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Abstract Modern information retrieval (IR) test collections have grown in size, but the

available manpower for relevance assessments has more or less remained constant. Hence,

how to reliably evaluate and compare IR systems using incomplete relevance data, where

many documents exist that were never examined by the relevance assessors, is receiving a

lot of attention. This article compares the robustness of IR metrics to incomplete relevance

assessments, using four different sets of graded-relevance test collections with submitted

runs—the TREC 2003 and 2004 robust track data and the NTCIR-6 Japanese and Chinese

IR data from the crosslingual task. Following previous work, we artificially reduce the

original relevance data to simulate IR evaluation environments with extremely incomplete

relevance data. We then investigate the effect of this reduction on discriminative power,

which we define as the proportion of system pairs with a statistically significant difference

for a given probability of Type I Error, and on Kendall’s rank correlation, which reflects

the overall resemblance of two system rankings according to two different metrics or two

different relevance data sets. According to these experiments, Q0, nDCG0 and AP0 proposed

by Sakai are superior to bpref proposed by Buckley and Voorhees and to Rank-Biased

Precision proposed by Moffat and Zobel. We also point out some weaknesses of bpref and

Rank-Biased Precision by examining their formal definitions.

Keywords Evaluation metrics � Relevance assessments � Test collections �
Incompleteness

1 Introduction

An information retrieval (IR) test collection comprises a document collection, a set of

search requests and a set of manually judged relevant documents for each request.
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Following TREC1 parlance, hereafter the search requests will be referred to as topics, and

the set of relevant documents will be referred to as qrels. The methodology of using a test

collection for evaluating and comparing IR techniques was established in the 1960s,

through the Cranfield 2 Test by Cleverdon (1967). Since then, laboratory experiments

using test collection have always played a central role for the progress of IR techniques, as

they are objective, efficient and repeatable (Voorhees 2002).

Now, in the twenty-first century, evaluation using test collections is still a necessity for

most IR researchers. However, the 1990s actually saw a major departure from the original

Cranfield 2 experiments, with the advent of TREC, NTCIR2 and CLEF3 evaluation efforts

for constructing very large-scale test collections. On the surface, the main difference

between the Cranfield 2 test collection and the modern test collections is the document

collection size: The Cranfield 2 test collection contained only 1,400 documents; The TREC

and NTCIR test collections typically contain between half a million to one million doc-

uments. However, a more important difference is that while the small scale Cranfield 2

collection had complete relevance assessments, the modern test collections do not: It is

simply not feasible to examine the documents exhaustively for these large scale

collections.

For creating the qrels, TREC, CLEF and NTCIR all adopt a mechanism called pooling,

which works as follows:

1. Participants submit their ‘‘runs’’ (collections of ranked lists for each topic, where each

ranked list usually contains up to 1,000 documents) to the organisers;

2. For each topic, organisers take the top k (typically 100) documents from some of the

submitted runs and obtain a list of unique documents, i.e, a document pool;

3. For each topic, assessors judge the relevance of all documents within the pool.

Hence, despite the fact that pooling is a very efficient way of collecting relevant

documents, qrels formed through pooling are possibly incomplete. That is, there may exist

relevant documents within the document collection, which none of the participating sys-

tems managed to retrieve and therefore are outside the qrels (Voorhees 2002).

While the collection sizes tend to grow monotonically in order to mimic real-world data

such as the Web, the available manpower for relevance assessments remains more or less

constant, and therefore test collections are destined to become more and more incomplete.

Using an incomplete test collection for IR evaluation raises the following concerns at least:

(a) Is it possible to reliably compare two participating systems and judge which is

superior? Were the test collection less incomplete, would this judgement be the same?

(b) Is it possible to reliably compare a participating system and a new system that never

contributed to the pool? How about two new systems? In short, is the incomplete test

collection reusable?

For these reasons, IR evaluation using incomplete relevance assessments is receiving

more attention than ever.

One obvious approach to tackling these problems is to devise IR effectiveness metrics

that are robust to relevance data incompleteness: We say that an IR metric is robust to

incompleteness if system comparison results based on an incomplete set of relevance data

1 http://trec.nist.gov/
2 http://ntcir.nii.ac.jp/
3 http://www.clef-campaign.org/
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are similar to those based on a less incomplete one. This article follows this approach, and

more specifically, addresses the issues mentioned in (a) above. Below, we discuss three

existing studies that are directly related to the present one. We shall discuss other related

work in Sect. 2.

Buckley and Voorhees (2004) proposed an IR evaluation metric called bpref (binary

preference) which is highly correlated with Average Precision (AP) when full relevance

assessments are available and is yet more robust when the relevance assessments are

reduced. Recent TREC tracks have used this metric along with AP. Bpref penalises a

system if it ranks a judged nonrelevant document above a judged relevant one, and is

indepedendent of how the unjudged documents are retrieved.

More recently, Moffat et al. (2007) introduced an IR evaluation metric called Rank-

Biased Precision (RBP) which they claimed is suitable for evaluation with incomplete

relevance data. RBP assumes that the probability that the user moves from a document at

Rank r to Rank (r + 1) is a constant p, regardless of the relevance (level) of the document

at Rank r. As it does not have a recall component, adding more relevant documents to the

qrels always increases the RBP score.

Sakai (2007a) reported that applying Q-measure (or simply, Q), AP and normalised

Discounted Cumulative Gain (nDCG) to a condensed list, i.e., a ranked list of documents

obtained by removing all unjudged documents from the original list, is a simpler and a

better solution than bpref for handling relevance data incompleteness. The metrics applied

to condensed lists will hereafter be referred to as Q0, AP0 and nDCG0, respectively.

This article compares the robustness of Q(0), AP(0), nDCG(0), bpref and RBP to

incomplete relevance assessments, using four different sets of graded-relevance test col-

lections with submitted runs—the TREC 2003 and 2004 robust track data and the NTCIR-6

Japanese and Chinese IR data from the crosslingual task. We believe that evaluating IR

systems using graded relevance is important for the progress of IR because, if one adheres

to IR evaluation based on binary relevance, it would be very difficult for him to devise an

IR algorithm that can retrieve highly relevant documents on top of partially relevant ones.

Following previous work, we artificially reduce the original relevance data to simulate IR

evaluation environments with extremely incomplete relevance data. We then investigate

the effect of this reduction on discriminative power (Sakai 2006b, 2007b), which we define

as the proportion of system pairs with a statistically significant difference for a given

probability of Type I Error, and on Kendall’s rank correlation (Voorhees 2001)), which

reflects the overall resemblance of two system rankings according to two different metrics

or two different qrels. According to these experiments, Q0, nDCG0 and AP0 are superior to

bpref and RBP.

This article generalises a recent study by Sakai (2007a), in that (1) While he used the

NTCIR-3 and NTCIR-5 Japanese/Chinese data, we use TREC robust track data and

NTCIR-6 Japanese/Chinese data to obtain more general and substantial conclusions; (2)

We compare RBP with the other metrics, after discussing some properties of the metrics

that immediately follow from their formal definitions.

The remainder of this article is organised as follows. Section 2 provides an overview of

related studies. Section 3 defines and discusses the characteristics of AP(0), Q(0), nDCG(0),
bpref and RBP. Section 4 describes the TREC and NTCIR data we used for comparing the

robustness of these metrics to relevance data incompleteness. Section 5 compares the

metrics in terms of discriminative power based on statistical significance tests. Section 6

compares the metrics in terms of Kendall’s rank correlation between the entire system

rankings. Finally, Sect. 7 concludes this article.
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2 Related work

This section provides an overview of previous work related to the present study.

There are at least two approaches to tackling the relevance data incompleteness problem:

One is to try to construct a better test collection more efficiently, and another is to devise or

choose reliable IR metrics, given a test collection. Along the first line of research, methods

for creating judgment pools efficiently were proposed by Cormack et al. (1998) and by

Zobel (1998). Soboroff et al. (2001) proposed a method for ranking systems without any

relevance assessments, but subsequently Aslam and Savell (2003) pointed out that the

method tends to rank them by ‘‘popularity’’ rather than performance. More recently, Car-

terette et al. (2006) analyzed the distribution of AP over all possible assignments of

relevance to all unjudged documents and proposed a method to construct a test collection

with minimal relevance assessments; Büttcher et al. (2007) proposed to ‘‘expand’’ existing

relevance assessments by treating them as training data for machine learning.

This article takes the latter approach, of choosing reliable IR metrics for handling

relevance data incompleteness. The proposals of the aforementioned bpref (Buckley and

Voorhees 2004), RBP (Moffat et al. 2007) and Q0, nDCG0 and AP0 (Sakai 2007a) fall into

this category. Also along this line, Aslam et al. (2006) and Yilmaz and Aslam (2006)

proposed Induced AP, Subcollection AP and Inferred AP. Induced AP is exactly what we

call AP0. We do not consider Subcollection AP and Inferred AP in our present study,

because (1) While the goal of Yilmaz and Aslam was to estimate the true AP values, ours is

not: We prefer to explore different metrics, especially those that can handle graded rele-

vance; (2) Both Subcollection AP and Inferred AP require knowledge of the pooled but
unjudged documents, which limits their applicability;4 (3) According to Bompada et al.

(2007), Inferred AP is not as robust as the original nDCG for evaluation with incomplete

relevance data.

Another metric proposed for handling incomplete relevance data, called RankEff
(Grönqvist 2005), has been examined by Büttcher et al. (2007). However, Sakai (2008b)

points out that RankEff is in fact equivalent to an existing variant of bpref called bpref_N,

also known as ‘‘bpref_allnonrel’’ implemented in trec_eval, the standard IR evaluation

software for TREC. Sakai (2007a) showed both analytically and empirically that bpref_N

is not a good evaluation metric. See Sect. 3.2 for more discussions.

Büttcher et al. (2007) also used Precision at l judged documents, which relies on

condensed lists just like Q0, AP0 and nDCG0. However, Precision is not a satisfactory

metric for us because: (1) It ignores the ranks of retrieved relevant documents; (2) It does

not average well, especially with a large document cut-off; (3) With a small document cut-

off, it gives unreliable results as systems are evaluated based on a small number of

observations, i.e., documents near the top of the ranked list (Sakai 2007f).

De Beer and Moens (2006) proposed rpref, a graded-relevance version of bpref. Sakai

(2007a) pointed out that it has minor bugs, and proposed rpref_relative2 by fixing them.

However, he reported that it does not have any advantage over Q0, AP0 and nDCG0 despite

its complexity.

Sakai (2007c) conducted a study similar to the present one, but focussed on the task of

finding one highly relevant document. He showed that the application of Reciprocal Rank,

O-measure (Sakai 2006c) and P+-measure (Sakai 2006a, 2007e) to condensed lists is an

effective way of handling the relevance data incompleteness problem.

4 Subcollection AP requires even more knowledge, namely, how small the subcollection with relevance
assessments is compared to the entire document collection.
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3 Formal definitions of the IR metrics

This section formally defines the IR metrics we consider, namely, Q(0), AP(0), nDCG(0),
bpref and RBP, and also discusses their properties that immediately follow from the defi-

nitions. Among these metrics, only Q(0), nDCG(0) and RBP can handle graded relevance.

3.1 Q, AP and nDCG

Let L denote a relevance level, and let gainðLÞ denote the gain value for retrieving an

L-relevant document for a particular topic. Following the NTCIR tradition (Kando 2007),

this article assumes that we have S-relevant (i.e., highly relevant), A-relevant (i.e., rele-

vant) and B-relevant (i.e., partially relevant) documents. Other documents, i.e., judged

nonrelevant documents and unjudged documents, are considered nonrelevant and therefore

do not carry a gain value. We let gain(S) = 3, gain(A) = 2 and gain(B) = 1 hereafter as

metrics such as Q and nDCG are robust to the choice of gain values (Sakai 2007f). As for

the TREC data, which only have ‘‘highly relevant’’ and ‘‘relevant’’ documents, we treat the

former as S-relevant, and the latter as B-relevant. The latter were treated as B-relevant

rather than A-relevant because it has been reported that there are many marginally or

partially relevant documents in the TREC qrels: Sormunen (2002) reported that about one

half of their TREC qrels were only marginally relevant; Sakai and Sparck Jones (2001)

reported that only about 56% of the TREC qrels were highly relevant for a subcollection of

the early TREC document sets.

Let RðLÞ denote the number of L-relevant documents, and let R ¼
P
L RðLÞ: Let

cgðrÞ ¼
P

1� i� r gðiÞ denote the cumulative gain at Rank r of the system output, where

gðiÞ ¼ gainðLÞ if the document at Rank i is L-relevant and g(i) = 0 otherwise (i.e., if the

document at Rank i is either judged nonrelevant or unjudged). Let cgI(r) denote the

cumulative gain of an ideal ranked output, where an ideal ranked output is one that satisfies

g(r) [0 for 1 B r B R and g(r) B g(r - 1) for r [1. For NTCIR, for example, listing up all

S-relevant documents, followed by all A-relevant documents, followed by all B-relevant

documents produces an ideal ranked output. Note that whether ‘‘nonrelevant’’ (i.e., either

judged nonrelevant or unjudged) documents are retrieved below these relevant documents

does not matter, as the nonrelevant documents do not carry gain values. Moreover, note

that several ‘‘ideal’’ ranked outputs can exist in general, since documents can be inter-

changed within each relevance level.

Let isrel(r) be one if the document at Rank r is relevant and zero otherwise, and let

countðrÞ ¼
P

1� i� r isrelðiÞ: Clearly, precision at Rank r is given by PðrÞ ¼ countðrÞ=r.

We first define Q-measure:

Q-measure ¼ 1

R

X

r

isrelðrÞBRðrÞ ð1Þ

BRðrÞ ¼ bcgðrÞ þ countðrÞ
bcgIðrÞ þ r

ð2Þ

where BR(r) is called the blended ratio and b is a persistence parameter. Because BR(r) has

an r in the denominator (just like P(r)), Q-measure is guaranteed to become smaller as a

relevant document goes down the ranked list. A large b (e.g., b = 100) alleviates this

effect, and makes Q-measure more forgiving for relevant documents near the bottom of the

ranked list. Conversely, a small b (e.g., b = 1) imposes more penalty. Sakai (2007d)
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showed empirically that b = 1,10 are good choices, so we take b = 1 throughout this

article. Note also that b = 0 reduces Q-measure to AP:

AP ¼ 1

R

X

r

isrelðrÞ countðrÞ
r

¼
X

r

isrelðrÞPðrÞ: ð3Þ

For a given logarithm base a, let the discounted gain at Rank r be dg(r) = g(r)/loga(r)

for r [ a and dgðrÞ ¼ gðrÞ for r B a. Similarly, let dgI(r) denote the discounted gain for an

ideal ranked list. nDCG at document cut-off l is defined as:

nDCGl ¼
X

1� r� l

dgðrÞ=
X

1� r� l

dgIðrÞ: ð4Þ

Throughout this article, we let l = 1,000 as it has been reported that nDCG with a small

document cut-off is unreliable (Sakai 2007f). Moreover, we let a = 2 because it has been

reported that nDCG with a large logarithm base is counterintuitive and lacks discriminative

power (Sakai 2007d), despite the fact that this parameter was designed to reflect persis-

tence just like RBP’s p and Q-measure’s b. We shall come back to this issue in Sect. 3.4.

3.2 Q0, AP0, nDCG0 and bpref

Sakai (2007a) reported that Q0, AP0 and nDCG0 are simpler and better solutions to the

problem of evaluating IR systems with incomplete relevance data than bpref (Buckley and

Voorhees 2004). Recall that these represent the application of Q, AP and nDCG to con-

densed lists, respectively.

Let r0 denote the rank of a document in a condensed list, whose original rank was r(Cr0).
Let N denote the number of judged nonrelevant documents. Then bpref can be expressed as

follows (Sakai 2007a):

bpref ¼ 1

R

X

r0
isrelðr0Þ 1�minðR; r0 � countðr0ÞÞ

minðR;NÞ

� �

ð5Þ

where r0 - count(r0) is the number of judged nonrelevant documents ranked above the

relevant one at Rank r0, or the misplacement penalty with respect to this particular relevant

document. Clearly, for any topic such that R B N, bpref reduces to:

bpref R ¼ 1

R

X

r0
isrelðr0Þ 1�minðR; r0 � countðr0ÞÞ

R

� �

: ð6Þ

In fact, R B N in holds for all topics used in our experiments (See also Table 2), so

bpref is always bpref_R in our study.

Sakai (2007a) pointed out that the only essential difference between AP0 and bpref is

that, while the former uses r0 for scaling each misplacement penalty r0 - count(r0), the

latter uses a constant (e.g., R). Compare Eq. 6 with

AP0 ¼ 1

R

X

r0
isrelðr0Þ countðr0Þ

r0
ð7Þ

¼ 1

R

X

r0
isrelðr0Þ 1� r0 � countðr0Þ

r0

� �

: ð8Þ
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Scaling by a constant is generally not good, especially if the constant is large, because

this means that the misplacement penalties with respect to the top ranked relevant docu-

ments are virtually ignored (Sakai 2007a). For example, suppose that there is a condensed

list that has a judged nonrelevant document at Rank 1 and a relevant document at Rank 2.

For this document at rank r0 = 2, the misplacement penalty is r0 � countðr0Þ ¼ 2� 1 ¼ 1,

and Pðr0Þ ¼ 1=2. Thus, the existence of the judged nonrelevant document at Rank 1 weighs

heavily in the case of AP0. In contrast, this has very little impact on bpref, because the

misplacement penalty is divided not by r0 = 2 but by a large number, namely, R or N. In

other words, bpref lacks the ‘‘top heaviness’’ of AP0, which is one of the main strengths of

the original AP. It is clear that bpref_N (Sakai 2007a), which always uses N for scaling the

misplacement penalty, suffers severely from this problem, as N is generally a very large

number: See, for example, Table 2 which we shall discuss later. Sakai (2007a) showed

experimentally that bpref_N indeed performs very poorly.

It should be noted that AP0 is actually implemented in trec_eval. However, it appears

that it was never properly examined until Yilmaz and Aslam (2006) and Sakai (2007a)

rediscovered it.

3.3 RBP

We now formally define RBP (Moffat et al. 2007; Moffat and Zobel 2008). Let H denote

the highest relevance level across all topics. RBP can be expressed as follows:

RBP ¼ 1� p

gainðHÞ
X

r

gðrÞpr�1 ð9Þ

where p(B1) is a persistence parameter. A high value of p represents a persistent user; a

low value represents an impatient one. As Moffat and Zobel (2008) explored p = 0.5, 0.8,

0.95, we start our own experiments with the same values, denoting each version of RBP by

RBP.5, RBP.8 and RBP.95. In all of our experiments, we let gainðHÞ ¼ gainðSÞ ¼ 3:
Recall that our NTCIR data have S-, A- and B-relevant documents, but our TREC data

have S- and B-relevant documents only.

The assumption behind RBP is that the user, after examining the document at Rank r,

will examine the document at Rank (r + 1) with probability p or stop scanning the ranked

list with probability 1 - p. Thus the model assumes that the transition probability is

independent of the relevance of the document at Rank r. Whether this assumption is realistic

or not is debatable, but this does make RBP easy to interpret and to compute. Moreover,

Moffat et al. (2007) argue that RBP is suitable for evaluation with incomplete relevance

data as it is guaranteed to increase as more relevance judgments are added (since it does not

have a recall component) and the error due to unjudged documents can be quantified.

However, we can discuss RBP’s possible weaknesses. Firstly, RBP may give a very low

score even to an ideal ranked output: In fact, the fact that it does not rely on recall implies

that it denies the very existence of an ‘‘ideal’’ ranked output. From Eq. 9, it is clear that the

RBP for an ideal ranked list in a binary relevance environment equals ð1� pÞ
PR

r¼1 pr�1:
Table 1 shows the RBP value for an ideal ranked output for p = 0.5, 0.8, 0.95 and R = 1,

10, 100, 1,000. When p = 0.95, for example, an ideal ranked output for a topic with

R = 10 receives an RBP of .4013, while one for a topic with R = 100 receives .9941.

Whether it is good to average such a measurement across topics is debatable, but it is at

least a fact that topics with many relevant documents can have a far larger impact on Mean

RBP than those with few relevant ones.
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Moreover, Table 1 shows the extreme cases of when R = 1: it can be observed that the

RBP of an ideal ranked output (i.e., one that has the only one relevant document at Rank 1)

can range from 0.05 (p = 0.95) and 0.5 (p = 0.5), since RBP in this case equals 1 - p.

Thus the user’s persistence, i.e., the probability of moving from a document from Rank r to

that at Rank (r + 1), influences the effectiveness value of the same ranked output quite

drastically, even though only the document at Rank 1 is being examined. Whether this is a

desirable feature for an IR metric is also debatable. In contrast, Q, nDCG and AP are by

definition guaranteed to be one whenever the system output is an ideal ranked output

regardless of the value of R, since they are based on comparing the system output with the

ideal one.5

We further argue that depending on recall is not necessarily bad. The real user may have

some idea of the number of relevant documents, due to his background knowledge, or if

not, by looking at the total number of hits shown in the IR interface. Moreover, even if this

is not the case, a good IR performance metric is not necessarily one that closely mimics

‘‘user satisfaction.’’ For example, a user may be very satisfied with the ranked output,

having found a decent document, but he may have missed ten other documents that are in

fact more relevant than the one he has found. That is, the user may be happy, just because
he is ignorant. From a conscientious system developer’s point of view, if he knows that

there are ten relevant documents that should be retrieved, then he would design a system

that can retrieve as many of them as possible rather than a system that makes the user

‘‘happy’’ by showing just one relevant document and hiding the other relevant ones

completely. Hence Q and AP depend directly on R, the number of judged relevant doc-

uments, and even nDCG depends on it indirectly, as it relies on an ideal ranked output

which lists up all relevant documents.

3.4 Top-heaviness of RBP, AP, Q and nDCG

Figure 1 compares the ‘‘top-heaviness’’ of RBP, AP, Q and nDCG, by considering a ranked

output that contains exactly one relevant document, and making it move from Rank 1 to

Rank 20. The graph at the top shows the situation when R = 10, and the one at the bottom

shows the situation when R = 100, both under a binary relevance environment. Note that

the three RBP curves are not affectd by the value of R. From the figure, it can be observed

that RBP.5 is probably too top-heavy: it basically ignores any relevant document retrieved

below Rank 10. This makes evaluation very unstable, as we shall see in our experiments in

Table 1 Values of RBP for an ideal ranked output

RBP.5 RBP.8 RBP.95

R = 1 .5 .2 .05

R = 10 .9990 .8926 .4013

R = 100 1 1 .9941

R = 1,000 1 1 1

5 AP, on the other hand, has a different weakness, in that it can be one for a suboptimal ranked output in a
graded relevance environment. To be more specific, AP is one as long as all top R documents are at least
somewhat relevant: It does not matter if partially relevant documents are retrieved above highly relevant
ones.
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Sect. 5. RBP.8 gives a reasonable ‘‘rank bias’’: RBP.95 looks almost like a straight line,

compared to other metrics such as Q-measure and nDCG.

In Fig. 1, the top-heaviness curve of AP is almost completely hidden by that of

Q-measure, because in a binary relevance environment, Q-measure = AP holds if there is

no relevant document below Rank R, while Q-measure [AP holds if there is at least one

relevant document below Rank R (Sakai 2006c). Thus the AP curve actually begins to

deviate from the Q-measure one at Rank 11 in the graph at the top (where R = 10).

It can also be observed that the top-heaviness curves of nDCG have a minor problem:

nDCG with a logarithm base of 2 cannot distinguish between a system that has a relevant

document at Rank 1 and one that has a relevant document at Rank 2. This is because,

according to the original definition of nDCG (which we stick to), gain discounting cannot

be applied to ranks above a(=2). This is precisely why using a large a with nDCG is no

good (Sakai 2007d): it makes the top-heaviness curve even flatter.6 It should also be noted

Fig. 1 Comparison of ‘‘top-
heaviness’’

6 One way to avoid this problem is to discount the gains by logaðr þ 1Þ for every rank r (Burges et al.
2005). However, this cancels out the logarithm base a, which was originally intended as a parameter for
reflecting the user’s patience (Järvelin and Kekäläinen 2002).
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that the top-heaviness curve for nCG (Järvelin and Kekäläinen 2002; Kekäläinen 2005), the

undiscounted version of nDCG, is a completely flat line. That is, to nCG, it does not matter

at all at which rank the relevant document is found. This explains why nCG performs very

poorly: and the same goes for Precision at l (Sakai 2007f).

To sum up, the IR metrics we consider in this study all have a mechanism, each in its

own way, of penalising relevant documents found near the bottom of the ranked list. But

the graphs suggest that using p = 0.5 for RBP may not be good for reliable evaluation.

This we will verify in our experiments described below.

4 Full and reduced data

Table 2 provides some statistics of the TREC and NTCIR data we used for evaluating the

IR metrics for the purpose of evaluation with incomplete relevance assessments. We chose

these data sets as we wanted ‘‘ad hoc’’ test collections with graded relevance data. The

‘‘TREC03’’ and ‘‘TREC04’’ data are from the TREC 2003 and 2004 robust track (Voo-

rhees 2004; 2005), and the ‘‘NTCIR-6J’’ and ‘‘NTCIR-6C’’ data are from the NTCIR-6

crosslingual track (Kando 2007). The TREC runs are English monolingual runs, and the

NTCIR-6J runs include both monolingual and crosslingual runs for the Japanese document

retrieval subtask. Similarly, the NTCIR-6C runs include both monolingual and crosslingual

runs for the Chinese document retrieval subtask.

For conducting our discriminative power experiments described in Sect. 5, we randomly

selected one run from each participating team. Thus, with the TREC03 data, for example,

we used 16 runs, which yields 16*15/2 = 120 combinations of teams for significance

testing. Figure 2 shows the distribution of AP values over the runs thus selected. For

computing Kendall’s rank correlation, we wanted more runs, and we also wanted the same

number of runs across all four data sets.7 We therefore randomly sampled 30 runs from

each data set, disregarding which team each run comes from.

Table 2 TREC and NTCIR data used in our experiments

TREC03 TREC04 NTCIR-6J NTCIR-6C

#Topics 50 49 50 50

#Documents Approx. 529,000 858,400 901,446

Pool depth 125 100 100 100

Average N 925.5 654.6 1157.9 999.4

Range N [292, 2050] [132, 1371] [480, 2732] [414, 1907]

Average R 33.2 41.2 95.3 88.1

Range R [4, 115] [3, 161] [4, 311] [15, 400]

S-relevant 8.1 12.5 2.5 21.6

A-relevant – – 61.1 30.4

B-relevant 25.0 28.8 31.7 36.1

#Teams 16 14 12 11

#All runs 78 110 73 45

#Runs used for rank correlation 30 30 30 30

7 The statistical significance of Kendall’s rank correlation depends directly on the number of runs (Sakai
2006b).
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To examine the effect of relevance data incompleteness on the IR metrics, we created

reduced relevance data from the full relevance data, following the original methodology by

Buckley and Voorhees (2004): First, for each topic, we created a randomised list of judged

relevant documents of size R, and a separate randomised list of judged nonrelevant docu-

ments of size N. Then, for each reduction rate j [ {90, 70, 50, 30, 10}, we created a reduced

set of relevance data by taking the first Rj and Nj documents from the two lists, respectively,

where Rj ¼ maxð1; truncateðR�j=100ÞÞ and Nj ¼ maxð10; truncateðN�j=100ÞÞ. The con-

tents 1 and 10 have been copied from Buckley and Voorhees (2004), representing the

minimum number of judged relevant and nonrelevant documents required for a topic,

respectively. In practice, the constant 10 was seldom used since N was generally very large.

This stratified sampling is essentially equivalent to random sampling from the entire set of

judged documents (Yilmaz and Aslam 2006).

The above method of random sampling from the original qrels may be criticised:

Possibly, a better method of studying the effect of incompleteness would be to use the

actual pools for each topic, and vary the pool depth. However, we prefer to be faithful to

the methodology by Buckley and Voorhees as one of the main goals of this study is to

contrast their claims regarding bpref (Buckley and Voorhees 2004) with our new findings.

We will report on our ‘‘shallow pool’’ experiments elsewhere (Sakai 2008a).

Figures 3 and 4 show the effect of relevance data reduction on the absolute overall

performances (e.g., Mean AP) averaged across all 30 runs for each data set. The hori-

zontal axis represents the reduction rate j. It is clear that the values of the metrics based

on the original ranked lists, i.e., AP, Q, nDCG and RBP, quickly diminish as the

relevance data becomes more and more incomplete. This is not necessarily a flaw: RBP

has been designed to behave this way. In contrast, the bpref_R (i.e., bpref) curve is

relatively flat, and this much supports what Buckley and Voorhees reported (Buckley and

Voorhees 2004). However, it is also clear that the Q0, AP0 and nDCG0 curves are just as

flat as the bpref one.

Fig. 2 AP values of the participating teams
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5 Discriminative power

This section compares the robustness of IR metrics to incomplete relevance assessments in

terms of discriminative power using Sakai’s Bootstrap Sensitivity Method (Sakai 2006b,

2007b). The input to this method are a test collection, a set of runs, an IR metric, and the

significance level a for bootstrap hypothesis tests (Efron and Tibshirani 1993). Using

resampled topic sets, the method conducts a paired bootstrap hypothesis test for every

system pair, and computes the discriminative power, i.e., for how many system pairs the IR

metric was able to detect a significant difference, and the estimated overall performance

difference required to achieve that significance. For this purpose, one thousand bootstrap

samples of topics were created for each data set, by sampling with replacement from the

original topic set. Details of Sakai’s Bootstrap Sensitivity Method can be found elsewhere

(Sakai 2006b; 2007b).

It should be stressed that we are comparing the discriminative power of different IR

metrics while holding a constant in a common experimental environment, where a is the

Fig. 3 Reduction rate (x-axis) versus absolute performance values averaged over 30 runs (y-axis) —TREC

458 Inf Retrieval (2008) 11:447–470

123



probability of Type I Error, representing the chance of concluding that two systems are

different even though the truth is they are equivalent. In other words, IR metrics with high

discriminative power are those that can reliably detect meaningful differences between two

systems. The Boostrap Sensitivity Method is closely related to the swap method proposed

by Voorhees and Buckley (2002) which compares two systems using two different topics

sets and examines whether the two outcomes are the same. Unlike the Boostrap Sensitivity

Method, the swap method lacks a theoretical foundation and is not directly related to

statistical significance tests. However, Sakai (2006b, 2007b) reported that the two methods

yield very similar results when used for comparing different IR metrics.

Table 3 compares the discriminative power of Q(0), AP(0), nDCG(0), bpref_R and RBP

with the original 100% relevance data. For example, Table 3(a) shows that Q-measure

manages to detect a statistical significance for 80 pairs out of 120 (16*15/2) combinations

of teams at a = 0.05, and that a difference of around 0.07 is required in order to achieve

significance given 50 topics.

Fig. 4 Reduction rate (x-axis) versus absolute performance values averaged over 30 runs (y-axis) —NTCIR
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We first summarise Table 3 in words:

– For TREC03 and TREC04, Q(0), AP(0), nDCG(0) and bpref_R are more discriminative

than RBP.

– For NTCIR-6J, Q(0), AP(0) and nDCG(0) are more discriminative than bpref_R and

RBP.

– For NTCIR-6C, Q(0), AP(0), nDCG(0) bpref_R and RBP.95 are more discriminative

than RBP.8 and RBP.5.

– To sum up, the overall winners given 100% relevance data are Q(0), AP(0) and

nDCG(0).

It is clear from Table 3 that small values of p for RBP hurt discriminative power. This is

probably because a small p makes RBP too top-heavy: as we have seen in Fig. 1, using

p = 0.5 implies that IR systems are more or less evaluated based on the top 10 documents

only, which makes evaluation very unreliable (Sakai 2007f). For this reason, we drop

RBP.05 from our experiments henceforth.

Figures 5 and 6 show the effect of relevance data reduction on discriminative power for

AP(0), Q(0), nDCG(0), bpref_R and RBP.95 and RBP.8. The results are similar to those

reported by Sakai (2007a), who used four data sets from NTCIR-3 and NTCIR-5. Table 4

is similar to Table 3 but uses the 10% relevance data, thus representing the ‘‘tails’’ of the

curves. We summarise Figs. 5, 6 and Table 4 in words:

Table 3 Discriminative power at a = 0.05 with 100% qrels

Disc. power (%) Diff. required Disc. power (%) Diff. required

(a) TREC03 (c) NTCIR-6J

Q 80/120 = 66.7 0.07 nDCG 48/66 = 72.7 0.09

Q0 77/120 = 64.2 0.07 nDCG0 47/66 = 71.2 0.10

AP 77/120 = 64.2 0.07 Q 47/66 = 71.2 0.08

AP0 77/120 = 64.2 0.09 Q0 47/66 = 71.2 0.09

nDCG 71/120 = 59.2 0.08 AP 46/66 = 69.7 0.10

nDCG0 71/120 = 59.2 0.08 AP0 46/66 = 69.7 0.09

bpref_R 69/120 = 57.5 0.08 bpref_R 42/66 = 63.6 0.12

RBP.8 57/120 = 47.5 0.08 RBP.95 42/66 = 63.6 0.07

RBP.95 55/120 = 45.8 0.04 RBP.8 40/66 = 60.6 0.08

RBP.5 45/120 = 37.5 0.12 RBP.5 36/66 = 54.5 0.10

(b) TREC04 (d) NTCIR-6C

Q 63/91 = 69.2 0.08 nDCG0 43/55 = 78.2 0.10

Q0 62/91 = 68.1 0.08 Q 42/55 = 76.4 0.07

AP 61/91 = 67.0 0.07 nDCG 42/55 = 76.4 0.09

AP0 61/91 = 67.0 0.07 RBP.95 42/55 = 76.4 0.06

nDCG 58/91 = 63.7 0.08 AP0 42/55 = 76.4 0.07

nDCG0 58/91 = 63.7 0.09 bpref_R 42/55 = 76.4 0.08

bpref_R 57/91 = 62.6 0.09 AP 41/55 = 74.5 0.08

RBP.95 45/91 = 49.5 0.05 Q0 40/55 = 72.7 0.08

RBP.8 36/91 = 39.6 0.09 RBP.8 35/55 = 63.6 0.09

RBP.5 30/91 = 33.0 0.12 RBP.5 27/55 = 49.1 0.13
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– For TREC03 and TREC04, Q0, AP0 and nDCG0 are more robust than other metrics to

incomplete relevance assessments. The original nDCG does well for TREC04 but not

for TREC03.

– Similarly, for NTCIR-6J and NTCIR-6C, Q0, AP0, nDCG0 and nDCG are the most

robust. (Bpref_R appears to do well for NTCIR-6C, but it has a problem, as we shall

discuss later using Table 5.)

– RBP.95, AP and RBP.8 are at the bottom of the list, exactly in this order for all four

data sets.

– To sum up, the overall winners in terms of robustness to incomplete relevance

assessments are Q0, AP0 and nDCG0. AP and RBP clearly lack the robustness. nDCG, Q

and bpref_R lie in the middle.

The above analysis was based on the number of statistically significant differences

detected given incompleteness relevance data. The basic assumption here is that the set of

significantly different pairs at j% reduction rate is basically a subset of one with the full

Fig. 5 Reduction rate (x-axis) versus discriminative power at a = 0.05 (y-axis)—TREC
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relevance data. However, it might be the case that most of these conclusions at j%
reduction rate are in fact inconsistent with the original conclusions with the 100% rele-

vance data. We thus provide an additional analysis in Table 5, which is similar in spirit to

the ‘‘accuracy’’ of Bompada et al. (2007). The table compares, for each metric, the set of

significantly different pairs at 10% reduction rate with that with the full relevance data. For

example, Table 5(a) shows that, for TREC03, AP detected a statistical significance for 13

cases with the 10% relevance data, but two of them (15%) are not among the set of cases

detected by AP with the 100% relevance data. Assuming that the conclusions with the

100% relevance data are the ground truth, the numbers presented in the table represent

‘‘errors’’. As can be seen, the number of errors are generally small, supporting the

aforementioned assumption. Bpref_R, however, appears to be quite unreliable from this

viewpoint as well: For example, Table 5(d) shows that as many as 10 cases out of the 39

significant differences detected by bpref_R at 10% reduction rate (See also Table 4(d)) are

inconsistent with the original bpref_R results. This, again, is not good news for bpref.

Fig. 6 Reduction rate (x-axis) versus discriminative power at a = 0.05 (y-axis)—NTCIR
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6 Rank correlation

The previous section compared the discriminative power of IR metrics, by focussing on the

differences between individual pairs of runs. We now compare the entire system rankings

according to two different IR metrics given the original relevance data, as well as two

different qrels, namely, the original one and a reduced one.

Table 6 shows the Kendall’s rank correlation values (Voorhees 2001) between each pair

of metrics given the original relevance data. As mentioned earlier, we randomly sampled

30 runs from each data set for computing the values: With 30 runs, the correlation is

statistically significant if it is over 0.34 (Sakai 2006b); values over 0.9 are shown in bold to

indicate high correlations. Note that Kendall’ rank correlation is 1 for a pair of identical

rankings and -1 if one ranking is a perfect inverse of the other. It can be observed that

while the system rankings by AP(0), Q(0), nDCG(0) and bpref_R can be quite similar given

the full relevance data, the RBP rankings can be quite different. This alone is not neces-

sarily a flaw: It just means that RBP is measuring something substantially different from

the other metrics. Recall that RBP disregards recall.

Figures 7 and 8 show the effect of relevance data reduction on the system ranking for

each metric: Thus, the AP ranking at X% reduction rate is compared with the original AP

ranking, and so on. Table 7 summarises the figures by sorting the metrics by Kendall’s

rank correlation at 10% reduction rate. Figures 7, 8 and Table 7 show that:

– Q0, AP0 and nDCG0 are consistently among the most robust metrics in terms of system

ranking stability. Bpref_R does well for TREC04.

Table 4 Discriminative power at a = 0.05 with 10% qrels

Disc. power (%) Diff. required Disc. power (%) Diff. required

(a) TREC03 (c) NTCIR-6J

AP0 63/120 = 52.5 0.14 Q0 46/66 = 69.7 0.10

Q0 61/120 = 50.8 0.13 nDCG 45/66 = 68.2 0.06

nDCG0 60/120 = 50.0 0.14 AveP0 44/66 = 66.7 0.11

bpref_R 47/120 = 39.2 0.16 nDCG0 44/66 = 66.7 0.10

Q 32/120 = 26.7 0.09 Q 43/66 = 65.2 0.05

nDCG 29/120 = 24.2 0.09 bpref_R 39/66 = 59.1 0.11

RBP.95 26/120 = 21.7 0.01 RBP.95 36/66 = 54.5 0.01

AP 13/120 = 10.8 0.08 AP 34/66 = 51.5 0.04

RBP.8 6/120 = 5.0 0.03 RBP.8 21/66 = 31.8 0.03

(b) TREC04 (d) NTCIR-6C

Q0 50/91 = 54.9 0.11 Q0 39/55 = 70.9 0.11

AP0 46/91 = 50.5 0.12 AP0 39/55 = 70.9 0.11

nDCG0 43/91 = 47.3 0.12 bpref_R 39/55 = 70.9 0.12

nDCG 42/91 = 46.2 0.09 nDCG0 38/55 = 69.1 0.12

bpref_R 37/91 = 40.7 0.15 nDCG 37/55 = 67.3 0.06

Q 29/91 = 31.9 0.11 Q 33/55 = 60.0 0.04

RBP.95 24/91 = 26.4 0.01 RBP.95 31/55 = 56.4 0.02

AP 15/91 = 16.5 0.09 AP 28/55 = 50.9 0.04

RBP.8 10/91 = 11.0 0.04 RBP.8 12/55 = 21.8 0.03
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– As Figs. 7 and 8 show, the system rankings by AP and RBP.8 collapse as relevance

data is reduced. RBP.95 is also not very good: at 30% reduction rate, its Kendall’s rank

correlation with the original ranking is as low as that of AP for TREC04 and for

NTCIR-6J; it performs as poorly as RBP.8 for NTCIR-6C.

– To sum up, Q0, AP0 and nDCG0 are again the overall winners, and the advantage of

introducing a new metric like bpref is not clear in terms of system ranking stability

either. RBP is not as good as Q0, AP0 and nDCG0 in terms of system ranking stability,

even with p = 0.95. Again, nDCG, Q and bpref_R lie in the middle.

7 Conclusions

This article compared the robustness of IR metrics to incomplete relevance data, using four

different sets of graded-relevance test collections with submitted runs—the TREC 2003

and 2004 robust track data and the NTCIR-6 Japanese and Chinese IR data from the

crosslingual task. Our discriminative power experiments and rank correlation experiments

agreed that Q0, AP0 and nDCG0, the application of Q, AP and nDCG to condensed lists, are

more robust than other metrics to relevance data incompleteness; that AP and RBP lack the

robustness; and that nDCG, Q and bpref_R lie in the middle. As these results hold across

two different evaluation efforts, namely TREC and NTCIR, we believe that these findings

are general. It is also interesting that Q0, nDCG0 and AP0 are comparable to one another in

Table 5 Number of significant differences detected with 10% qrels but not with 100% qrels: (i) #signif-
icant; (ii) #inconsistent; (iii) percentage

#Significant #Inconsistent % #Significant #Inconsistent %

(a) TREC03 (c) NTCIR-6J

AP 13 2 15 AP 34 2 6

Q 32 2 6 Q 43 4 9

nDCG 29 0 0 nDCG 45 1 2

RBP.8 6 0 0 RBP.8 21 0 0

RBP.95 26 1 4 RBP.95 36 2 6

bpref_R 47 7 15 bpref_R 39 1 3

AP0 63 3 5 AP0 44 2 5

Q0 61 5 8 Q0 46 1 2

nDCG0 60 5 8 nDCG0 44 0 0

(b) TREC04 (d) NTCIR-6C

AP 15 1 7 AP 28 1 4

Q 29 0 0 Q 33 0 0

nDCG 42 0 0 nDCG 37 0 0

RBP.8 10 0 0 RBP.8 12 0 0

RBP.95 24 0 0 RBP.95 31 1 3

bpref_R 37 4 11 bpref_R 39 10 26

AP0 46 5 11 AP0 39 1 3

Q0 50 3 6 Q0 39 1 3

nDCG0 43 1 2 nDCG0 38 0 0
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terms of robustness to incomplete relevance data, even though Q and nDCG are clearly

superior to AP. In other words, the advantage of using graded relevance seems to disappear

when condensed lists are used with very incomplete relevance data.

Our TREC03, TREC04 and NTCIR-6 results, together with the NTCIR-3 and NTCIR-5

results reported by Sakai (2007a), provide ample evidence that Q0, AP0 and nDCG0 are not

only simpler than but also superior to bpref, at least in terms of discriminative power and

Table 6 Kendall’s rank correlation between different metrics, given 100% qrels

Q nDCG RBP.8 RBP.95 bpref_R AP0 Q0 nDCG0

(a) TREC03

AP .931 .857 .706 .848 .922 .982 .931 .867

Q – .844 .655 .807 .871 .949 .991 .853

nDCG – – .775 .853 .844 .857 .844 .991

RBP.8 – – – .821 .747 .697 .655 .775

RBP.95 – – – – .899 .839 .798 .853

bpref_R – – – – – .913 .862 .844

AP0 – – – – – – .949 .867

Q0 – – – – – – – .853

(b) TREC04

AP .968 .940 .747 .890 .968 .977 .945 .945

Q – .936 .733 .876 .954 .972 .977 .940

nDCG – – .770 .903 .936 .936 .922 .977

RBP.8 – – – .821 .770 .733 .710 .756

RBP.95 – – – – .913 .876 .853 .890

bpref_R – – – – – .945 .931 .931

AP0 – – – – – – .959 .940

Q0 – – – – – – – .945

(c) NTCIR–6J

AP .968 .834 .770 .857 .908 .936 .903 .811

Q – .857 .793 .880 .913 .940 .936 .834

nDCG – – .862 .885 .834 .853 .894 .968

RBP.8 – – – .830 .770 .789 .802 .839

RBP.95 – – – – .867 .885 .890 .853

bpref_R – – – – – .972 .922 .830

AP0 – – – – – – .940 .848

Q0 – – – – – – – .880

(d) NTCIR–6C

AP .963 .903 .885 .949 .972 .986 .936 .908

Q – .922 .857 .922 .936 .949 .972 .926

nDCG – – .880 .945 .913 .899 .949 .995

RBP.8 – – – .926 .903 .880 .839 .876

RBP.95 – – – – .968 .945 .913 .940

bpref_R – – – – – .977 .917 .908

AP0 – – – – – – .922 .903

Q0 – – – – – – – .954
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system ranking stability. Although we have no intention of claiming that Q0, AP0 and

nDCG0 are the perfect solution to the problem of relevance data incompleteness, we

believe that they are more elegant than introducing metrics like bpref and bpref_N (i.e.,

RankEff) that lack the ‘‘top-heaviness’’ property of AP by definition.

Even though Moffat et al. (2007) claimed that RBP is suitable for evaluation with

incomplete relevance data as its error due to unjudged documents can be quantified, we

demonstrated that it has weaknesses. While RBP is interesting in that it is independent of

recall, because of this very feature, it often does not equal one even for an ideal ranked

output. For example, as we have discussed using Table 1, an ideal output for a topic with

10 (regular) relevant documents may receive an RBP of .4013, while an ideal output for a

topic with 100 (regular) relevant documents may receive an RBP of .9941. Whether it is

good to average such a measurement across topics is debatable. Moreover, our experi-

mental results showed that small values of p make RBP unreliable, and that RBP is not as

Fig. 7 Reduction rate (x-axis) versus Kendall’s rank correlation with the 100%-qrels ranking (y-axis) —
TREC
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robust to incomplete relevance data as Q0, AP0 and nDCG0 in terms of discriminative power

and system ranking stability, even with p = 0.95.

The fact that Q0, AP0 and nDCG0 perform clearly and consistently better than the

original Q, AP and nDCG in an incomplete relevance environment implies the following:

The assumption that all unjudged documents are nonrelevant is not good; It is much better

to treat all unjudged documents as if they never existed, in order to let judged relevant and

judged nonrelevant documents move up the ranks and hence serve as stronger pieces of

evidence for computing system effectiveness.

It should be recalled, however, that we used random sampling from the original qrels in

order to artificially create very incomplete test collections. We shall discuss the effect of

using shallow pools and that of using fewer participating teams for forming relevance

assessments elsewhere Sakai (2008a, 2008b). Moreover, although we examined the IR

metrics in terms of discriminative power and Kendall’s rank correlation, there may be

other criteria for choosing ‘‘good’’ metrics. ‘‘Simplicity’’ and ‘‘intuitiveness’’ are but a few

Fig. 8 Reduction rate (x-axis) versus Kendall’s rank correlation with the 100%-qrels ranking (y-axis)—
NTCIR

Inf Retrieval (2008) 11:447–470 467

123



examples, although they are difficult to quantify. Establishing a standard set of criteria for

metric selection is an important goal of our future research.

As we mentioned in Sect. 2, our present study takes the approach of choosing IR metrics

given a test collection with incomplete relevance data. However, the approach of con-

structing reliable test collections efficiently (e.g., work by Carterette et al. 2006) is equally

important, and combining these two approaches is probably even more so. That is, IR

metrics should perhaps be designed by taking the process of test collection construction

into account. This is another research topic that needs to be explored.
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