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We examine numerically the issue of convergence for initial-value solutions and similarity solutions
of the compressible Euler equations in two dimensions in the presence of vortex sheets~slip lines!.
We consider the problem of a normal shock wave impacting an inclined density discontinuity in the
presence of a solid boundary. Two solution techniques are examined: the first solves the Euler
equations by a Godunov method as an initial-value problem and the second as a boundary value
problem, after invoking self-similarity. Our results indicate nonconvergence of the initial-value
calculation at fixed time, with increasing spatial-temporal resolution. The similarity solution appears
to converge to the weak ‘zero-temperature’ solution of the Euler equations in the presence of the slip
line. Some speculations on the geometric character of solutions of the initial-value problem are
presented. ©1996 American Institute of Physics.@S1070-6631~96!02609-8#

I. INTRODUCTION

It is well known that the linear stability of a plane vortex
sheet in two dimensional incompressible flow isill-posed1,2

in the sense of Hadamard.3 The corresponding nonlinear
problem was analyzed by Moore,4 who demonstrated deriva-
tive singularities in a finite timetc from smooth initial con-
ditions. As a consequence, numerical initial-value calcula-
tions of vortex sheet motion for analytic initial data converge
only for t,tc ,

2 and require special techniques to control the
growth of modes stimulated by roundoff error.1 Delort5

proved that in the special case where the vortex sheet
strength~local velocity difference! is one-signed, the incom-
pressible Euler equations with vortex-sheet initial data have
weak solutions. This does not imply that the weak solution
itself has a vortex-sheet structure or that if it does, it has any
particular fractal dimension, although solutions containing
vortex sheets with dimension greater than unity cannot be
ruled out. There remain nontrivial questions concerning
uniqueness and the geometrical character of admissible solu-
tions. There is no known general method for computing such
incompressible flows for arbitrary time intervals in two or
three space dimensions.

In two-dimensional compressible flow, vortex sheets or
slip lines ~i.e., contact discontinuities with a jump in the
tangential velocity! are produced spontaneously at a triple
point, or from shock diffraction over a right-angle corner, or
from irregular reflection of a shock at a solid boundary. Lin-
ear stability analysis of a vortex sheet in compressible invis-
cid flow indicates ill-posedness if the convective Mach num-
ber (Mc) is less than unity.

6 The existence of weak solutions
of the compressible Euler equations in multidimensions is
not known in general but it seems reasonable to suppose that
Delort’s result for the incompressible case will be valid.
Whilst several authors have referred to the presence of grid-
scale Kelvin–Helmholtz instability when slip-line disconti-
nuities are present,~e.g., Quirk,7 Berger and Colella,8 etc.!
little attention has been paid to questions of convergence in
the presence of vortex sheets. Mulderet al.9 studied
Rayleigh–Taylor and Kelvin–Helmholtz instabilities and re-

ported a lack of convergence for their inviscid computations
even though they employed relatively coarse meshes. Bell
et al.10 mention in passing convergence problems for com-
putations of an inviscid incompressible flow with vortex-
sheet initial data. In many computational studies of multidi-
mensional compressible flow there appears to be an implicit
assumption that there exists, at some fixed time, an appropri-
ate unique weak solution of the compressible Euler equation
in which the slip-line discontinuity is embedded as a rectifi-
able curve, and that~by analogy with the one-dimensional
case! convergence to this solution with increasing grid re-
finement can be achieved.

In this study, we provide computational evidence which
we hope will elucidate the issue of convergence with respect
to grid refinement of both initial-value and similarity solu-
tions of the compressible Euler equations, in the presence of
vortex sheets. The specific flow considered is that of shock
wave refraction at a gaseous interface separating gases of
different acoustic impedances~see Fig. 1!. We consider nu-
merical solutions of the compressible Euler equations in con-
servative form,

Ut1Fx~U !1Gy~U !50, ~1!

where

U~x,y,t !5$r,ru,rv,E%T,

F~U !5$ru,ru21p,ruv,~E1p!u%T,

G~U !5$rv,ruv,rv21p,~E1p!v%T.

By inspection, we note the existence of a self-similar solu-
tion in the scaled variables (j[x/t,h[y/t). Equation~1!
reduces to11

2Ũ1F̃j1G̃h50, ~2!

where

F̃5$r~u2j!,ru~u2j!1p,r~u2j!v, E~u2j!1pu%T,

G̃5$r~v2h!,ru~v2h!,rv~v2h!1p, E~v2h!1pv%T,

Ũ~j,h![U~x,y,t !.
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The system of equations~1! is hyperbolicwhile the system
~2! is of themixed hyperbolic-elliptictype. The self-similar
solution is afixed point of the boundary value problemgiven
by Eq. ~2!.

We focus on the specific case of a Mach 2.02 shock
wave refraction at a gaseous interface separating gases of
densityr151, r253, inclined at an angle ofa560° to the
plane of the shock. The interface is initially in mechanical
and thermal equilibrium. The pressure in the unshocked
gases is unity and the ratio of specific heats is taken to be
1.4.

II. THE INITIAL-VALUE PROBLEM

Equation ~1! is solved numerically as aninitial-value
problem. We employ the Godunov method12 extended to
second order accuracy by fitting linear profiles in each cell
and applying monotonicity constraints, i.e., slope limiting.13

The solution is marched in time until time,t51. Numerical
solutions were obtained for grids of sizes:~a! 7683392
~coarse, mesh spacingDx5Dy5h) ~b! 15363768 ~me-
dium, Dx5h/2) and ~c! 307231536 ~fine Dx5h/4). Gray
scale density images are displayed in Fig. 2. The shock re-
fractions leads to a transmitted and a reflected shock. The
transmitted shock culminates as a Mach stem at the lower
boundary. Owing to the baroclinic source term~i.e., a mis-
alignment of density and pressure gradients! circulation is
generated on the shocked interface which produces a slip-
line discontinuity for which the convective Mach number
Mc'0.3.14 It is therefore locallylinearly unstable. There is
roll-up at the lower boundary. The remaining portion of the
shear layer appears to be smooth for the coarse grid. Com-
parison of the density images of Fig. 2 shows increasing
complexity of the contours in the vicinity of the slip line,
from the coarse to the fine grid. As the grid is refined, there
is clearly no pointwise convergence in this region, which
itself shows no evidence of reducing in area; in fact we see

changes in all scales equal to or smaller than the shear layer
thickness. It is quite possible that the detailed shapes of the
structures at given resolution are dependent on the numerical
method including the specific slope limiter.

An attempt was made to test for weak convergence in
the numerical sense15 by integration of the density~and ve-
locity! weighted with a test function as follows:

r̂~x,y,t !5E f~x,y;x0 ,y0!r~x0 ,y0 ,t !dx0 dy0 , ~3!

where the test function is given by

f~x,y;x0 ,y0!5H F11cosS 2p
~x2x0!

d D GF11cosS 2p
~y2y0!

d D Gd22, ux2x0u<
d

2
, uy2y0u<

d

2
,

0, otherwise.

~4!

FIG. 1. Schematic of a shock interaction with a gaseous density interface.
Boundary conditions are inflow/outflow in the x direction and reflecting in
the y direction.

FIG. 2. Density images att51 for the shock refraction process solved as an
initial-value problem. Grid sizes:~a! 7683392, ~b! 15363768, and~c!
307231536.
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If d5(Dx)1/2 then the above filtering process should remove
any grid level oscillations. The smoothed fields showed no
evidence of convergence. We next usedd510h,20h where
h is the mesh spacing for the coarse mesh. The filtered den-
sity fields (r̂) are shown in Fig. 3. We see no evidence of
weak convergence whend is held fixed andDx is reduced.
Moreover, the results for the two values ofd are not the
same, implying dependence ond.

The calculation for the fine grid was repeated in single
precision arithmetic with no visual change in the contours of
Fig. 2~c!. A different numerical method, the kinetic-based
equilibrium flux method~EFM!16 was also tried. This gave
different looking contour plots at the same resolution. Our
tentative conclusion is that there is no evidence of conver-
gence to a method-independent solution, at fixed time, which
has the property that the slip-line discontinuity resides on a
rectifiable curve.

III. NUMERICAL SOLUTION OF THE SIMILARITY
EQUATIONS

While the similarity structure of solutions to the un-
steady multidimensional compressible Euler equations with
appropriate boundary and initial conditions has long been
recognized~see for example Refs. 17–19!, all relevant nu-
merical solutions known to us have been obtained by solving
the initial-value problem. In this section, we outline a
method to solve Eq.~2! numerically as aboundary value
problem. The numerical method employed here is animplicit
second order Godunov method. The discretized form of Eq.
~2! ~dropping the tilde overU, F andG) is

2Ui , j
n111

Fi11/2,j
n11 2Fi21/2,j

n11

Dj i , j
1
Gi , j11/2
n11 2Gi , j21/2

n11

Dh i , j
50, ~5!

where

Fi11/2,j
n11 [F~UL,i11/2,j

n11 ,UR,i11/2,j
n11 !,

~6!

Fi11/2,j
n11 5Fi11/2,j

n 1S ]F

]UL
D
i11/2,j

n

dUL,i11/2,j
n

1S ]F

]UR
D
i11/2,j

n

dUR,i11/2,j
n 1•••.

The fluxGi , j11/2
n11 is expanded as a Taylor series in a similar

manner. The fluxes at iterationn are evaluated by solving the
Riemann problem with given left and right states
UL,i11/2,j
n ,UR,i11/2,j

n , respectively. Second order in (j,h)
space is achieved in the same manner as for the initial-value
problem. Substituting the Taylor series expansions for
Fi61/2,j
n11 andGi , j61/2

n11 in to Eq. ~5! leads to a block penta-
diagonal system

2dUi , j
n 1~AL,i11/2,j

n 1AR,i21/2,j
n 1BL,i , j11/2

n 1BR,i , j21/2
n !dUi , j

n

1AL,i21/2,j
n dUi21,j

n 1AR,i11/2,j
n dUi11,j

n

1BL,i , j21/2
n dUi , j21

n 1BR,i , j11/2
n dUi , j11

n 5Ri , j
n , ~7!

wheredUi , j
n 5Ui , j

n112Ui , j
n and

AK,i61/2,j5S ]F

]UK
D
i61/2,j

, BK,i , j61/25S ]G

]UK
D
i , j61/2

,

K5L,R ~8!

are the Jacobians of the fluxesF andG which are evaluated
analytically by solving a linearly perturbed Riemann prob-
lem. Equation~7! is iterated until theL` norm of the residual
given by Eq.~9! is sufficiently small,

uuRi , j
n uu[supS U2Ui , j

n 1
Fi11/2,j
n 2Fi21/2,j

n

Dj i , j

1
Gi , j11/2
n 2Gi , j21/2

n

Dh i , j
U D ,e. ~9!

For a mesh size ofN3M , Eq. ~7! may be expressed as

AndUn5Rn. ~10!

where A is a block pentadiagonal matrix of size
NM3NM and each block is a 434 matrix, and the vector
dUn is a vector ofNM unknowns. The bandwidth ofA is
8N14. For the larger of the mesh sizes given below, the
bandwidth ofA is 12 292 and the number of unknowns is
NM'4.723106. Direct inversion ofA would produce a
Newton–Raphson method but is not possible with current
computational resources. We instead employ an alternating
direction implicit ~ADI ! iterative technique to solve Eq.~10!.
For ease of parallel implementationA is factored into two
block tridiagonal matrices which are solved successively us-
ing a standard algorithm. The code was implemented on a

FIG. 3. Subdomain of the filtered density images att51 for the shock
refraction process solved as an initial-value problem. Mesh spacing for:
~a!,~d! is h; ~b!,~e! is h/2 and ~c!, ~f! is h/4. For ~a!–~c!: d510h, and
~d!–~f!: d520h, whereh is the mesh spacing for the 7683384 ~coarse!
mesh.
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message-passing 512 node Intel Paragon at Caltech. Gray
scale images of density for grids of sizes~a! 7683392 and
~b! 15363768 are shown in Fig. 4. For the 15363768 grid,
the maximum norm of the residual for the continuity and the
energy equation is plotted~Fig. 5! to demonstrate conver-
gence to the fixed point of the discretization of Eq.~2!. Fur-
ther grid refinement for the self-similar problem was not fea-
sible for the given computational resources. There appears to
be pointwise convergence everywhere except in a thin region
surrounding the slip-line discontinuity, and in the vicinity of
the center of the rolled-up shear layer. The EFM was also
tried for the self-similar problem. This produced densities
~and other contour fields! which were nearly identical to

those of Fig. 3, at the same resolution, except near the center
of roll-up. This is probably because at given resolution, the
EFM is somewhat more numerically diffusive than the Go-
dunov method. A zoom of the density is shown in Fig. 6 for
the 15363768 grid to compare and contrast the initial-value
and the similarity approaches.

We define a self-similar Mach number as

M̃25
~ ũ 21 ṽ 2!

c2
, ~11!

where ũ5u2j and ṽ5v2h, and c25gp/r defines the
sound speed. IfM̃,1(>1), then Eq.~2! is elliptic ~hyper-
bolic!. The contours ofM̃ are plotted in Fig. 7 with the
dashed~solid! contours for subsonic~supersonic! M̃ indicat-
ing regions of elliptic~hyperbolic! nature of the equations.
Note that we have an elliptic region embedded in a hyper-
bolic one. The sufficient boundary conditions, comprising

FIG. 4. Density images for self-similar solution of the shock refraction
process solved as a boundary value problem. Grid sizes:~a! 7683392 and
~b! 15363768.

FIG. 5. Maximum residual for the continuity and the energy equation for the
self-similar problem. The grid size is 15363768.

FIG. 6. A zoom of juxtaposition of the density for unsteady solution and the
self-similar solution. The grid size is 15363768. The self-similar solution
has been reflected about thej axis.

FIG. 7. Self similar Mach number,M̃ P (0.0,4.79). The subsonic contours
are shown dashed. The sonic lines are the bounding dashed contours.
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the shock speed and the location and slope of the contact
discontinuity, are illustrated in Fig. 7. In principle, given the
Cauchy boundary data one may march the solution in the
hyperbolic region using the method of characteristics. How-
ever, this solution will terminate at one or more sonic lines.
Since the location of the sonic lines are not known a priori,
we clearly need to solve the system of equations as a
boundary-value problem.

IV. CONCLUSION

For the mesh resolutions used presently, we find no evi-
dence of either pointwise or of weak convergence in a neigh-
borhood of the slip-line discontinuity, of our numerical solu-
tions of the initial-value problem withMc,1. If it is
assumed that, following Delort,5 there exists a~possibly
unique! weak solution to the compressible Euler equations
with vortex-sheet initial data and given boundary conditions,
and further, that this solution has itself a vortex-sheet struc-
ture, then we can suggest several possibilities for the geom-
etry of the contact:~a! the slip-line discontinuity is a rectifi-
able curve, i.e., a curve for which an arc length can be
defined;~b! the slip-line is a rectifiable curve except on a set
of measure zero, i.e., one can define an arc length every-
where except at a finite number of points where the curve
may be the focus, for example, of a tightly wound double
spiral; and~c! the slip line is a curve of fractal dimension
D where 1,D<2. If either ~a! and ~b! are true, then one
would expect that, given a suitable numerical method, con-
vergence to the appropriate weak solution should be achiev-
able, at least for finite times. We cannot rule out the possi-
bility that this is indeed the case, but that our numerical
methodology is not up to the task. The scenario given by~c!
provides a basis for understanding the grid and method sen-
sitivity observed presently. If this state exists, or if the weak
solution has a structure different from that of the vortex
sheet, it seems to us unlikely that it could be computed by
conventional finite-volume methods, even those that invoke
AMR ~adaptive mesh refinement!. Computation of some av-
eraged or smoothed state may of course be possible with
more refined methods. This would pose a considerable chal-
lenge for computational fluid dynamics. Hyperfine grids may
be irrelevant. We note that the above discussion assumes
uniqueness.

In contrast, for the given mesh sizes, our solutions of the
discretized version of the self-similar formulation appears to
be converging. We speculate that in the limit
Dj→0,Dh→0, the self-similar solution will converge to the
weak solutions of the self-similar Euler equations@Eq. ~2!#,
and that the slip line discontinuity will be a rectifiable curve
except perhaps at a single point where the roll-up of the
vortex sheet near the lower boundary may produce a spiral
structure which may have an infinite arc length. It is surpris-
ing that the numerical method is apparently able to define the
structure of the spiral with increasing grid resolution, without
any user input. Thus, the similarity method may be said to be
‘spiral-capturing’ in addition to shock-capturing. The simi-
larity solution is here interpreted to be the zero disturbance
solution of the initial-value problem; it resides on an unstable

manifold in some function space. We do not suggest that it is
an appropriate ‘averaged’ state for the initial-value problem,
and in fact we suspect that it is not.

Our argument may be summarized as follows: we have
Delort’s proof, under restrictions, for incompressible Euler
flow with vortex-sheet initial data. Assume, by analogy, the
existence of weak solutions for compressible flow with, in
our case, spontaneous production of slip lines. It is of interest
to ask if these weak solutions can be computed by standard
methods for the multidimensional Euler equations? Owing to
lack of convergence over a range of scales we tentatively
conclude that convergence to the weak solution cannot be
achieved, for arbitrary times, at least by our methods. We
suspect that this is true forMc,1, which includes the in-
compressible case. The situation may be different for
Mc.1. The similarity problem is the initial-value problem
in a restricted setting. We find evidence of convergence to a
weak solution with a slip-line structure.

We accept the use of the initial-value problem for the
multidimensional Euler equations~with embedded vortex
sheets! as a model of real fluid behavior but suggest that the
pursuit of ultra-high resolution with techniques like AMR
may be futile. AMR methods are nevertheless useful since
they can probably optimize the computational effort required
to achieve a given local resolution.
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