31) assumes
that the target probability density can be expressed as a Gaus-
sian probability density. We need a more general approach to
be able to handle general target probability densities. In this
section we introduce the particle mixture density as a flexible
tool of representing general densities. We also present some
basic information theory and propose differential entropy as
a measure of the “quality” of the target state. Unfortunately,
it is not straightforward to compute the differential entropy
of a density represented by a particle mixture. We propose a
method for the computation of the differential entropy that is
then, in the next section, applied to the planning problem.
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The Particle Filter Equations

In a Particle filter (PF) the target density p(xk|Y k) is approxi-
mated by a particle mixture containing N particles {x(i)

k }Ni=1

and associated weights {w(i)
k }Ni=1. Thus, at time k − 1 the

target density is

p(xk−1|Y k−1) ≈
N∑
i=1

w
(i)
k−1δ(xk−1 − x(i)

k−1). (39)

Substituting this particle representation of p(xk−1|Y k−1)
into (11), the predicted density p(xk|Y k−1) is obtained as

p(xk|Y k−1) =
N∑
i=1

w
(i)
k−1p(xk|x

(i)
k−1). (40)

One can always get a particle mixture approximation for
p(xk|Y k−1) as

p(xk|Y k−1) ≈
N∑
i=1

w
(i)
k−1δ(xk − x

(i)
k|k−1) (41)

where x
(i)
k|k−1 is sampled from p(xk|x(i)

k−1). When the
new measurement yk comes, the new particles and weights
are computed by sampling from an importance density
µ(xk|x(i)

k−1, yk) as

x
(i)
k ∼ µ(xk|x(i)

k−1, yk) (42)

w
(i)
k ∝ p(yk|x

(i)
k )

p(x(i)
k |x

(i)
k−1)

µ(x(i)
k |x

(i)
k−1, yk)

(43)

where
N∑
i=1

w
(i)
k = 1. (44)

Finally, a resampling step is performed to maintain the sta-
tistical support. Sampling importance resampling (SIR) is a
common standard method, see [2] for details.

Information Theory

Technically, information is a measure of the accuracy to
which the value of a stochastic variable is known. This sec-
tion introduces some important definitions and results from
information theory, see e.g. [5] for details. The differential
entropyH(p(x)) of a continuous random variable xwith den-
sity p(x) is defined as

H(p(x)) = −Ex{ln p(x)} = −
∫
p(x) ln p(x)dx. (45)

It can be shown [5] that the differential entropy of a normal
distribution, with mean µ and covariance matrix P , is

H(p(x)) =
1
2

ln ((2πe)n detP ) (46)

= −1
2

ln
(
(2πe)−n detY

)
(47)

where n is the size of random variable and Y = P−1 is
the information matrix, defined in Section 4. In the normal
distribution case the information matrix is equivalent to the
Fisher information matrix. Thus, the entropy is a monotonic
function of the determinant of the information matrix and,
hence, minimizing the entropy is equivalent to maximizing
the Fisher information in the Gaussian case. We also note
that this is equivalent to D-optimal design in the vocabulary
of experiment design [7]. Other possible suggestions for cri-
terion from experiment design include A-optimal design, i.e.,
minimizing the trace of the covariance, and E-optimal design,
i.e., minimizing the maximum eigenvalue of the covariance
matrix.

In estimation theory we are interested in the differential en-
tropy of the posterior distribution p(x|Y k). An interesting
recursive relation is obtained by taking the logarithm and the
expectation of both sides of the update equation (10), namely

−H(p(x|Y k)) = −H(p(x|Y k−1)) + E

{
ln

p(yk|x)
p(yk|Y k−1)

}
.

(48)
The negative differential entropy can be considered as an en-
tropic information, and we see that the posterior entropic in-
formation after the update is the sum of the prior entropic
information and the information about x contained in the ob-
servation yk, or in other words, the mutual information of
x and yk. Thus, the entropic information following an ob-
servation is increased by an amount equal to the information
inherent in the observation. Compare this to the update of the
information matrix in the Information filter (25).

Differential Entropy Approximation

The particle mixture approximation is an useful representa-
tion of a probability density that can be used in estimation.
Unfortunately, it is not straightforward to compute the differ-
ential entropy of the underlying density function from the par-
ticle mixture since the differential entropy of the particle set is
minus infinity. This is indicated by the fact that the differen-
tial entropy of a normal distribution goes to minus infinity as
the determinant of the covariance goes to zero, see (46). Since
the particle mixture is a weighted sum of impulses, which can
be considered as normal densities with zero covariance, it has
unbounded entropy from below.

One approach to overcome this problem is to represent the
density as a sum of Gaussians where the position of each
Gaussian is given by the particles. However, it is not clear
how the parameters of the Gaussian kernels should be cho-
sen, and the computational cost of the entropy calculation is
also large for this approach.

We are instead proposing an alternative approximation of the
differential entropy of a density represented by a particle mix-
ture. By using Bayes rule (9) we have

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)

p(yk|Y k−1)
(49)
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and we obtain the following expression of the differential en-
tropy

H(p(xk|Y k)) = −
∫
p(xk|Y k) ln p(xk|Y k)dxk

= −
∫
p(xk|Y k) ln p(yk|xk)dxk

−
∫
p(xk|Y k) ln p(xk|Y k−1)dxk

+
∫
p(xk|Y k)dxk︸ ︷︷ ︸

=1

ln p(yk|Y k−1)

(50)

The last term ln p(yk|Y k−1) is a constant and by marginal-
ization this term can be expressed as

ln p(yk|Y k−1) =
∫
p(yk|xk)p(xk|Y k−1)dxk. (51)

If we now substitute (51) into (50), make use of the particle
mixture in (41) and substitute the density (40) into the second
term in (50), we can form an approximation of the differential
entropy as

H(p(xk|Y k)) ≈ −
∑
j

w
(j)
k ln p(yk|x(j)

k )

−
∑
j

w
(j)
k ln

∑
i

w
(i)
k−1p(x

(j)
k |x

(i)
k−1)

+ ln
∑
i

w
(i)
k−1p(yk|x

(i)
k|k−1). (52)

This approximation has been implemented and tested with
a one-dimensional sum-of-Gaussian density with known dif-
ferential entropy. The computational cost of the differential
entropy (52) is O(N2) due to the double sum term.

Differential Entropy Gradient Approximation

In a similar way we can derive the gradient of the differential
entropy as

∂

∂u
H(p(xk|Y k)) = −

∫
∂

∂u
p(xk|Y k) ln p(xk|Y k)dxk

= −
∫
∂p(xk|Y k)

∂u
ln p(xk|Y k)dxk

−
∫
∂p(xk|Y k)

∂u
dxk︸ ︷︷ ︸

=0

. (53)

To realize that the second term is zero, take the derivative of
both sides of the requirement∫

p(xk|Y k)dxk = 1 (54)

with respect to u. Using Bayes rule (49) in (53), the gradient
expression becomes

∂

∂u
H(p(xk|Y k))

= −
∫
∂p(xk|Y k)

∂u

(
ln p(yk|xk) + ln p(xk|Y k−1)

)
dxk

+ ln p(yk|Y k−1)
∫

∂

∂u
p(xk|Y k)dxk︸ ︷︷ ︸

=0

(55)

As in the derivation of the differential entropy approximation
we use the mixture (41) for p(xk|Y k−1). When a particle
mixture approximation for jth element of the gradient given
as

∂

∂uj
p(xk|Y k) ≈ 1

ε

N∑
i=1

∆wj,(i)k δ(xk − x(i)
k ) (56)

is available, the differential entropy gradient becomes

∂

∂uj
H(p(xk|Y k))|u=û

≈ −1
ε

N∑
i=1

∆wj,(i)k

(
ln p(yk|x(i)

k )

+ ln
[ N∑
`=1

w
(`)
k−1p(x

(i)
k |x

(`)
k−1)

])
dxk. (57)

Equations (52) and (57) constitute some of the important con-
tributions of this paper and they are used in the two algorithms
that will be presented in the next section.

6. A PARTICLE FILTER APPROACH

In this section the differential entropy is used as the objective
function in the planning problem. We first describe the plan-
ning problem and introduce stochastic approximation search.
Then the computations are described in detail and simulation
results are presented.

The Planning Problem

We define the planning problem as in (6), repeated here for
convenience,

min
πM−1

E[L(xM )|I0]

s.t. uk ∈ U
xk+1 = f(xk, wk)
x0 ∼ p(x0|I0)
wk ∼ N (0, Q)

xsk+1 = fs(xsk, uk)
xs0 = x̄s0
yk = h(xk, xsk, ek)
ek ∼ N (0, R).

(58)

Now we use our expressions of the differential entropy to de-
fine a new loss function

E[L(xM )|I0] = E[H(p(xM |YM , Y 0))|Y 0] (59)

where Y 0 is the measurement we have received and YM is a
random variable representing the future measurements. Tak-
ing the expectation in (59), which should be done over both
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xM and YM , is not possible analytically for the general prob-
lem definition. A Monte-Carlo based averaging strategy like

L(xM ) =
Ny∑
j=1

Ĥ
(
p(xM |YM (j), Y 0)

)
(60)

may be applicable, where the independent sequences{YM (j)}
are generated from the density p(YM |Y 0). However, the
computational load is O(NyN2) and in practice Ny needs to
be very large. We, here, propose a stochastic gradient based
optimization algorithm using the differential entropy expres-
sion H(p(xM |YM , Y 0)), which is a stochastic function due
to the random process and the measurement noise, as follows

π̂m+1 = π̂m − am
∂

∂π
H(p(xM |YM , Y 0))|π=π̂m . (61)

However, even for such an algorithm the noise will cause se-
rious problems. Therefore, common noise realizations [15]
will be used for entropy and entropy gradient evaluations.

Before detailed descriptions of our planning algorithms are
presented, stochastic gradient search is introduced in the next
sub-section.

Stochastic Approximation

In Section 4 we assume that the loss function is deterministic,
but we now have to consider the stochastic case, since only
noisy information is available. Robbins and Monro are often
referred to as the people who introduced modern stochastic
search algorithms. They introduced a stochastic approxima-
tion method for root-finding when only noisy measurements
of the objective function are available [19]. For a good intro-
duction to stochastic optimization see [22].

Let the loss function be given as

L(θ) = E[L(θ,W )] (62)

where W is a random variable causing the stochastic ef-
fects of the measurement L(θ,W ) of the loss function. The
stochastic gradient is defined as

g(θ) =
∂L(θ,W )

∂θ
(63)

and the stochastic gradient algorithm is

θ̂k+1 = θ̂k+1 − ak
∂Lk(θ,Wk)

∂θ

∣∣∣∣
θ=θ̂

. (64)

For batch processing the gradient above can be replaced by
its sample mean. If the gradient can not be calculated ex-
plicitly, there are gradient free methods for gradient approx-
imation based on values of the loss function. One of the
well-known algorithms is the finite-difference stochastic ap-
proximation (FDSA). The gradient is formed from noisy loss
function measurements where each element of θ is perturbed
[4]. A drawback with this algorithm is that the computational

complexity increases with the dimension of the optimization
variable θ. An alternative algorithm is the simultaneous per-
turbation stochastic approximation (SPSA) [22] which uses
two, regardless of the dimension of θ, loss function measure-
ments. Nevertheless, the SPSA achieves the same level of
statistical accuracy as the FDSA under rather general condi-
tions [22].

The proposed idea in this paper is to use the same noise re-
alization for every estimate of the gradient. Using common
random numbers gives better results in gradient evaluations
[15].

A Gradient based Algorithm

The algorithm is based on approximative gradient expression
(57). For each iteration in the stochastic gradient search al-
gorithm (61) the estimate of the control signal sequence is
updated and the gradient approximation is computed as in
Algorithm 1. Note that the control signal sequence is de-
fined slightly different here than in previous sections. Here
we assume that the uk = uk(I0) and, furthermore, we let
sequences like {u0, u1, ..., uM} be denoted as u0:M .

Algorithm 1 (Gradient Calculation) Suppose we are given
the particle representation of p(x0|I0) as

p(x0|I0) =
N∑
i=1

w
(i)
0 x

(i)
0 (65)

and a current control sequence estimate û0:M−1. Then the
gradient of the posterior density p(xM |YM ) with respect to
the input sequence u0:M−1 evaluated at the current control
input sequence u0:M−1 = û0:M−1 i.e.,

∂p(xM |YM )
∂u0:M−1

∣∣∣∣
u0:M−1=û0:M−1

(66)

is calculated using the following steps.

1. Target State Sequence Generation

(a) Select a single state realization x̄1
0 as

P (x̄1
0 = x

(j)
0 ) = w

(j)
0 (67)

for j = 1, . . . , N .

(b) Generate a single realization of the process noise se-
quence v1

0:M−2

(c) Obtain the single state sequence realization x1
1:M using

the single realization of the process noise sequence v1
0:M−2

and the single state realization x̄1
0 as

x1
i+1 = f(x1

i , v
1
i ), (68)

x1
0 = x̄1

0 (69)

for i = 0, . . . ,M − 1.
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2. Measurement Generation

(a) Generate M + 1 control signal sequences {uj0:M−1}Mj=0

where u0
0:M−1 = û0:M−1 is current estimated input se-

quence. Each uj0:M−1 for 1 ≤ j ≤ M correspond to the
perturbation of the current estimated input sequence û0:M−1

defined as

uji =
{
ûi + ε, i = j − 1
ûi, otherwise (70)

for i = 0, . . . ,M − 1 and j = 1, . . . ,M .

(b) Obtain the M + 1 sensor trajectories {xs,j1:M}Mj=0

corresponding to each of the control signal sequences
{uj0:M−1}Mj=0.

(c) Generate a single realization of the measurement noise
sequence e11:M .

(d) Calculate M + 1 measurement sequences {yj1:M}Mj=0

corresponding to control signal sequences, sensor trajectories
{xs,j1:M}Mj=0 using the single measurement noise sequence re-
alization e11:M and the single state sequence realization x1

1:M

as

yji = h(x1
i , x

s,j
i , e1i ) (71)

for i = 1, . . . ,M and j = 0, . . . ,M .

3. Calculate ∂p(xM |y0:M )
∂u0:M−1

using marginal particle filter [14].

Particles and weights in this filter are called as {x(i)
k ,w

(i)
k }Ni=1

to avoid confusion with the similar quantities in the main
particle filter. In general, the number of particles N used
in the gradient calculating particle filter might be different
than the number of particles N used in the main particle fil-
ter. Hence, the particles {x(i)

k }Ni=1 and weights {wm,(i)k }Ni=1

for m = 0, . . . ,M are initialized by sampling them from the
main particle filter’s particle distribution as follows.

P (x(i)
0 = x

(j)
0 ) = w

(j)
0 (72)

w
m,(i)
0 =

1
N

(73)

for j = 1, . . . , N , i = 1, . . . ,N and m = 0, . . . ,M . Setting
k = 1, a single step of the algorithm is given below.

(a) Generate pre-likelihoods λ(i)
k as

λ
(i)
k ∝ w

0,(i)
k−1p(y

0
k|x̄

(i)
k , xs,0k ) (74)

with
∑N
i=1 λ

(i)
k = 1. Here, state vector x̄

(i)
k is obtained from

the corresponding state vector x
(i)
k−1 by a deterministic rela-

tion. Most of the times

x̄
(i)
k = f(x(i)

k−1, 0). (75)

(b) Sample indices {i`}N`=1 as follows

P (i` = j) = λ
(j)
k (76)

for 1 ≤ `, j ≤ N.

(c) Prediction Update: Sample x
(j)
k as

x
(j)
k ∼ p(xk|x

(ij)
k−1) (77)

for j = 1, . . . ,N.

(d) Measurement Update: Calculate the weights {wm,(i)k }Ni=1

for m = 0, . . . ,M as

w
m,(j)
k ∝ p(ymk |x

(j)
k , xs,mk )

∑N
i=1 w

m,(i)
k−1 p(x

(j)
k |x

(i)
k−1)∑N

i=1 λ
(i)
k p(x(j)

k |x
(i)
k−1)

(78)

with
∑N
j=1 w

m,(j)
k = 1.

(e) If k = M , stop. The approximation of ∂p(xM |YM )
∂uj

is
given as

∂p(xM |YM )
∂uj

(xM) ≈ 1
ε

N∑
i=1

(wj,(i)M − w
0,(i)
M )δ

x
(i)
M

(xM) (79)

Note that this result gives us the approximation (56) with
∆wj,(i)M = w

j,(i)
M − w

0,(i)
M . Otherwise (if k 6= M ), set

k = k + 1, go to step 3a.

4. Finally, the gradient approximation of the differential en-
tropy is computed as in (57) which gives

∂

∂uj
H(p(xM |YM ))|u=u0

≈ −1
ε

N∑
i=1

(wj,(i)M − w
0,(i)
M )

(
ln p(yM |x(i)

M )

+ ln
( N∑
`=1

w
(`)
M−1p(x

(i)
M |x

(`)
M−1)

))
(80)

The Marginal Particle Filter has O(N2) complexity and the
gradient calculation in the last step is also O(N2). Thus, the
overall computational complexity of the algorithm isO((M+
1)N2), where M is the number of planning steps. This is
significant large complexity and future work is to see how
this can be reduced. There are techniques for reducing cost
of the Marginal Particle Filter to O(NlnN), see [14]. Using
such a technique yields O(MN ln N + N2) complexity of the
algorithm.

A Gradient free Algorithm

It is also possible to apply a gradient-free approach, based
on the loss function approximation in (52), to the planning
problem. For each iteration in the stochastic search algorithm
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(e.g. FDSA or SPSA), the gradient is estimated based on
“measurements” of the differential entropy computed as in
Algorithm 2.

Algorithm 2 (Differential entropy) Suppose we are given the
particle representation of p(x0|I0) as

p(x0|I0) =
N∑
i=1

w
(i)
0 x

(i)
0 . (81)

Then the differential entropy of the posterior density
p(xM |YM ) for a control signal sequence u0:M−1 is com-
puted using the following steps.

1. Target State Sequence Generation; the same as in Algo-
rithm 1.

2. Measurement Generation; basically the same as in Algo-
rithm 1, but in 2(a) the control signal sequences are generated
according to the SA algorithm.

3. For each control signal sequence uj0:M−1

(a) Initialize a temporary particle filter by sampling from
the initial posterior density p(x0|Y 0) resulting in a particle
set {x(i)

0 , w
(i)
0 }Ni=1.

(b) Update the particle filter with the observation sequence
yj1:M according to the steps in (42)-(43).

(c) Compute differential entropy approximation according
to (52).

Notice that the particle filters obtaining the differential en-
tropy values for uj0:M−1 must use the same noise realizations
for j = 0, . . . ,M .

As noted before, the computational cost of the differential
entropy (52) is O(N2). If a SIR particle filter with a O(N)
complexity is used, then the overall computational complex-
ity of the algorithm isO(MN + N2), where M is the number
of planning steps. One thing worth remembering is that a
gradient free stochastic approximation algorithm in general
requires more iterations than an algorithm where the gradient
is given.

Simulation Results

Figure 5 shows the result from a simulation with the same
conditions as before, see Table 1. The information criterion
is the differential entropy and Algorithm 1 is used.

As in most problems where SA is applied, there are problems
with determining good parameter values, e.g. the step size of
the SA algorithm. Suitable values of the step size vary much
depending on the planning conditions, even in the simplified
planning problem considered here. Some type of adaptive
methods is required to tune the values.
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Figure 5. Simulation result from a differential entropy based
planning.

7. CONCLUSIONS

In this work we consider a target tracking scenario where a
moving observer with a bearings-only sensor is tracking a
target. The tracking performance is highly dependent on the
trajectory of the sensor platform, and the problem is how it
should maneuver for optimal estimation performance.

The planning problem can be considered as a stochastic opti-
mal control problem and if a sub-optimal control scheme, for
instance certainty equivalence control, is used with a Gaus-
sian target uncertainty assumption, the resulting problem is
deterministic. However, the problem is non-linear and non-
convex which still makes it a challenge to solve optimally.

Particle mixture is a popular approach to handle more gen-
eral target densities in the estimation field. To compute good
information metrics based on particle mixtures is not straight-
forward. In this work we propose a differential entropy cal-
culation method for particle mixtures and derive a stochastic
gradient search algorithm which is applied to the planning
problem. However, the cost of being able to handle non-
Gaussian target densities are a much higher computational
load. Furthermore, there are more parameters to tune in the
optimization routine.
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Umut Orguner received B.S., M.S. and
Ph.D. degrees all in electrical engineer-
ing from Middle East Technical Univer-
sity, Ankara, Turkey in 1999, 2002 and
2006 respectively. Between 1999 and
2007, he was with the Department of
Electrical and Electronics Engineering
of the same university as a teaching and

research assistant. Since January 2007 he has been working
as a postdoctoral associate in Division of Automatic Control,
Department of Electrical Engineering, Linköping University,
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