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Introduction 

W e  are  in te res ted  here in  the  l inear  topologica l  p roper t ies  of those  Banach  spaces 

assoc ia ted  wi th  in jec t ive  Banach  spaces. W e  s t u d y  in pa r t i cu l a r  deta i l ,  t he  spaces Lw(/x) 

for f ini te  measures  ~u, and  ob ta in  app l ica t ions  of th is  s t u d y  to  p rob lems  concerning in jec t ive  

B a n a c h  spaces in general.(~) (Throughout  t he  res t  of th is  in t roduc t ion ,  "/~" a n d  "v"  deno te  

a r b i t r a r y  f ini te  measures  on poss ib ly  di f ferent  unspecif iced measureab le  spaces).  

F o r  example ,  we classify the  spaces L~(/x) themselves  up  to  i somorph ism (l inear 

homeomorph i sm)  in  w 3, and  all  the i r  conjugate  spaces ((LW(~u)) *, (L~(~u)) **, (Lc~ ***, etc.) 

Q) This research was partially supported by NSF-GP-8964. 
(3) I t  is easily seen that if ~t is a a-finite measure, then there exists a finite measure D with L~(~t) 

isometric to LV(/x) for all p, 1 ~<p ~< c~. Thus all of our results concerning finite measures generalize im- 
mediately to a-finite measures. 
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up to isomorphism in w 5. In  w 2, we give a short proof of a result (Corollary 2.2) which 

simultaneously generalizes the result of Pelczynski that  LI(#) is not isomorphic to a con- 

jugate space if ~u is non-purely atomic [19], and the result of Gelfand that  LI[0, 1] is not 

isomorphic to a subspace of a separable conjugate space [9]. We apply this result to demon- 

strate in Theorem 2.3 that  an injective double conjugate space is either isomorphic to l ~ 

or contains an isomorph of I~~ for some uncountable set F, if it is infinite dimensional. 

(Henceforth, all Banach spaces considered in this paper are taken to be infinite dimensional.) 

In  w 3, by  applying a result of Gaifman [8], we obtain that  there exists a ~1 space which is 

not isomorphic to any conjugate Banach space. We also obtain there that  a compact 

Hausdorff space S satisfies the countable chain condition if and only if every weakly 

compact subset of C(S) is separable. 

We now indicate in greater detail the organization and results of the paper. The 

interdependence of the sections is as follows: Sections 2, 3, and 4 depend on Section 1 

(or more specifically, on Lemma 1.3). w 3 is independent of w 2 (with the exception of Corol- 

lary 3.2). Theorem 4.8 depends on w 3; all the other results of w 4 are independent of w 2 

and w 3. Finally, w 5 is independent of all of the Sections 1-4. (9 0 consists of definitions 

and notation, and w 6 of open problems). 

The results 1.1 and 1.3 of w 1 yield various conditions that  a Banach space contain 

a complemented subspace isomorphic to / I (F)  for some uncountable set F. We also obtain 

there that  if the conjugate Banach space X* contains an isomorph of c0(I" ), then X contains 

a complemented isomorph of/I(F),  thus generalizing the result of Bessaga and Pelczynski 

(Theorem 4 of [2]) that  this holds for countable F. 

We have indicated the main results of w 2; they are a consequence of Theorem 2.1, 

which shows that  in a weakly compactly generated conjugate Banach space satisfying the 

Dunford-Pett is  property, weak Cauchy sequences converge in norm (cf. w 0 for the relevant 

definitions). 

If X is a normed linear space, dim X denotes the least cardinal number corresponding 

to a subset of X with linear span dense in X. The main classification result of w 3 is Theorem 

3.5, which states that  L~~ is isomorphic to L~~ if and only if dim Ll (#)=dim Ll(v). 

(Theorem 5.1 has as one of its consequences that  (L~~ * is isomorphic to (L~~ * if and 

only if dim L~(/~)= dim L~~ Theorems 3.5 and 3.6 contain results considerably stronger 

than this classification result; for example 3.6 shows that  if A is a Banach space with A* 

isomorphic to L~~ then LI(#) is isomorphic to a quotient of A. We mention also the 

result Corollary 3.2, which shows that  L~(#) is not isomorphic to a double conjugate space 

if LI(#) isn't separable. Many of the results of w 3 {including 3.2), hold for the spaces A* 

as well as L~176 where A is a subspace of/~(v) for some v. 
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Let "S" denote a compact Hausdorff space. We determine in w 4 certain topological 

properties of S which yield linear topological invariants of the space C(S). Thus we show 

in 4.1 that  ff S satisfies the C.C.C. (the Countable chain condition) and ff C(S) is isomorphic 

to a conjugate space, then S carries a strictly positive measure (the relevant terms are 

defined at the beginning of w 4). We show in Theorem 4.5 that  S satisfies the C.C.C. if and 

only if every weakly compact subset of O(S) is separable, and that  S carries a strictly 

positive measure if and only if C(S)* contains a weakly compact total subset. Corollary 4.4, 

which asserts the existence of an injective Banach space non-isomorphic to a conjugate 

space, is an immediate consequence of Theorem 4.1 and the results of [8]. Theorem 4.5 

together with the results of [1] shows ~hat a weakly compact subset of a Banach space 

satisfying the C.C.C. is separable (cf. Corollary 4.6). (Theorem 4.5 and Corollary 4.6 have 

suitable generalizations to spaces S satisfying the 111-chain condition, as defined in the 

remark following Lemma 4.2; these generalizations are stated and proved in the remark 

following Corollary 4.6.) The main ingredients of the proof of 4.1 are Lemma 1.3 and the 

combinatorial Lemma 4.2; the proof of the latter has as a consequence that  ff S is Stonian 

and c0(F ) is isomorphic to a subspace of C(S), then/~(F) is isometric to a subspace of C(S). 

Theorem 4.5 has as a consequence that  every weakly compact subset of L~176 is separ- 

able; an alternate proof is provided by Proposition 4.7. The final result of w 4, 4.8, gives 

several necessary and sufficient conditions for an injective conjugate Banach space X to be 

isomorphic to a subspace of L~176 ). 

Let B denote one of the spaces L~176 for some homogeneous/~ or l~176 for some infinite 

set 1 ~. The main result of w 5 is Theorem 5.1, which determines isometrically the space 

B*, and isomorphically the spaces B*, B** . . . .  (cf. Remark 4 following Theorem 5.4). I t  

also shows that  if Y is an injective Banach space with dim Y ~d im B, then Y is isomorphic 

to a quotient space of B; ~1 quotient algebras of B are also determined. Thus, a particular 

case of 5.1 is as follows: let/~c denote the homogeneous measure with dim LI(/~)=C (the 

continuum); then (L~176 is isometric to (l~176 * and L ~176 (~c) is algebraically isomorphic to a 

quotient algebra of 1 ~176 

The results 5.2-5.4 are concerned with the proof of Theorem 5.1. Theorem 5.5 yields 

a class of compact Hausdorff spaces K (including some non-separable ones) with C(K)* 

isometric to C[0, 1]*. (A special case of Theorem 3.6 is that  if B* is isomorphic to l ~176 then 

B must be separable.) The final result of w 5, Theorem 5.6, shows that  every injective 

Banach space of dimension the continuum, has its dual isomorphic to (/oo).; its proof uses 

critically the results of [23]. 

Some of the results given here have been announced in [24] and [27], with sketches of 

certain of the proofs. (The section numbers of [27] correspond to those of the present 

1 4 -  702901 A e ~  ~.~he~n~tica. 124. Imprim6 le 28 Mai 1970. 
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paper; Theorem 3.3 of [27] is proved here by  Corollary 3.3, Theorem 3.6, and Theorem 3.7. 

The results of w 1 and w 2 of [24] are given here in w 4 and w 5 respectively.) 

The author wishes to express his appreciation to Ru th  Suzuki for her admirable typing 

job on the original manuscript. 

O. Definitions, notation, and some standard facts 

We follow [7] for the most  part.  The reader should note however tha t  by  a Banach 

(Hilbert) space, we shall mean an infinite dimensional complete real or complex normed 

(inner product) space. 

A subspace B of a Banach space X is said to be complemented if there exists a bounded 

linear map P from X onto B with P(b) = b for all b E B. Such a map P is called a projection 

from X onto B. 

I f  X and Z are Banach spaces and T: X-~ Y is a linear map, then T is said to be an 

isomorphism (resp. an isometry) if T is a one-to-one bicontinuous (resp. norm-preserving) 

map from X onto T(X). Two Banach spaces are thus said to be isomorphic (resp. isometric) 

if there exists an isomorphism (resp. isometry) mapping one onto the other. 

I f  X is a Banach space, X* denotes its dual. The weak* topology on X* is the X-topo- 

logy on X*, in the terminology of [7]; (the weak topology on X* is then the X** topology 

on X*). Given X, Z denotes the canonical isometry imbedding X in X**. I f  B is a subset of 

X or if Y is a subset of X*, 

B • = {/eX*: [(b) = 0 for all bEB} 

Y J- = {xEX: y(x) = 0 for all yE Y}. 

Y is said to be total if Y" = {0}. I f  Y is a linear subspace of X*, Y is said to be of positive 

characteristic if there exists a finite K > 0 such that  for all x E X, 11211 < K sup {ly(x) l: y e Y 

and Ilyll < 1}. (of. [53 for equivalent definitions of this notion.) 

A Banach space X is said to be weakly compactly generated, (X is WCG), if there 

exists a weakly compact subset of X whose linear span is dense in X. We note tha t  since 

bounded hnear operators are weakly continuous, complemented subspaces of a WCG 

Banaeh space are also WCG, and if X is WCG and Y is isomorphic to X, Y is WCG. (For 

further properties of WCG Banach spaces, see [16].) 

A Banach space X is said to satisfy the Dun/ord-Pettis property, (X satisfies DP), 

if given a Banach space Y and T: X-+ Y a weakly compact operator, then T maps weak 

Cauchy sequences in X into convergent sequences in the norm topology of Y. We note tha t  
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if X satisfies DP, so does any complemented subspace of X, and if Z is isomorphic to X, 

so does Z. Finally we recall the result of Grothendieck [10]: X satisfies DP if and only if 

given (x~) and (x*) a pair of sequences in X and X* respectively with xn~0  weakly and 

x*-~0 weakly, then xn (x~) 0. 

By L'(/~) we refer to the (real or complex) space Lp(S, E,/~) in the notation of [7], for 

any p with 1 <p  ~< c~. (Thus the set S and E, the a-algebra of subsets of S, arc usually sup- 

pressed in our notation.) We recall that  LI(#) satisfies DP (ef. [7]), and that  if # is a finite 

measure, LI(~) is WCG (since then L~(f~) injects densely into LI(/~)); in this case, we also 

identify (LI(#)) * with L~176 In accordance with our conventions, unless explicitly stated 

to the contrary, we shall take all measures/~ to be such that  LI(/~) is of infinite dimension. 

Given a compact Hausdorff space S, C(S) denotes the space of scalar-valued continuous 

functions on S. We denote by  M(S) the space of all regular finite scalar-valued Borel 

measures on S; we identify C(S)* with M(S) by the Riesz representation theorem. More- 

over if/~ is a positive member of M(S), we identify LI(/~) with the subspaee of M(S) consist- 

ing of all measures 2 with )t absolutely continuous with respect to/~, by the Radon-Nikodym 

Theorem. Finally, if ~ is an arbitrary member of M(S), we denote by d2/d/~ that  member of 

LS(~u) such that  d~=(d2/dl~)d#-d2 is singular with respect to/~ (i.e. (d2/d#)d/~ is the ab- 

solutely continuous part  of ~ with respect to ~u, in the Lebesgue decomposition of/~). 

Given a set F,/~~ denotes the Banaeh space of all bounded scalar-valued functions 

defined on 1 ~ under the supremum norm; c0(F ) denotes the subspaee of I~(F) consisting of 

all / such that  for all e > 0  there exists a finite subset Fe of F with {/(7)1 <e for all :~F~; 

/I(F) denotes the subset of c0(F ) consisting of those / for which ~v~r I/(7) 1 < c~, under the 

norm ]{/11 = ~r~r I/(7) 1" By the unit-vectors-basis of l i(r)  (resp. c0(F)) we refer to (ev}v~r, 

where ev(a ) =1  if 7 =a ,  ev(a ) = 0  if 7 4 a ,  for all 7, aEF.  A subset (bv}v~ r of the Banaeh 

space B is said to be equivalent to the unit-vectors-basis of I~(F) (resp. c0(F)) if the map 

T: (ev}7~r->(bv)ve r defined by Te v =bv for all 7 EF, may be extended to an isomorphism 

of ll(F) (resp. of c0(F)) with the closed linear span of (bv}v~ r- 

We assume the notation and standard facts concerning cardinal numbers, as exposed 

in [28]. Given a set F, card F denotes the cardinality of F; c denotes the cardinality of the 

reals, and I~ o the cardinality of the integers. If  card P = m, we denote/~~ by l~ and P(F) 

by 11. In the ease of countable infinite F, I~(F),/I(F), and c0(F ) are denoted by 1 ~, 11, and 

c o , respectively. 

Given a normed linear space X, dim X, the dimension of X, refers to the smallest 

cardinal number m for which there exists a subset of cardinality m with linear span norm- 

dense in X. 

Given an indexed family (X~)~r  of Banach spaces, we denote by (Za~r| (resp. 
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by (~:~r @ X~)~o) the Banach space consisting of all functions x = {x~}=Er with x~ E X~ for 

all ~, and Y, aE r IIX~lix < c~ (resp. supaGr IIx lI   < under the obvious norm. If x~=x 
for all ~, and if re=card F, we denote ( ~ r |  by (~.m(~X) v for p = l  or 0o. 

Finally, given finitely many Banaeh spaces X~ ..... X~, we denote (X~|174 

simply as X I | 1 7 4 1 7 4  ~. 

A Banaeh space X is said to be injeetive (resp. a ~1 space) if given Y a Banaeh space, 

Y~ a subspace of Y, and T: Y v + X  a bounded hnear operator, then there exists a bounded 

linear operator ~: Y ~ X  with T] Y I = T  (and additionally I1 11 =UTII in the ease of a 

~ space). For properties of injective and ~)~ Banaeh spaces, see [4] and [21]. 

1. Preliminary results 

The main result of this Paragraph, Lemma 1.3, is a useful tool for the work in Para- 

graphs 2-4. The essential ingredient of its proof is the following lemma, which generalizes 

a result of KSthe (p. 185 of [15]). 

L ~ A  1.1. Let X and A be Banach spaces with A c X,  F a set, T: X-~lX(F) a bounded 

linear operator, ~ >0, and m an in/inite cardinal number such that 

card {TeF: 3 a e A  with [[a H ~<1 and [ Ta(y)[ >8} = m .  

Then A contains a subspace Y isomorphic to l~ and complemented in X,  such that T I Y iz an 

isomorphism. 

Proo]. Set K = {Ta: aEA, Hail ~<1}. 

K is a symmetric convex bounded subset of P(F), with the property that  

card { y e t :  3 k e g  such that  Ik(7)[ >~} = m. (1) 

We now divide the proof into two parts. 

A. There exists a family A of pairwise disjoint finite subsets of F, with card A = m, 

and for each FEA,  an associated k~eK, so that  

IIk ll>  and 
7~F 

B. {kF: FEA} is equivalent to the unit-vectors-basis of II(A), and letting Z be the 

closed linear span of {k~: 2'EA}, then Z is complemented in/I(F)  (where the ke's are as 

in A). 
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Once A and B are proved, the proof is completed as follows: for each F E A, we choose 

a~EA with ]laFII ~1  and T(ap)=k~. Then since T is a bounded linear operator, it follows 

easily that  {aF: F EA} is equivalent to the unit-vectors-basis of/I(A), and tha t  setting Y to 

be the closed linear span of {a~: F E A}, then T I Y is an isomorphism mapping Y onto Z. 

Letting P be a bounded linear projection from/I(F) onto Z, a projection Q from X onto Y 

may then be defined by putting 

Q = (T I Y)-IPT 

Proo/o/A. This is somewhat similar to the arguments of [15]. We first observe tha t  

we may choose a subset K '  of K with card K' >~m, such that  for any two distinct members 

k 1 and ks of K', 
Hk~-k~ll ~>~/~ (21 

Indeed, the family of all non-empty subsets M of K such that  for any two distinct 

members kl, k s of M, (2) holds, is closed under nested unions, so we choose K', a maximal 

subset of this family. Now suppose we had that  card K '  <m.  For each leEK', choose iv k a 

finite set with [k(~)l <8/32 for all 7~Fk. Then since m is an infinite cardinal number, 

card (JkcK.F~<m. But  then by (1), we may choose a ~(JkE~,F~,  and a koEK with 

Ik0(~)l ~>~. Then for any kEK', Iko-k]] >~ ]k0(7)-k(~)] ~>~-~/32~>8/2, hence K'(J {/Co} 

satisfies (2) for all distinct kl, k s belonging to it, contradicting the maximality of K'.  

We now use Zorn's Lemma to produce A satisfying the properties in A. Consider all 

pairs (:~, ~ )  where ~ is a non-empty family of finite pairwise disjoint subsets of F, and 

~0~ is a function with ~ :  :~-+K such that  for all F E :~, 

II~,(F)[[>~ and ~ I%(F) ( r ) l<~-~ .  (3) 

We order this family of pairs in the natural way by 

(:~, ~ )<  (6, ~) 

if : ~  ~ and ~q[ : ~ = ~ .  Again, every totally ordered subset of this family of pairs has a 

least upper bound, so we choose a maximal element (A, ~ ) .  We claim that  card A ~> I~. 

Well, suppose I this were not I the case; i.e. that  card A <m .  Then set F I =  (J r ~ F .  Since 

each FEA is a finite set and m is an infinite cardinal, we would have that  card F l < m .  

But then we claim that,  setting e=~/32, we could choose kl and Ir distinct members of 

K '  such that  H ]~111~1 - k2 ] l~l ]1 < ~ (where for k ~/I(F), k] F 1 denotes the restriction of the func- 

tion k to the set F~, and then of course Hk[F~I[ = ~ r ,  lk(r)[). Indeed, let K " = { k l F ~ :  

k~K'}. If  card K"<m, then since card K'=m, we could choose two distinct members 
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k I and ks of K '  with k 1 IF1= kslF1. If card K"= m, consider the family of spheres {Sk: 

kEK"}, where for all keK", Sk={gEP(FI): Ila-kl[ <~/2}. Since d i m P ( F , ) = c a r d  F , < m  

and K" is a bounded subset of/I(F1), two of these spheres must have a non-empty inter- 

section.' Hence we would obtain two distinct kl and k2 in K '  with I l k i l r : -  k21rlll < = ~/32. 

Thus we could choose a finite subset F 0 of F ~ F 1 such that  

Y I(k, - k~)[ (r) < ~ ,  
y~Fo 

Now set ko=~(kl-k~), ~=AU {F0}, and define ~ :  ~-+K by ~ ( F ) = ~ ( F )  for all F E A  

and ~ ( F o ) = k  0. Then ( ~ , ~ )  would satisfy (3) and (A,~)~<(~ ,q~)  with A # f f ,  so the 

maximahty of (A, ~a) would be contradicted. 

Now of course by passing to a subfamily of A if necessary, we may assume that  

card A = m. For each FEA,  we simply set kr =~A(F), and A is thus proved. 

Proo] o/ B. (The proof is similar to arguments found in [2].) Define for each FEA,  

er by, for all ~ E F, 
e~(r) = k~(y) if y E 

er@) = 0 if y ~ F. 

By A, we have that  [[%][ ~>~/5 for all FEA,  and the e / s  are disjointly supported. Thus if 

we put  W equal to the closed hnear span of {%: F E A}, W is isometric to/I(A), there exists 

a projection R of II(F) onto W with ]IR[I = 1, and of course {eF: FEA} is equivalent to the 

unit-vectors basis of ll(A). But  then (k~: FEA} also has this property. Moreover, R[Z 

is an isomorphism mapping Z onto W. Thus, a bounded linear projection P from ll(F) onto 

Z may be obtained by setting P =  (R[Z)-IR. Q.E.D. 

COI~OLLARY 1.2. Let X be a Banach space and F an in/inite set, and suppose that 

c0(F ) is isomorphic to a subspace el X*. Then l l (F) /s  isomorphic to a complemented subspace 

el X (and consequently/~(F)/s isomorphic to a subspace el X*). 

If l ~ is countable, this result is known and due to Bessaga and Pelezynski (Theorem 4 

of [2]). 

Proo/. By assumption, there exists an indexed family {ev}~e r of elements of X*, equiva- 

lent to the unit-vectors-basis of c0(F), with [levi I = 1 for all ~ EF. Now define a map T from 

X into the bounded scalar-valued functions on F by (Tx)(~)= ev(x ) for all x E X and ~ E F. 

Since (c0(I'))* may be identified with/I(F),  we have that  there exists a k > 0  so that  for all 

x E i ,  TxEll(F) with [ITxHzlcr)~<kHx H. T thus satisfies the hypotheses of Lemma 1.1, 

and so X contains a complemented subspace isomorphic to ll(F). Q.E.D. 
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The next  result of this section is used in Sections 2, 3, and 4. I t  is a fairly simple 

consequence of 1.1 and the Radon-Nikodym Theorem. 

LSMMA 1.3. Let S be a compact Hausdor// space, and let A be a closed subspace o/M(S) .  

Then either there exists a positive #EM(S)  such that A c Lt(/~) (that is, every member o / A  is 

absolutely continuous with respect to/a), or A contains a subspace complemented in M(S) 

and isomorphic to l l (F) /or  some uncountable set F. 

The two possibilities of 1.3 are mutually exclusive, since ll(F) is not WCG for any 

uncountable set F (See also the second remark below.) 

Proo/. Let :~ be a maximal family of mutually singular positive finite regular Borel 

measures on S. (A family ~/of such measures is called mutually singular if # # v, I~, v E Tl =~ 

# k v  (i.e. d#/dv=O). Such families ~ are closed under nested unions, and hence there exists 

a maximal one by Zorn's Lemma). I t  follows that  for each v EM(S), dr~d# = 0 for all but  

countably many # E :~, jUl, ju~ .... say, and that  dv = ~(dv/d/~5) d/~, the series converging in the 

norm topology (and in fact absolutely) to v. Now let F = {# E :~: there is an a E A, with 

da/dla =~0}. If F is countable, say r = {#t , /~ .. . .  }, then every a E,4 is absolutely continuous 

with respect to the finite regular measure/~ = ~=l~U~/(2~[]/~1I), so by  the Radon-Nikodym 

Theorem we may regard A as being contained in Lt(#). 

Now suppose F is uncountable. For each 7 EF, choose a~ with dar[d 7 T0; then choose 

~ EL~176 ) with 

Now define F~, E (M(S))* by Fv(~ ) ~- S(dv/dr) ~ ,d  r for all ~ E M(S). Our observations about 

the family :~ show that  IIF~I] =1 and in fact 

E ~ r  [F~(v)[ <[[v]I for all vEt(S)*. 

Thus we may define T: M(S)->P(F) by (Tv)v=Fv(v) for all vEM(S); the definition of F 

shows that  T(A) i s  non-separable, and T is of course a linear operator with I[ TII ~< 1. 

now if we set r =(eer: a a e A ,  Ilall<l, with ITa(7)l ~>l/n), then F =  U~=IFn. 

Hence there exists an n with Fn uncountable. The fact tha t  A contains a subspace isomorphic 

to ll(Fn) and complemented in M(S) now follows from Lemma 1.1. Q.E.D. 

Remarks. 1. A suitable version of 1.2 (with practically the same proof) holds for closed 

subspaces A of/~(~) for any (possibly infinite) measure v. Precisely, either there exists an 
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] ELI(~) such that A cLl(~t), where d]t=]dv, or A contains a subspace complemented in I)(~,) 

and isomorphic to l l (F)/or  some uncountable set F. 

2. I t  is a consequence of known results tha t  if F is an  uncountable set, t hen / I (F )  

is not isomorphic to a subspace of any WCG Banach space X. For by  the results of [1], 

such an X, and hence any subspace of X, has an equivalent smooth norm, while ll(F) 

has no such equivalent norm. (This may also be seen from the fact tha t  the unit ball of 

(P(F))* in its weak* topology, contains a separable nonmetrizeable subset). 

The next  and last result of this section is known. I ts  proof is almost identical to tha t  

of a result of Pelczynski's (Proposition 4 of [21]). However, the argument is so elegant 

and short tha t  we include it  here. 

PROPOSITION 1.4. Let p be/ixed with 1 <~p <~ co, and let X be a Banach space such that 

X is isomorphic to (X |  ...)p. Let Y be a Banach space such that Y and X are each 

isomorphic to a complemented subspace o/the other. Then Y and X are isomorphic. 

Proo/. Letting " ~ "  denote "is isomorphic to" ,  we have that  there are Banaeh spaces 

A and B such that  
X,~ Y |  and Y ~ X @ A .  

Thus, X , , , X • A |  Hence, 

X N ( X  @X | |  |  ~ A  ~B)~. . . i~ 

N ( X  @X |174 ( B|  B|174 (A ~ A G...)p 

,.., (X |  @ ...)j,| ( B | B| | (A C A  |174 

~ X @ A , ~  Y. 

2. Conjugate Banach spaces isomorphic to complemented subspaces of .[1 (/1), with 
an application to injective double conjugate spaces 

Our first result generalizes a result of Grothendieck (cf. the first remark below). 

TH~OR~,M 2.1. Let the Banach space X satis/y DP. Then i / X  is isomorphic to a subspace 

o / a  weakly compactly generated conjugate Banach space, every weak Cauchy sequence in X 

converges in the norm topology o /X .  

Proo/. We first observe that  since X is assumed to satisfy DP, then given (xn) and (In) 

sequences in X and X* respectively such tha t  xn->0 weakly and (In) is weak-Cauchy, then 

]~(x~)-->O. Indeed if not, we can assume by  passing to a subsequence if necessary that  
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[~(x~)~L ~:0. Now we may choose n t <ha < n  3 < ... such that  Fma,_.oo/,(xn,)=0. (Let n 1-- 1; 

having chosen nk-1, then since liml_,~o/k(xl) = 0, simply choose n,  > nk-1 with [[k(X~k ) I <l[k.)  

But  then/k-[n,--*O weakly, so by  a result of Grothendieek (page 138 of [10]) ([~-[~,) 

(xn,)-*0. Thus [~k(x~,) ->0, a contradiction. 

Now since the property DP is linear topological, we may suppose that  there is a 

Banach space B with B* WCG and X c  B*. Let  (x~) in X with x~-~0 weakly. We shall show 

that  Hxn[I-~0. Suppose not; again by passing to a subsequenee if necessary, we may assume 

there is a 8 >0  with IIx~ll >8 for all n .  

:Now choose b ~ e B  with IIb~H =1 and Iz~(b~) I >~ for all n. Since B* is WCG, the unit  

ball of B** is weak* sequentially compact (el. Corollary 2 of [1] and also the second remark 

following our Proposition 4.7 below). There are thus a subsequenee (bn~) of the b~'s and a b** 

in B** with lim~_~ob*(bn,)=b**(b*) for all b*EB*. Thus (b~) is a weak Cauchy sequence. 

Then defining T: ~-~X* by (Tb)(x)=x(b) for all b E B  and x E X ,  T is a continuous linear 

operator, and so (Tb~,) is a weak Cauchy sequence in X*. Thus by our first observation, 

lim (Tb,~) (x,~) = 0 = lim x,~(bn,), 

a contradiction. 

The fact that  every Cauchy sequence in X converges in norm, now follows from the 

observation that  a sequence (x~) in X is weak (norm) Cauchy if and only if for every pair 

of its subsequences (x~) and (Xm'~), x~-xm~-~0 weakly (in norm). Q.E.D. 

Remarks. 1. A very  slight modification of the above argument shows that  if X satisfies 

DP and X* is isomorphic to a subspace of a WCG Banaeh space, then weak Cauehy se- 

quences in X* converge in norm. (One has to remark that  the unit cell of X** will then be 

weak* sequentially compact, since it  will be the weak* continuous image of a weak* se- 

quentially compact set.) This implies a result of Grothendieck (cf. Proposition 1.2 of [22]). 

2. I t  follows from Eberlein's theorem and our Theorem 2.1 that  if X satisfies all its 

hypotheses, then every weakly compact subset of X is norm-compact and thus separable. 

Thus if X is in addition assumed to be WCG, X must be separable. We conjecture that  the 

separability of X should follow without this additional assumption. 

Our next  result generalizes the result of Geifand that  LI[0, 1] is not isomorphic to a 

subspace of a separable conjugate space [9], and the result of Pelezynski that/~(~u) is not 

isomorphic to a conjugate space if ~u is finite and not purely-atomic [19]. 

COROLLARY 2.2. Let/~ be a measure and X be a complemented subspace o/Lt(tz ). Then 

i/ /~ is finite and X is isomorphic to a conjugate Banach space, or more generally i/ tz is arbitrary 
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and X is isomorphic to a subspace o] a WCG conjugate Banach space, weak Cauchy sequences 

in X are norm convergent and X is isometric to a complemented subspace of LI[0, 1]. 

We conjecture that  if the Banach space X satisfies the assumptions of 2.2, then X 

is isomorphic to 1 ~. 

Proo/of  2.2. Suppose first tha t  # is finite. Then Ll(#) is WCG and satisfies DP, and 

consequently its complemented subspace X is also WCG and satisfies DP. Thus if X is 

isomorphic to a subspace of a WCG conjugate space, we have by Theorem 2.1 that  Weak 

Cauchy sequences converge in the norm topology of X, and consequently X is separable 

by Eberlein's theorem. Then we may choose a subspace of Ll(ju) containing X and isometric 

to Ll(v) for some separable measure v. But  it follows easily from Theorem C, page 123 of 

[12], that  for such a v, Ll(v) is isometric to a complemented subspace of LI[0, 1]. 

The case of a general # now follows from the above considerations and Lemma 1.3, 

which shows (cf. the remarks following 1.3) that  if X is isomorphic to a subspaee of a 

WCG Banach space, then there exists a finite measure v and a subspace Z of LI(#) with 

Z isometric to Ll(v) and X ~ Z .  Q.E.D. 

Our final result gives information on injeetive double conjugate spaces. Its proof yields 

more examples of subspaces of LI(/~) non-isomorphic to conjugate Banaeh spaces (cf. the 

next  remark). 

TH]~OREM 2.3. Let B be an in~ective Banach space which is isomorphic to a double 

conjugate Banach space. Then either B is isomorphic to l ~ or there exists an uncountable set 

F with/~176 isomorphic to a subspace o / B .  

Proo]. Since B is injective, there exists a compact Hausdorff space S with B isometric 

to a complemented subspace of C(S), and hence B* is isomorphic to a complemented sub- 

space of C(S)*. Let  A be a Banach space with A** isomorphic to B. Thus A*** is isomorpMc 

to a complemented subspace of C(S)*, and hence since A* is isometric to a complemented 

subspace of A***, A* is isomorphic to a complemented subspace Y of C(S)* which we identify 

with M(S). Now by Lemma 1.3, either we may choose an uncountable set F with ll(F) 

isomorphic to a complemented subspace of Y, or we may choose a positive # EM(S) with 

Y~LI(~) .  If the first possibility occurs, (ll(F))* is isomorphic to a subspace of Y*, which 

means tha t /~(F)  is isomorphic to a subspacc of B. If the second possibility occurs, we have 

that  Y, and hence A*, is isomorphic to a complemented subspace of Ll(~u). But  then by 

Corollary 2.2, A* is separable. Thus A**, i.e. B, is isomorphic to a subspace of 1 ~, so by  

Corollary 6 of [21]. B is isomorphic to 1% Q.E.D. 
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Remark. Applying the full strength of Corollary 2.2 and Lemma 1.3, we obtain the 

following result: Let X be a Banach space such that X* is injective and X is isomorphic to a 

conjugate Banach space. Then either there exists an uncountable set F such that ll(F) is iso- 

morphic to a complemented subspace o / X ,  or X* is isomorphic to po, X is isomorphic to a 

complemented subspace o/LI[0, 1], and weak Cauchy sequences in X converge in norm. Now 

suppose that /~ is a finite measure and A is a non-separable subspace of Zl(/~) such that  

A* is injective. Then by Lemma 4.3 of [19] (cf. also the second remark following Lemma 1.3 

above), ll(F) is not isomorphic to a subspace of A if F is an uncountable set. Hence A is not 

isomorphic to a conjugate Banach space. An immediate consequence of the first result of the 

next  section is that  A* is not isomorphic to a double conjugate Banach space (Corollary 

3.2). 

We conclude this section with the 

CONJECTURE. Let X be a complemented subspace o/LI(~) /or some measure ~, and 

suppose that X is isomorphic to a conjugate Banach space. Then X contains a complemented 

subspace isomorphic to l 1 where m =dim X. 
m 

This conjecture would have as a consequence that  if the injective Banach space B 

is isomorphic to a double conjugate space, then there exists a set F with B isomorphic 

to P~ For if B is isomorphic to A**, then A* is isomorphic to a complemented subspace 

of L1(2) for some measure 2. Thus letting r e=d im  A*, B is isomorphic to a subspace of 

l~. If this conjecture is correct, l~ would be isomorphic to a subspace of A** and thus to a 

subspace of B. But  since 1 m is isometric to (l~Qlm| o (because a countable union of 

disjoint sets each of cardinality m also has cardinality m), B would be isomorphic to 

l~ by  Proposition 1.4. Lemma 1.3 and Corollary 2.2 do imply the validity of the conjecture 

for the case when 11t = ~1, the cardinal number corresponding to the first uncountable ordinal 

(and the conjecture is a known result for m =  ~0 without the assumption of X being iso- 

morphic to a conjugate Banaeh space (cf. Corollary 4 of [21])). We thus obtain tha t  i ] B  

is an injective double conjugate space isomorphic to a subspace o] l~,, then either B is iso- 

morphic to 1 ~176 or B is isomorphic to l~. 

for 

3. Classification of the linear isomorphism types of the spaces L~ ( /0  

for finite measures/~ 

Our first result uses the notion of hyper-Stonian spaces for its proof, and is crueial 

the main result of this section (Theorem 3.5). I t  generalizes the following (un- 
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published) result due jointly to W. Arveson and the author: if ~ is a finite measure with 

dim LI(#) > ~0, then (L~(;u)) * is not separable in its weak* topology. 

T ~ O R E M  3.1. Let A be a Banach space o/dimension m, and suppose that A is iso. 

morphic to a subsloace o~ Ll(~) /or some/inite measure ~. Let B be a closed subsloace o/A** 

such that B is isomorphic to a subspace o/some WCG Banach space. Then i / B  is weak* 

dense in A**, then dim B >~m. 

Proo/. By a result of Dixmier (Thdorbme 1 of [6]), there exists a compact Hausdorff 

space ~ and a finite regular positive Borel measure # on ~ with the following properties: 

1. For every non-empty open subset U of ~,  ~u(U) =/~(0) >0, and 0 is open. 

2. C(~) =L~(/~). By this, we mean that  every bounded Borel-measureable function / is 

equal/~-almost everywhere to a continuous function on ~.  

3. /~(;u) is isometric to Zl(v). 

(In Dixmier's terminology, ~ is a hyper-Stonian space and # is a normal measure on ~.  

may be taken to be the maximal ideal space of the Banach algebra L~(v), and # the unique 

member of M(~)  corresponding to the linear functional on L~176 induced by v.) 

Since all the properties being considered in Theorem 3.1 are linear-topological, we 

may assume that  A is a closed subspace of/fl(/~). Since A** may then be identified with 

A •177 c L 1 (/z)** = M(~),  we assume that  B c A •177 and that  B is weak* dense in A**. 

This means that  i f /EC(~ )  is such that  S/db=O for all bEB, t h e n / E A  z. We now as- 

sume that  dim B<111, and argue to a contradiction. 

First, since B is assumed isomorphic to a subspace of some WCG Banach space, it 

follows by Lemma 1.3 (cf. the second remark following its proof) tha t  there is a positive 

vlEM(~) such that  BcLl(vl).  By the Lebesgue decomposition theorem, we may write 

vl =~ § where ~ and ~ are regular positive Borel measures with Q absolutely continuous 

with respect to/~, and ~ singular with respect to ;u. Thus there is a Borel measurable set 

E such that  # ( E ) = 0 ,  2(N E ) = 0 .  But  then ~u(E)=0 also. Indeed, by the regularity of #, 

there exists a sequence U1, U S .. . .  of open sets with E c  Un for all n, and/~(Un)-~0. Thus 

#(J~)~<limn-,oo/~(Un)=limn-~oo/~(Un)=0 by property 1. (In particular, we see again by 

property 1 that  J~ is nowhere dense.) Now since ~ is absolutely continuous with respect to 

/~, ~ + ~ = v l  is absolutely continuous with respect to ~+~,  so we may assume that  

BcLIO.§ Since/z is regular and/~(~)  =/~(~J~)= I];ull, we may choose an increasing 
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sequence of clopen (closed and open) sets U1c U2c ... such that  U t c  N ~  for all i, with 

lim,_,~/~(U,) = II ll. 
Now for each i, set A,={zv~a: aEA} and B,={)cu, bl bEB}. Since U, N E is empty, 

B ~  LX(/~) for all i, and, of course, B~ and A~ are linear spaces with dim B~ ~< dim B for all i. 

Now we claim that  for some i, dim x{~ > dim B. For if this were not the case, we could choose 

for all i, a subset S~ of ~i~, with card S~<dim B, and with the linear span of S~ dense in 

~I~. Then card 13 ~1 St ~< 110" dim B = dim B, so dim(closed linear:span IJ ~lSt)  = dim(closed 

linear span 13 ~ 1 A 4) ~< dim B. But  A is contained in the closed linear span of I.J ~ 1 ~ ;  indeed 

for each a EA, lim,-.~o I la-a 'z~, l l ,~ , ,  =0.  Thus dim A <dim B < m, a contradiction. 

Now fixing i such that  dim A t > d i m  B, we have that  dim ~ t>d im / ]~ .  Hence there 

exists an a E A such that  Zv~" a ~/~. By the Hahn-Banach theorem, we may choose a linear 

functional F E (Ll(~u))* such that  F(Zv ~. a) ~ 0, with F(y) = 0 for all y E Bt. Since (Ll(~u)) * = 

L~176 we thus have that  there is a continuous function [ on ~ such that  

~]'Zv~ a d/~ 4= 0, while ~]. Z~ b d/~ = ~]'xu~b d(/~ + 2) = 0 for all b E B. Since U, is clopen, ]'Zv, is 

a continuous function on ~ such that  ]'Zv~ ~A • yet  ['Zv~ E B • contradicting the assumed 

weak* denseness of B. Q.E.D. 

Remark. I t  follows from Theorem 3.1 and Lemma 1.3 that  if A is a non-separable 

subspace of LI(~) for a not necessarily finite measure ~, then A** is not  weak* separable. 

(One uses the observation that  if I ~ is an uncountable set, c0(F)* = l l ( r )  is not weak* separ- 

able.) 

An almost immediate consequence of 3.1 and the proof of Corollary 2.3 is 

COROLLARY 3.2. Let A be isomorphic to a non-separable subspace o] LI(~) ]or some 

non-separable finite meazure t~, and suppose that A* is in]active. Then A* (and in particular, 

L~(/~) itsel]) is not isomorphic to a double conjugate space. 

Proof. By Theorem 3.1, A** is not weak* separable, but  (l~176 * is weak* separable (since 

Zl 1 is weak* dense therein). Hence A* is not isomorphic to 1 ~176 and so by  the proof of Corollary 

2.3 (el. the remark following 2.3), if A* were isomorphic to a double conjugate Banach 

space, A would contain a complemented subspace isomorphic to ll(F) for some uncountable 

set F, which is impossible (ef. the second remark following Lamina 1.3). 

Remarks. 1. If  LI(~) is separable, then L~~ is isomorphic to the double conjugate 

space 1 ~ (el. [21]). I t  follows easily from known results that  1 ~ is not isomorphic to a triple 

conjugate space. (In fact Theorem 5.1 and the results of [21] imply that  if m is a cardinal 

number with m <2 c, then l~ is not isomorphic to A*** for any Banach space A.) 
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2. I t  follows from a result of Grothendieck [11] tha t  if # is a finite measure and if the 

Banach space A is such tha t  A* is isometric to L~176 then A is isometric to LI(#). Conse- 

quently if # is in addition non-purely atomic, L~(#) cannot be isometric to a double con- 

jugate space. 

COROLLARY 3.3. Let A .and B be Banach spaces isomorphic to subspaces o/LI(#)  

and Ll(v) /or some/inite measures i~ and v respectively. Then i~ dim B < d i m  A, there exists no 

one-to-one bounded linear operator T [rom A* into B*. 

Proo/. Suppose to the contrary tha t  T: A*-+B* were one-to-one. Then T*O~B ) would 

be a weak* dense subspace of A**. But  dim T*(z(B)) <~ dim B, and T*(z(B)) is isomorphic 

to a subspace of some WCG Banach space, by  Lemmas 1.1 and 1.3. (Indeed, were this false, 

T*(z(B)) would contain a subspace isomorphic to ll(F) for some uncountable set F, by  

Lemma 1.3; but  then B would contain a subspace isomorphic to ll(A) for some uncountable 

set A by  Lemma 4.2 of [19] (this also follows from our Lemma 1.1), which is impossible). 

Thus by  Theorem 3.1, dim T*(z(B)) >~ dim A, a contradiction. 

Remark. When A =/l(~a) and B =Ll(v) above, the argument is slightly easier, for then 

T*(z(B)) is a WCG subspace of (LI(#)) **. An easier version of Theorem 3.1 and Lemma 1.3 

(not requiring Lemma  1.1) then produces the desired contradiction. 

Before proceeding to the next  result, we need some preliminary definitions and facts 

concerning product measures. Given a non-empty set F, we let /~r denote the product 

measure 1-Ia~rma on [0, 1]r = y L e r  [0, 1], where for all a, m~ is Lebesgue measure on [0, 1] 

with respect to the Lebesgue measureable subsets of [0, 1]. Of course, ~Ur depends up to 

measure-isomorphism only on card F; thus given any  infinite cardinal m, any set F with 

card F = m ,  and any p with 1 ~<p ~< oo, we shall denote the space/2(~ur) by  L~[0, 1] m. 

Now given F and A a proper non-empty subset of F, # r  =~UA • #-A by  the general theory 

of product measures. Thus by  Fubini 's theorem, we may  define a map PA: Ll(~ur)-~Ll(~UA) 

as follows: for each /ELl(jUr), set 

(x) = ;  / ( x ,  U x ~ , ) d ~ ~ A ( x ~ , ) ,  (PAl) 
J~ 0.1]--* 

where for S c F and x E [0, 1] r,  x s 6 [0, 1] s is defined by  xs(a) = x(a) for all a 6 S. We have tha t  

PA is a linear projection of norm one, onto a subspace of Ll(#r) isometric to LI(/~A). 

Lw~M), 3.4. Let F = U ,~ l F ~ with F n c  F,+x/or all n. Then Ll(jur) is isometric to a quotient 

space o/the Banach space 

X = (Ll(#r~) | |  
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Proo/. For simplicity of notation, put p, =Pr~, and for each i, let T~: LI(~F~)-+ 

p~(Ll(jaF)) be the linear isometry onto the range of p~ given by  (T,/)(xU y)=/(x)  for all 

/E/I(/~F~), xE[0,  l] F~ and yE[0, 1] r~r~. Then define T: X-+LI(~aF) by T x = ~ l T i x i  for 

all x = (x~) in X. Now II TH = 1; to see that  i / k e r T  is isometric to Ll(~Ur), it suffices to show 

tha t  TS  is dense in U, where S and U refer to the unit cells of X and Ll(~Ur) respectively. 

Now TS  ~ (J ~1P~(U). But given /E U and e > 0, then by  Theorem 24, page 207 of [7], we 

m a y  choose z a finite subset of F such that  IIpJ -/11 <e/2. Then there exists an N such tha t  

FND7~. For any n>~N, PnP~=P~ and so HPnf--/II ~ IlPn(P~,/--f)II ~- IIP:~/--/II <~" Hence 

l i m ~ _ ~ p j = / ,  and thus (JT?-lp~(U) is dense in U, showing tha t  T S =  U. Q.E.D. 

T~EOREM 3.5. Let # and v be/inite measures. Then L~176 and L~176 are isomorphic i/  

and only i] dim LI(#) =d im LI(y). 

Remark. I t  is easily seen that  dim LI[0, 1]m=m for any  infinite cardinal number m. 

Thus the spaces L~176 1] m over all infinite cardinals m form a complete set of linear topo- 

logical types for the spaces L~176 for finite measures #, with L~176 1] m not isomorphic to 

L~176 1] n for 11 ~ m. Previous to our work, the classification of the isomorphism types of 

the spaces L~(#) for 1 ~<p < co, p =~2 had been accomplished by  Joram Lindenstrauss as 

follows: let # be given, put n l=d imLl (# ) ,  and suppose nt>~0. I f  11t is not the limit of a 

(dennmerable) sequence of cardinals each less than m, then/2(~u) is isomorphic to /2[0 ,  1] m. 

I f  m is such a limit, there are two mutual ly exclusive alternatives: 

(1) LP(/z) is isomorphic to LP[0, 1] m. 

(2) choosing a fixed sequence 111 < 11~ <-.. of cardinals with m =limk-~oortk, t h e n / 2 ( # )  

is isomorphic to (L~[0, 1] n' |  1] n* | ...)p. (For 111 = ~0, we have the known result tha t  

/F(/~) is isomorphic to L~[0, 1] or l p, and the latter two spaces are not isomorphic). To show 

tha t  (1) and (2) are mutual ly exclusive, it is demonstrated t h a t / 2 [ 0 ,  1] m contains a sub- 

space isomorphic to a Hilbert space of dimension hi, while (LP[0, 1] n, |  1]n,| ...)~ 

contains no such subspace (where ltk < m for all k). 

Proo/ o/ Theorem 3.5. We have already shown the "only if" part  in Corollary 3.3. Now 

let/~ a finite measure be given with nI = d i m  LI(/~). We shall show tha t  Lr176 is isomorphic 

to L~176 1] m, thus completing the proof. We consider only the case m >  ~0, for the case 

m = ~0 is known and due to Pelczynski (cf. [20] and also Corollary 6 of [21]). 

By Maharam's  theorem [17], there exists a set F,  empty,  finite, or countably infinite, 

and a finite or countably infinite sequence 111, 11, . . . .  of infinite cardinal numbers such tha t  

/fl(#) is isometric to (l I (F)  |  1 [0, 1] "' | L 1 [0, 1] ~' | (where 11(E) = {0} by  definition, if 

E is empty).  Since for any  cardinal 1t, LI[O, 1]n is isometric to (LI[O, 1]"| 1 ] ' |  ...)1, 
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we may  assume tha t  1t 1 ~< 1t2 ~<... and tha t  nk is defined for all positive integers k. We must  

then have tha t  m equals the least cardinal number  Q such tha t  1t~ ~ a for all k. Since 11t > ~0 

is assumed, there exists a set F with card F = m  and sets F~ with card F~ =n~ for all i, with 

F 1 c F 2 c F 3 . . .  and F = U~:IF~.  

We thus obtain from Lemma 3.4 tha t  Ll[O, 1] m is isometric to a quotient space of 

(LI[ 0, 1] " e L l [  0, 1] "~ | and hence L~176 [0, 1] m is isometric to a subspaee of L~ (it). I t  is 

also easily seen tha t  Ll(/t) is isometric to a quotient space of LI[0, 1] m, since this is true of 

the space ll(F) and each of the spaces LI[0, 1] TM. Consequently L~(#)  is isometric to a 

subspaee of L~[0, 1] m. Since (L~[O, 1]m| 1]m| is isomorphic to L"~[0, 1] m and 

each of the spaces L~176 and L~[0, 1] m are injective, it follows from Proposition 1.4 tha t  

they are isomorphic. Q.E.D. 

Remark. I t  is fairly easy to see tha t  for any infinite cardinal m, card L~~ 1] "t = 

dim L~176 1] m = m ~*. Indeed, let F be a set of cardinality m, and for each countable subset 

A of F, let L~, be the subspace of L ~ (~Ur) given by  all bounded measurable functions / 

which depend only on the coordinates A; (i.e., if x, y E [0, 1] r are such tha t  x(a) = y(a) for 

all aeA, t hen / (x )= / (y ) ) .  Then L~, is isometric to L~[0, 1], and card L~[0, 1]=c. Then 

Z~(#r )  = (J{L~: A is a countable subset of F}, hence card L ~ ( # r ) < m  ~,. A result con- 

siderably stronger than  dim L ~ [0, 1] m >~ 1~1 a~ is demonstrated in the proof of (d) of Theorem 

5.1 below. I t  then follows tha t  given any  infinite cardinal number  a, there exist cardinal 

numbers m and 11 greater than  a such tha t  dimLY[0,  1]m=dimL~[0 ,  1]", yet  L~[0, 1] m 

and L~[0, 1]" are not isomorphic. For we simply let m be the least cardinal greater than  the 

sequence of cardinals 111, 112, ... defined by  111 = a; 1t~ = 2"*-1 for all k > 1 and then set rt = 2 m 

( = m ~ . ) .  

A special case of the next  result is tha t  if B* is isomorphic to I ~, then B must  be separ- 

able (and in fact, isomorphic to a subspace of /~[0 ,  1]). I n  Proposition 5.5, we show tha t  

there exists a separable Banach space B 1 and a non-separable Banach space B 2 such tha t  

B t  is isometric to B~. 

THEOREM 3.6. Let A be a subspace elL1(#)/or some finite mea~ure l~, and let r e = d i m  A. 

Then 

(a) i / B  is a Banach space with B* isomorphic to A*, then B is isomorphic, to a subspace 

o//-~[0, 1] r" and dim B = m; 

(b) i /A*  is injective, then A* is isomorphic to a subepace o/L~[0, 1] m. 

Proo/. We first prove (a); assume tha t  B* is isomorphic to A*. Then if F is an uncount- 

able set, /I(F) is not isomorphic to a complemented subspace of B, for otherwise l~(1 ~) 
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would be isomorphic to a subspace of A*, and hence P(F) would be isomorphic to a comple- 

mented subspace of A by  Corollary 1.2, which is impossible. But  B is isomorphic to a 

subspace of A**, which may  be identified with ( A ' ) l c  (LI(/~))**= (L~(~u)) * which in turn  

m a y  be identified with M(S) for some compact Hausdorff space S. Thus by  Lemma 1.3, 

B is isomorphic to a subspaee of Ll(v) for some finite measure v. Since B* is isomorphic 

to A*, B is isomorphic to a weak* dense subspace of A**, and so by  Theorem 3.1, 

dim B>~dim A. Also A is isomorphic to a weak* dense subspace of B*, so again by  3.1, 

dim A >/dim B, hence m = dim B. 

Now let Y be a subspace of L 1 (v) isomorphic to B. Then there exists a subspaee Z 

with Y = Z c L I ( v ) ,  such tha t  Z is isometric to LI(~) for some finite measure ~, with 

dimLl(~) = m. Indeed, simply let D be a subset of Y of eardinality m, with linear span dense 

in Y. For each d E D, choose a countable set ~ of Borel measurable subsets E~, E~ .. . .  of S, 

such tha t  d is in the closed-linear-span of {Z~: J = l ,  2 . . . .  ) in/2(v) .  Now let Z be the o- 

subalgebra of the Borel subsets of S generated by  [J d~D :~d. Then the closed linear span of 

the characteristic functions of the members of Y~ is isometric to LI(~) where ~ =/z[Z. Since 

card [.J~D~=lU, d i m L l ( ~ ) = m .  

Finally, i t  follows from Maharam's  theorem that  LI(~) is isometric to a subspaee of 

L~[0, 1]~. 

Proo/ o/ (b ). Assuming tha t  A* is injective, there exists a compact Hausdorff space S 

such tha t  A* is isomorphic to a complemented subspace X of C(S). Then there exists a 

subspaee A 1 of M(S) isomorphic to A, and a constant K > 0, such tha t  for all / E X. 

the supremum being taken over all ~teA 1 with 11411 <1.  By Lemma 1.3, there exists a 

positive v eM(S) with A1cLl(v),  and hence as we showed in the proof of (a), there exists a 

subspace Z with A 1 c Z ~ / ~ ( v  ) such tha t  Z is isometric to LI(~) for some finite measure ~, 

with d i m L l ( ~ ) = m .  We now define T: X-~Z* by (Tx)(z)=~sx(s)z(s)dv(s) for all x e X  

and z EZ. Then T is an isomorphism between X and a closed subspace of Z* and Z* is 

isometric to L+(~), which is in turn isomorphic to L+[0, 1] m by  Theorem 3.5. Thus A* is 

isomorphic to a subspace of L+[0, 1] m. Q.E.D. 

The next  and final result of this section is considerably stronger than  the main 

classification result, Theorem 3.5. I t s  proof uses the techniques of the proof of Theorem 

3.1. 

THEOREM 3.7. Let # be a ]inite measure with r e = d i m  LI(#), and suppose that X is a 

15-- 702901 Acta mathematica. 124. Imprhn6 le 28 Mai 1970. 
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Banach space with X* isomorphic to L~176 Then dim X = In, X is isomorphic to a subspace 

o/LI[0, 1] m, and LI[0, 1] m is isomorphic to a quotient space o/ X.  

Proo/. The fact tha t  dim X = 1ii and X is isomorphic to a subspace of L![0, 1] m follows 

immediately from the preceeding result. 

Now by  Theorem 3.5, L~(/~)is isomorphic to L~[0, 1] m. Thus there exists a constant 

K > 0  and a subspace B of (L~[0, 1]m) * isomorphic to X, such tha t  for a l l /EL~[O,  1] m, 

II 'lloo sup {Ib(l) l: b B, Ilbll < 1}. (,) 

Now letting ~ be a finite measure with LI(v) =LI[0, 1] m, and letting s be the Stone space 

of the measure algebra of u, we may  assume tha t  the measure ~u is the measure u induces on 

~;  i.e.,/z i s a regular finite positive Borel measure/~ on ~ ,  and ~u and ~ satisfy properties 

1-3 of the proof of Theorem 3.1. Moreover, since ~ is a homogeneous measure, we will have 

by  Maharam's  theorem 

4. For each non-empty clopen subset U of ~ ,  Ll(~u I U) is isometric to Ll(#), i.e., to 

LI[0, 1] m. 

We identify L~176 1] m with C(~), and consequently B with a subspace of M(s Since 

B is isomorphic to a subspaee of a WCG Banach space, we may  choose, exactly as in the 

proof of Theorem 3.1, a positive 2 E M(~)  with 2 • such tha t  B c L l(ju § a closed set E 

such t h a t  2 (~  E)= /~ (E)=  0, and a clopen non-empty set U c ~ E. We noW claim tha t  the 

map T: B~LI(#  I U) defined by  T(b) =zv'b for all bEB, is onto LI(/~ ] U) (which we identify 

with {Zv'/: ]ELI(/~)}) �9 This will complete the proof, since then LI[0, 1] m is isomorphic to 

B/ker T, which in turn is isomorphic to a quotient space of X. 

Let  W={Tb: bEB, ]]bl[ <~K.} and let V denote the unit cell of L~(/~] V). I t  suffices to 

prove tha t  W D V (by the usual proof given for the open-mapping theorem). 

Now if this were false, since W is a closed convex set with :r  W for all scalars 

with I~] ~<1, it follows by  the Hahn-Banach  theorem (cf. page 417 of [7]) tha t  we could 

choose a v E  V, and a bounded linear functional F in Ll(~u) *, such tha t  supxGwI F(x)l < 

IF(v) l. 
Since C(S)=L~(I~)=LI(~) *, there thus exists a continuous function ~, such tha t  

I + 
J 

Setting ]=Zu%/EC(S), and thus (*) is contradicted. Q.E.D. 

Remark. Let B be isomorphic to a subspace of a WCG Banach space, and a closed sub- 

space of (L~176 1]m) * for some cardinal m. The last par t  of the proof of Theorem 3.7 shows 
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tha t  if B is of positive characteristic (i.e., satisfies (*) for some constant K), then LX[0, 1] m 

is isomorphic to a quotient space of B. I f  B satisfies the weaker hypothesis tha t  it is weak* 

dense in (Lr176 1]m)*~ an easier argument than  the one above shows tha t  there exists a 

bounded linear operator from B onto a dense subspaee of L 1 [0, 1] m. 

4. Some linear topological invariants of injective Banach spaces and 

the spaces C (S)  

We shall need the following definitions for this section: Given a compact Hausdorff 

space S and #EM(S),  # is called strictly positive if #(U) > 0  for all non-empty open U c S .  

We say tha t  S carries a strictly positive measure, if there exists a strictly positive # E M(S).  

Given a topological space X, we say tha t  X satisfies the C.C.C. (countable chain condi- 

tion) if every uncountable family of open subsets of X contains two sets with nonempty  

intersection. 

Our first result together with a theorem of Gaifman shows tha t  there exists a Stonian 

space S o such tha t  C(Sa) is not isomorphic t o a  conjugate Banach space (see Corollary 

4.4 below). 

THEOREM 4.1. Let S be a compact Hausdor]] space satis]yiug the C.C.C. and suppose 

that C( S) is isomorphic to a conjugate Banach space. Then S carries a strictly positive measure. 

Proo]. Let B be a Banaeh space with B* isomorphic to C(S). Since B is isometric to a 

weak* dense subspace of B**, B is isomorphic to a weak* dense subspaee, A, of C(S)* = M(S).  

:Now if there exists a positive # E M(S) with A c LI(#), we are done, for then Ll(~t) is weak* 

dense in M(S), and this implies tha t  # is a strictly positive measure. Now suppose tha t  there 

does not exist  such a #. We shall then show tha t  S cannot satisfy the C.C.C., thus completing 

the proof. 

By  Lemma 1.3, there exists an uncountable set F such that  A contains a comple- 

mented subspaee isomorphic to ll(F). Since A* is isomorphic to C(S), we obtain t ha t  C(S) 

contains a subspace isomorphic to I~176 and consequently C(S) has a subspaee isomorphic  

to c0(F ). Thus, we may  choose a family {e~: ~ E F)  of functions in C(S), with []e~ [[ = 1 for  all ~, 

n e and a constant K >  0 such tha t  for all 71, .--, ~,  in F, ][~,=1 r,II ~<g. By multiplying each 

ev by a complex scalar of modulus one if necessary, we may  assume tha t  supses Re e r (s) = 1 

for all ~ E F, where Re e v denotes the real par t  of the function %. :Now for each ? E F, let U~ = 

{sES: ] % ( s ) - l ]  <�89 Then if N is an integer with N > 2 K ,  then if 71 ..... rN are any  N 

distinct members of F, rl  N= 1 Uv~ = O. For if there existed an s E rl ~=IN u ~ ,  we would have t ha t  

] ~=1 e~,, (s) ] >~ N/2 > K, a contradiction. In  particular, for each ?o E F there exist at  most  
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N 7's in F with U~= Uv0. Since F is an uncountable set, we have tha t  {Uy: ~EF} is an 

uncountable family of open subsets of S, such tha t  no point of S belongs to infinitely many  

members of the family. Thus S cannot satisfy the C.C.C. in virtue of the following 

L~M~A 4.2. Let S satis/y the C.C.C., and suppose that ~ is an uncountable/amily o] open 

subsets o /S .  Then there exists an in]inite sequence F1, F~ .... o] distinct members o/ :~ with 
Oo n~=~F~=~. 

Proo]. We first need some preliminaries. Given any  family A of subsets of S and n a 

positive integer, let An denote the class of all sets of the form F 1 N F 2 N ... N Fn, where 

F1 ..... Fn are n distinct members of A. Then put  A* = (J ~ 1  An. A* is, of course, the family 

of all finite intersections of members of A; evidently if A is finite, so is A*; otherwise card 

A = card A*. We next  observe tha t  for all n, (An)2= * An+l. Indeed, let A and B be distinct 

members of An- We may  choose F 1 ... . .  $'n distinct members of A and G x .... , G~ distinct 

members of A with A = N ~-IF~ and B =  [1 ~=IG~. Since A ~= B, there must  exist indices i, 

1 <~i~n, such tha t  Gi=~ Fj  for any ] with 1 < ~ < n .  Let  i1<i2<... <ik be an  enumeration 

of this set of indices; then for each r with 1 <~r<~lc, FIN ... N FnN G~ is a member  of An+i, 

and A N B = n  =ltV, n .  n Vn no,,), thus A N BEA*+r 
Next, we observe tha t  (assuming S satisfies the C.C.C.), if A is an uncountable family 

of open subsets of S, then 

(*) either some non-empty member  of A2 is contained in uncountably many  mem- 

bers of A, or A~ is uncountable. 

To see this, let ~ denote the class of all sets F in A such tha t  there exists a G in A 

with G + F  and GN F + O .  Then ~ is uncountable. Indeed, A ~  is a disjoint family of 

open sets and is hence at  most countable. Now for each A E A2, let Aa denote the class of all 

sets F E A with F ~ A. Then we have tha t  ~ = [A {A~: A E A2, A Je ~D}. Thus if A~ is count- 

able, Aa must  be uncountable for some non-empty A e A2, thus proving (*). 

From (*) we easily deduce by  induction that  

(**) I f  B is an uncountable family of open subsets of S and n is a positive integer, 

then there are uncountably many  distinct n-tuples (B 1 ... .  , Bn) in  ]g (i.e., Bi=~Bj if 

i ~=j) with N ~1B~ ~=O. 

To see this, let us assume that  no non-empty member  of B* is contained in uneountably 

many  members of B (since otherwise (**) holds automatically). We shall then show tha t  

Bn is uncountable for all n, from which (**) follows immediately. B1 is trivially uncount- 

able. Suppose we have proved tha t  Bn is uncountable. Then if ]gn+l were countable, ]~*+1 
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and consequently (Bn)~ would also be countable by  our preliminary observations. Thus by  

(*), there would exist A and B in Bn with A N B non-empty and contained in uncountably 

many  members of Bn. But  if E E Bn and A N B c E, then E is a finite intersection of members 

of B, each of which contains A N B. Hence A N B would be contained in uncountably 

many  members of B, and of course A N B E B*, so our assumption on B would be contradicted. 

Thus (**) has been established by  finite induction. Now let :~ be as in the s ta tement  

of 4.2, and for each positive integer n, let Gn be the set of all points in S which are contained 

in at  most n distinct members of :~, put  G ~ equal to the interior of Gn, and let 0n = {F E :~: 

$'N G~ #O}: Fixing n, we claim tha t  0n is at  most  countable. Indeed, denoting {FN G~ 

F E 0n} by  0n N G~ we have tha t  no n + 1 distinct elements of 0n N G~ have a point in 

common. Thus by  (**), 0n N G~ is at  most countable. But  each member of 0n N G~ is con- 

tained in at most n members of 0n, and 0n = {F E :~: 3 A e 0n N G~ with F ~ A}. 

Thus since 0n is countable for all n, 13 n~l 0n is countable, so there exists a non-empty 

FE  ~ with F$13 ~=10=. I t  is easily seen tha t  G n is closed for all n, and thus there exists an 

s E F with s $13 ~=1Gn,~ G~ by  the Baire category theorem. Then s ~ 13 ~-1Gn by  the defini-. 

tion of 2', so s belongs to infinitely many  members of :~. Q.E.D. 

Remark. Let m be a fixed cardinal number  with m > ~I0. We say tha t  the topological~ 

space X satisfies the m-chain condition if every disjoint family of open subsets of X has 

cardinality less than  m. (Thus the C.C.C. is the ~ll-chain condition.) A slight modification 

of the proof of Lemma 4.2 shows that  its conclusion holds if we replace the hypothesis 

tha t  S satisfies the C.C.C. by  the hypotheses tha t  S satisfies the m-chain condition and thaV 

card :$ = m. In  fact, the proof of 4.2 shows tha t  the following more general result holds 

(using the notation introduced at  the beginning of the proof of 4.2): 

Let X satis/y the m-chain condition, and suppose that :~ is a /amily  o/open subsets o/ 

X with card :~ = m. Then either there exists a non-empty member o/:~* contained in uncount. 

ably many members o/:~, or/or all positive integers n, card :~n = m. Moreover, i / X  is a Baire 

space, there exists a point in X belonging to infinitely many members o/ :~. In  /act, there 

exists a fixed set E o/ the first category in X,  and an :~'c :~ with card ( : ~  :~') < m ,  such that 

/or every non-empty F E 5', every point o/ F ~ E belongs to infinitely many members o/ 5. 

(X is called a Baire space if every countable union of closed nowhere dense subsets of X 

has void interior.) 

Of course, it then follows as in the proof of Theorem 4.1, that  if the compact Hausdorff  

space S satisfies the m-chain condition and if F is a set with card F = m, then c0(F ) is not  

isomorphic to a subspace of C(S). (Cf. the remark following 4.6 below for a stronger result.) 

I t  follows from the above remark tha t  if S is a Stonian space and F is an infinite se~ 
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with c0(F ) isomorphic to a subspace of C(S), then I~(F) is isometric to a subspace of C(S). 

For there exists a family F 1 of pairwise disjoint non-empty open subsets of S with card F 1 = 

card F. (If card F=l%, this is obvious; if card F >~0. then S does not satisfy the m-chain 

condition where l u= ca rd  F.) Since S is Stonian, S is totally disconnected, so we may  

assume tha t  each UEF1 is a clopen (closed and open) set. The set of all ]EC(S) w i t h / s u p -  

ported on [ JF  1 and ]] U constant for all UEF1, is then the desired subspace of C(S) iso- 

metric to I~176 In  virtue of the known fact tha t  every ~)1 space is isometric to C(S) for 

some Stonian S (cf. [4]) and Corollary 1.2, we obtain immediately the 

COROLLARY 4.3. Let F be an in]inite set, and let the Banach space B contain a subspace 

isomorphic to c0(F ). Then i ] B  is either isomorphic to a ~)1 space or isomorphic to a conjugate 

Banach space, B contains a subspace isomorphic to I~~ (1) 

I t  follows from a result of Gaifman [8] via the theory of Boolean algebras (cf. [29]) 

tha t  there exists a Stonian space Sa such tha t  Sa satisfies the C.C.C. and carries no strictly 

pos i t ive  measure. [Gaifman constructs a Boolean algebra ~4 satisfying the C.C.C. (the 

a-chain condition in the terminology of [29]) for which there is no strictly positive finite 

measure.  Now as he points out on page 68 of [8], there exists a complete Boolean algebra 

B containing ~4 as a dense subalgebra (cf. w 35 of [29]), and B will automatically also satisfy 

the C.C.C. and carry no strictly positive measure. We then simply let Sa be the Stone space 

of B.] Since C(Sa) is a ~1 space (cf. [4]), we thus obtain immediately from Gaifman's  

result and Theorem 4.1 the 

COROLLARY 4.4. There exists a ~)1 space which is not isomorphic to any conjugate 

Banach sp~e. 

The techniques we used in proving 4.1 yield linear topological invariants of injective 

Banach  spaces and the spaces C(S) which we shall now explore. In  particular, letting Sa be 

as above, our next  result implies tha t  every weakly compact subset of C(Sa) is separable, 

and tha t  if ~u is a finite measure, then there exists no one-to-one bounded linear operator 

mapping C(Se) into L~(#). We mention also tha t  the algebra A constructed by  Gaifman 

in [8] has  eardinality at  most the continuum; since A satisfies the C.C.C., it follows easily 

tha t  a complete Boolean algebra containing A has cardinality the continuum, and hence 

dim C(Sa) = C. (Indeed, it is not difficult to show tha t  if S is an infinite totally-disconnected 

compact  Hausdorff space and B its family of closed-and-open subsets, then dim C(S)= 

(1) We have recently proved that 4.3 holds for any space B isomorphic to a complemented subspace 
of a conjugate Banach space. Added in ~yroo]: This result and also a generalization of Lemma 1.1 
will appear in Studia Mathematica in a paper by the author entitled "On relatively disjoint families 
of measures, with some applications to Banach space theory". 
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card B,) Thus by Theorem 5.1 below, C(S~) is isometric to a quotient algebra of 1% i.e., 

SG is homeomorphic to a subset of fiN. 

THEOREM 4.5. Let S be a compact Hausdor]/ space. Then 

(a) S satis/ie~ the C.C.C. i/ and only i/ every weakly compact subset o/ C(S) is separable 

(i/ and only i/C(S) contains no isomorph o] co(F) ]or any uncountable set F). 

(b) S carries a strictly positive measure i/ and only i/ C(S)* con~ins a weakly compact 

total subset. 

Proo/o/4.5(b). If I~EM(S) is strictly positive, then LI(/~) is a WCG total subspace of 

C(S)*. (Thus the unit cell of L~(/~) injects into C(S)* as a weakly compact total  subset). 

On the other hand, if K is a weakly compact total  subset of C(S)*, then the closed linear 

span of K (in the norm topology) is a WCG subspace of C(S)*; hence by Lemma 1.3, there 

exists a positive/~ E M(S) with K c Ll(/~). Since K is total,/~ must be strictly positive. 

Proo/o/4.5(a). We first observe that  if S fails to satisfy the C.C.C., then there exists an 

uncountable set F such that  c0(F ) is isometric to a subspace of C(S). Indeed, we may choose 

an uncountable family {Uv: ~ E F)  of pairwise disjoint non-empty open subsets of S, with 

U~,4-Uv. if y~=~', y ,7 'EF.  Then  for each yEF,  choose evEC(S ) with ]levi ] =1 a n d e v ~ 0  

on N Ur. Then the closed linear span of (er: rer}!  is isometric to c0(F), and of course 

{0} u {%: r eF} is a weakly compact non-separable subset of G(S), 

Now suppose that  S satisfies the C.C.C. I t  then follows from our proof of Theorem 4.1 

that  for no uncountable set F is c0(F ) isomorphic to a subspace of C(S). Thus the remaining 

(and only non-trivial) assertion to be proved is that  every weakly compact set in C(S) 

is separable. 

Now suppose there exists a non-separable weakly compact subset of C(S). Then by 

the Krein-Smulian theorem (ef. page 434 of [7]) the closed convex hull of this set is weakly 

compact, and consequently the set obtained by multiplying the latter by all scalars of 

modulus one, is also weakly compact. Thus we have established that  there exists a sym- 

metric convex non-separable weakly compact subset K of C(S). By a result of Corson (see 

Proposition 3.4 of [16]), K contains a subset homeomorphic in its weak topology to the one- 

point compactification of an uncountable set. This means in virtue of the symmetry of K, 

tha t  there exists an uncountable set F 1 of non-zero elements of K such that  every sequence 

of distinct elements of F1 converges weakly to zero. We may then choose a (~ > 0 such that  

r = { ~ e r l :  I1~11 >~} is uncountable, since I~1= (J ~=1 {~,erl: II~ll > l /n} .  

Now for each 7 e F, let U~ = {s e S: ]7(s) l > ~/2}. Then there exists an infinite sequence 

71, 7~ .. . .  of distinct elements of F such that  ['] ~--1UT~ is non-empty. Indeed, if {Uv: ~ eF} 
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is countable this is obvious; otherwise this follows from Lemma 4.2. :Now 7 , ~ 0  weakly, 

hence ~, (s) -+ 0 for all s 6 S. But choosing s 6 N ,~ 1 Uv,, I$* (s) ] > ~/2 > 0 for all i, a contradic- 

tion. Q.E.D. 

Remark. I t  follows immediately from Theorem 4.5(b) that  if S is a compact Hausdorff 

space, then either there exists a finite measure/~ such that  C(S) is isometric to a subspace 

of Z~176 or there is no bounded linear operator mapping G(S) one-to-one into L~176 for 

any finite measure/~. Lemma 1.3 may also be employed to show that  if X is an injeetive 

Banach space, then X is isomorphic to a subspace of L~(/~) for some finite measure/~ if and 

only if X* contains a WCG subspace of positive characteristic. 

We obtain as an immediate consequence of Theorem 4.5 (a) and the results of [1], the 

COROLLARY 4.6. Let K be a weakly compact subset o /a  Banach space, and suppose that 

K satis/ies the C.C.C. Then K is separable. 

Proo/. By Theorem 4.5 (a), every weakly compact subset of C(K) is separable. By a 

result of Amir and Lindenstrauss [1], C(K) is a WCG Banach space. Hence C(K) is sepa- 

rable, and thus K is metrizable. Q.E.D. 

Remark. The density character of a compact Hausdorff space S is defined to be the 

smallest cardinal number m such that  there exists a dense subset of S, of eardinality 

m. Using the terminology introduced in the remark following Lemma 4.2, we note the 

following generalization of Theorem 4.5(a): 

T~]~OR]~M. Let m > ~r The compact Hansdor// space S satisfies the m-chain condition 

i /and only i/every weakly compact subset o/C(S) has density character less than m (i/ and only 

i /C(S)  contains no isomorph o/c0(F ) /o r  any set F o/cardinality m). 

Now it is not difficult to show that  if K is a compact Hausdorff space and if L is a 

weakly compact total subset of C(K), then the density character of L equals the density 

character of K. I t  thus follows from the above Theorem and the results of [1] that  i / K  is 

a weakly compact subset o /a  Banach space with the density character o / K  equal to 1!t, then K 

contains a/amily  o] pairwise disjoint open subsets, o/cardinality 11t. This, of course, gener- 

alizes Corollary 4.6. 

For the sake of completeness, we give the proof of this Theorem. We first need a 

lemma which follows from a general result of Tarski concerning Boolean algebras (Theorem 

4.5 of [30]). 

L E M M A. Let X be a topological space. Suppose there exists an increasing sequence o/cardi- 

nal numbers, ~o < I11 < 1t2 < na <. . .  and/amilies ~1, :~2, ... o/pairwise disjoint open subsets 
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o/ X,  such that card ~ =ltk ]or all k. Then there exists a ]amily ~ o] pairwise disjoint open 

subsets o /X  with card ~ = Ill, where Ill =lim~_~11~. 

To prove the Lemma,  define ~fl  A = {G N A: G E 6} for any A c X and ~ a family of 

subsets of X; we may  assume (with no loss of generality) tha t  11~ is a successor cardinal for 

a l lk .  

I f  there exists an n, F 1, Fz . . . .  an infinite sequence of distinct members of ~ ,  and 

/1 < 12 < ls... such tha t  card (y~, N F,) = 11~, for all i, then y = U ~1 ~z, rl F ,  satisfies the con- 

clusion of the Lemma.  So suppose tha t  there exists no n with these properties. Then for 

each n, there exists an integer l(n) so tha t  for all m>~l(n), 

card { F q ~ :  card ~m N F : l lm}<~ 0. 

By removing from each ~ a countable subfamily if necessary, we may  assume tha t  if 

m>~l(n), then for all Ffi~=,  card (~zf~ F)<11 m. Now choose (a(n)) a strictly increasing 

sequence of positive integers such tha t  a(i) >~ l(a(j)) for all i and j with 1 ~<j <i .  

Then for each such i and j, and for any F E ~a(j), card (~a(0 N F)<11~,). Now fix i t>2, 

and define 
i-1 

Ok = u  U {GE:~a(o:GNF:t=O}. 
1 : 1  F e ~aq) 

Since 11~(~) is a successor cardinal and :~,(l) is a disjoint family of sets, card ~i<1t~(~). Then 

:~= U~2 ~(~)~  ~ satisfies the conclusion of the Lcmma.  

To prove the Theorem, we let 1t be the smallest cardinal number  11l > ~r such tha t  S 

satisfies the m-chain condition, and let K be a weakly compact  subset of C(S). We now 

show tha t  the density character of K is less than  11, thus proving the only non-trivial asser- 

tion of the Theorem. Suppose tha t  the  density character of K is greater than  or equal to 11; 

then by  the Krein-Smulian theorem and the proof of Proposition 3.4 of [16], the closed 

convex circled hull of K contains a set F~ of non-zero elements with card I'~ = 11, such tha t  

every sequence of distinct elements of F1 converges weakly to zero. The Lemma and the 

definition of 11 imply tha t  11 is not equal to the limit of an increasing sequence of smaller 

cardinals. Thus there exists a positive integer ], such tha t  F =  {TEFI: II~'ll > I/j} is a set of 

cardinality 11. Using the remark following Lemma 4.2, we complete the proof exactly as in 

the last paragraph of the proof of Theorem 4.5 (a). Q.E.D. 

Theorem 4.5 (a) has as one of its consequences, tha t  if/x is a finite measure, then every 

weakly compact subset of L~176 ) is separable. This is because L~176 is isometric to C(S) 

where S is the Stone space of the measure algebra of/x, and the finiteness of # then implies 

tha t  S satisfies the C.C.C. In  view of our interest here in the spaces L~~ we prefer to give 

the following simpler and more intrinsic proof of this fact: 
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P~OPOSITIO~ 417. Let the Banach space B be WCG and satis/y DP. Then every weakly 

compact subset o /B*  is (norm) separable. In  particular, i//~ is a/inite measure, every weakly 

compact subset o/L~176 (and hence every WCG subspace o/L~176 is separable. 

Proo/. We first  observe that  if K is a weakly-compact subset of the Banaeh space X, 

then the map T: X*-->C(K) defined by Tx*(k)=x*(k) for all x*EX* and kEK, is weakly 

compact. (This is an immediate consequence of Theorem 1 page 490 of [7] and the defini- 

tions involved.) 

Now let K be a weakly compact subset of B*. Then setting X = B* and letting T: 

B**-->C(K) as above, the map Toz:  B-+C(K) is also weakly compact (where Z: B-+B** 

is the canonical isometric imbedding). Now let G be a weakly compact subset of B, gener- 

ating B. Since B satisfies DP, Tox(G ) is a compact subset of C(K), hence a separable 

subset. Since G generates B, it follows that  To):(B) is a separable subspaee of C(K); hence 

letting A be the smallest closed subalgebra of C(K) containing To z (B  ) and the constants, 

A is also separable. But  Toy.(B) separates the points of K; hence so does A, and so by the 

Stone-Weierstrass theorem, A = C(K); hence K is metrizable in its weak topology. Thus K 

is separable. Q.E.D. 

Remarks. 1. We say that  a subset G of a Banaeh space B is pre-weakly compact if 

given any sequence (gn) in G, there exists a weak-Cauchy subsequence (gnu) of G. Using the 

equivalent definitions of the property DP, the same proof as above shows that  if B is 

generated by a pre-weakly compact set G and satisfies DP, then every weakly compact 

subset of B* is separable. 

2. Letting X, K, and T be as in the first sentence of the proof of Proposition 4.7 and 

letting S* be the unit ball of X* in the weak* topology, then it follows that  T is continuous 

from S* into T(S*) in the weak topology of C(K). If moreover K generates X, then T is one- 

to-one, and hence one obtains the result of Amir and Lindenstrauss [1] that  if X is WCG, 

S* in its weak* topology is homeomorphic to a weakly compact subset of a Banach 

space, namely T(S*). 

The final result of this section gives several necessary and sufficient conditions for an 

injective conjugate Banaeh space to be imbeddable in L~176 for some finite measure #. 

The proof is nothing but  a summary of our preceding results. 

TH~ORV.~ 4.8. Let B be an injective Banach space that is isomorphic to a conjugate 

Banach space. Then the/ollowing condition8 are equivalent: 

1. B is isomorphic to a subspace o/L~176 some ]inite measure ]u. 

2. I] F is an uncountable set, then I~176 is not isomorphic to a subspace o / B .  
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3. Every weakly compact subset o / B  is separable. 

4. B* contains a weakly compact total subset. 

5. There exists a / in i te  measure/~ and a closed subspace A o/LI(/~) such that B is iso. 

morphic to A*. 

Moreover, suppose one and hence any o/the above conditions occur, and suppose that A o 

is a Banach space with B isomorphic to A~ and dim A o = m. Then A o is isomorphic to a 

subspace o/Ll[0, 1] m, B is isomorphic to a subspace o] L~~ 1] m, and i/II  is a cardinal number 

with 1t < m, then no bounded linear operator/rom B into L~[0, 1] n can be one-to-one. 

Proo/. 5 ~1 is a special case of 3.6(b). 1 ~3  follows from the preceding result, and 3 ~2  

is obvious. To see that  2 ~5, suppose that  5 does not hold. Now it is assumed that  there is 

a Banach space X with B isomorphic to X*. The assumption that  B is injective implies 

tha t  X is isomorphic to a subspace of M(S) for some compact Hausdorff space S; hence by 

Lemma 1.3, there exists an uncountable set F with/I (F)  isomorphic to a complemented 

subspace of X, and so I~(F) is isomorphic to a subspace of B. This establishes the equiva- 

lence of the conditions 1, 2, 3, 5. Now 1 ~4.  Indeed, condition 1 implies tha t  B* is weak* 

isomorphic to a (weak*) quotient space of (L~176 *, and thus B* contains a weakly compact 

total subset since (L~(/~)) * does (namely Z U, where U = { /e l l (#) :  / E/-/(/~) and II/]]~ < 1 )). To 

complete the  proof of the equivalences of the five conditions, we show that  4 ~2. Suppose 

that  2 doesn't hold. Letting F be an uncountable set with I~~ isomorphic to a subspace 

of B, then if 4 holds, (I~(F))* would contain a total weakly compact set by the same argu- 

ment as 1 *4.  But  then letting flF denote the Stone-Cech compactification of the discrete 

set F, flF would contain a strictly positive measure by Theorem 4.5 (b), which is of course 

absurd, since flF does not  satisfy the C.C.C. Hence 4 doesn't hold. 

The remaining assertions of 4.8 follow immediately from Theorem 3.6 and Corollary 

3.3. Q.E.D. 

Remarks. 1. The ~1 space C(Sa) of our Corollary 4.4 fails conditions 1, 4, and 5 of 

Theorem 4.8 but  satisfies conditions 2 and 3. Thus the assumption that  B is isomorphic 

to a conjugate Banach space is essential in the statement of 4.8. (This was used critically 

in the proof that  2 ~5). 

2. I t  follows from 4.8 and 3.1 that  if B satisfies the hypotheses of 4.8 and B* is weak* 

separable, then B is isomorphic to I% For if B* is weak* separable, then condition 4 of 

4.8 is satisfied. Hence by 4.8 there exists a finite measure/z and a subspace A of LI(/~) such 

that  A* is isomorphic to B. But  letting Y be a separable subspace of B* which is weak* 
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dense, we have by Theorem 3.1 that  dim Y~>dim A, hence A is separable. Thus A* is iso- 

morphic to a subspace of l% and hence to l ~~ by a result of Pelczynski [21]. (We do not 

know if the above holds if we omit the hypothesis tha t  B is isomorphic to a conjugate 

Banach space). 

5. Quotient algebras and conjugate spaces of L ~ (p) for a finite measure/~ 

We shall regard L~~ as a commutative B* algebra, and use elementary results from 

the theory of commutative B* algebras (as exposed, for example in part  I I  of [7]). If S 

is a compact Hausdorff space, we shall mean by a subalgebra of C(S) a conjugation closed, 

uniformly closed subalgebra of C(S) containing the constants. If A c C(S) is a subalgebra 

and K is a compact t tausdorff space, then q~: A ~ C(K) is called a homomorphism if ~ is 

linear and for all / and g in A, qD(/.g)=~0(/)~(g) and if moreover, in the case of complex 

scalars, ~([)=~(/) where [ denotes the complex conjugate of [. 

If  X and Y are isomorphic Banach spaces, we define the distance coefficient of X 

and Y, denoted d ( i ,  Y), to be inf {HTH IIT-1]I: T is an isomorphism from X onto Y}. 

We recall from Paragraph 3 that  given m an infinite cardinal number and 1 ~ p  ~< co, 

/2[0, 1] m denotes the space Lv(~tr), where F is any set with card F = m and fir is the product 

Lebesgue measure on 1-It [0, 1] = [0, 1] r. For the sake of convenience, we denote the one. 

dimensional space of scalars by  Ll[0, 1] ~ Also, given an indexed family {Ya: aE I}  of 

Banach spaces, we denote (~Ez| Y~)i by ~ e z O  Ya; if Y =  Ya for all a E I ,  then ~e~ |  Ya 

is denoted by ~m | Y, where m = card I.  

The following theorem is the main result of this section, and gives complete infor- 

mation concerning the conjugate spaces and ~)1 quotients of L~(~t) for a finite measure/x. 

THEOREM 5.1. Let m be an infinite cardinal number. Let B denote one el the Banach 

algebras L~176 /or some finite homogeneous measure/a, l~(A) /or some infinite set A, or C(G m) 

where G denotes the closed unit interval with end-points identified; suppose dim B = m. Then 

(a) B* is isomorphic to ~2m(~Ll[0, l] m with d(B*, ~2m(~51[0, l] m) ~<9. 

(b) B** is isomorphic to 12,~. 

(c) Let Cm denote the set el infinite cardinal numbers less than or equal to 11t, and/or each 

11E Cr,, let A ,  be a set el cardinality 2 m, with A .  disjoint/rom A.,  /or 11 ~ 1t'. Then B* is iso- 

metric to l~r,O ~n~a m ~ e A ,  ~ (LI[ 0, 1]")a. 

(d) C(G "~) is algebraically isometric to a subalgebra o /B .  

(e) I / ~  is a Stonian space with dim C(~) ~< m, then C(~) is algebraically isometric to a 

quotient algebra o] B. 
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(f) I /  Y is an in]ective Banach space with dim Y ~< m, then Y is isomorphic to a quotient 

space o/ B. 

The assertions of this theorem tha t  are somewhat  difficult are (d) (for the case B = 

L ~r (#) for a finite homogeneous measure #) and (c). To prove 5.1 we first show tha t  (a) ~ (b), 

(d)~(f) ,  and (c)~(a) .  We then prove (d); then  the case of (c) for B=C(G m) is proved 

in the slightly more general Proposi t ion 5.2. Nex t  is L e m m a  5.3, which is used in proving 

Theorem 5.4, a ra ther  general result. Theorem 5.4 together  with (d) implies (immediately) 

bo th  (c) and (e), thus  completing the proof of 5.1. (Our 5.3 and 5.4 yield a slightly s tronger 

result  t han  (d) ~ (e); (d) ~ (e) is actual ly an immediate  consequence of known results in the 

theory  of Boolean algebras (cf. the second remark  following 5.4).) We note  also t h a t  5.1 

holds for finite non-homogeneous measures as well (cf. the first remark  following 5.4). 

Proo/ o/ Theorem 5.1. (a)~(b) .  I t  suffices to prove, sett ing Y=(~m(~LI[O,  1]re)l, 

t ha t  Y* is isomorphic to 12~. Now letting S denote the uni t  cell of Y, we have tha t  card S = 

2 m, and thus l~(S) ~ 1 y .  =/2m-( ) Thus  is isometric to a subspace of l~m; since Y* is isometric to 

(~m|176 1]m)~, 12m is isometric to a subspace of Y*. Since lure and  Y* are injective and 

X = l ~  satisfies the hypotheses of Proposit ion 1.4, l ~  and Y* are isomorphic (cf. also 

Proposi t ion (*) of [20]). 

(d) ~ (/). We first observe tha t  C(G m) contains a subspace isometric to 11. Indeed,  let 

A be a set of cardinali ty 11t, and for each 2EA,  let e~ be the continuous funct ion on G A 

defined by  
e~(x) = exp (i2~x~) for all x = (x~}~h in G A. 

Then the uniform closure of the linear span of {e~: 2 E A} (or of the real par ts  of the functions 

in this set in the case of the real scalar field) is isometric t o / I (A)  =l~. 
. 

But  now we note  t ha t  if Z is any  Banach  space containing a subspace Z 1 isomorphic 

to  l~m, then  if Y is an  injective Banaeh space with dim Y ~< m, Y is isomorphic to  a quot ient  

space of Z. For  Y is isometric to a quotient  space of lm. Thus there exists T: Z x ~ Y a bounded  

linear operator  mapping  Z 1 onto Y. Hence by  the inject ivi ty of Y, there exists a bounded  

linear operator  ~:  Z-+ Y with ~ [ Z  1 = T. Thus Y =T(Z) ,  so Y is isomorphic to Z / B  where B 

equals the kernel of T. (If Z 1 is isometric to l~ and Y is a P l  space with dim Y ~< m, we also 

obtain  t h a t  Y is isometric to a quotient  space of Z.) 

(e) ~(a).  We first observe tha t  if 11 is a cardinal number  with 1t < m ,  then  d(Ll[0, 1]n| 

LI[0, 1] m, LI[0, 1] m) < 9  and also d(lX(F)| 1] m, LI[0, 1] m) ~<9, where 2'  is any  finite or 

(1) To see that card S = 2 m, observe that card LI[0, lJm~ < 2 m and thus there are at most 2 m 
functions ] from a set of cardinality 2 m into LZ[0, 1] m such that ](x) ~:0 for at most countably many x. 
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countab ly  infinite set. Indeed  if X is a subspace of LI[0, 1] m such tha t  X is isometric to 

X(DX and such tha t  there is a projection of LI[0, 1] m onto X of norm 1, then there exists 

a subspace A 0fLl[0, 1] m such tha t  d(X| l] m) ~< 3, thus d(X| |  LI[0,1Ira |  ~< 

3, and hence d(Ll[0, 1Ira, L1[0, 1]m| Thus the result follows if X is isometric to 

LI[0, 1] n or /1.(1) But  if X is isometric to 11, then  XQll(F) is isometric to X,  and conse- 

quent ly  since d(X| LI[0, 1 ]m|  again d(Ll[0, 1]m| LI[0, 1] m) <9 .  
�9 1 �9 

No w let F = Cm U (0) and  let X n =  ~2m@L~[0, 1]" for each n e F. Then smce l~m lS  iso- 
1 metric to X0, X =12m| ~a~hnQ(Ll[0,  1]n)a is isometric to ~nEr |  Of  course, to  

show tha t  (e)~(a) ,  it suffices to show tha t  X is isomorphic to Xm, with d(X, Xm)<9 .  

Now card F<m, hence 2(card F ) 2 m = 2  m, hence ~oardr |  is isometric to  Xr,. Thus 

~n~r@Xn is isometric to  ~ne r |174  Bu t  for each nEF, d(X.| X~)<9 since 

d(L~[0, 1]"|  1] m, L~[0, 1] m) <9 .  Thus d(~n~r|174 ~_r174 Thus 

d(X, Xm) ~< 9, proving tha t  (c) ~ (a). 

Proo/ o/ (d). To prove (d), i t  suffices to prove (by Maharam's  theorem) tha t  if 11 is an 

infinite cardinal number,  then 

I. C(G 2n) is algebraically isometric to a subalgebra of l~. 

I I .  C(G n~~ is algebraically isometric to a conjugation-closed subalgebra of L~[0,  1] n. 

For  d i m  In = 2  , and I I  together  with the fact  t ha t  card L~176 1]n~<n ~0 (of. the remark 

following the proof of Theorem 3.5) shows t h a t  dim L~[0, 1]n= 11a0. 

We shall consider in bo th  cases the  space D ra ther  t han  G, where D denotes the two- 

point  set in the discrete topology. This is legitimate, for given an infinite cardinal a, there 

exists a continuous map  ~ from D a onto G a, since the Cantor  funct ion m a y  be used to map  

D ~0 onto G, and ~0" a =  a; thus C(G a) is algebraically isometric to a subalgebra of C(Da). 

To see I, by  a result  of Hewi t t  ([13], of. also page 40 of [29]), there exists a dense subset 

A of D 2n of cardinali ty 11; the map / ~ / [ A  is then an  algebraic isometry of C(D 2~) into 

l (A)= l n .  (Thus I is a known result.) 

Proo/o/II. Fix F a set with card F=11 and let ;t =/~r, the product  measure on [0, 1] r. 

We shall prove tha t  there exists a family ~ of measureable subsets of [0, 1] r, such tha t  

card ~ = 11~~ and such tha t  if k and I are any  positive integers and F 1 .. . . .  F k and G 1 ..... Gz 

are any/c  + l distinct members  of ~, then ;t( N ~= 1G~ N N ~=1 ~ F~) > 0. I t  then follows tha t  in 

the  Boolean algebra of measureable subsets of [0, l] r modulo the sets of measure zero, the 

(I) To see that LI[0, 1] ~ and l 1 satisfy the conditions stated on X, use Maharam's theorem and a 
suitable projection p~ as defined before Lemma 3.4 for L~[0, 1]n; l 1 is obviously isometric to ll ~ ll and 
the dosed linear span in LI[0, 1] m of the characteristic functions of a sequence of disjoint sets of positive 
measure is isometric to l 1 and the range of a norm-one "averaging" projection�9 
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subsets  of ~ generate  a free Boolean algebra with 11a0 free generators,  which is consequent ly  

isomorphic to the  algebra of all clopen subsets of D n~' (page 39 of [29]). Thus the  closed 

linear span  of the  characterist ic  funt ions of the  elements  of ~ (in L~176 1jr), is algebraically 

isometric  to  C(Dn~O). 

We first choose 9: a family  of infinite countable  subsets of F, with card 9: = 11~0, such 

t h a t  if F 1 and F2 are any  two dist inct  member s  of 9:, then  F 1 I1 F$  is finite or empty .  (The 

existence of such a family  follows f rom the following known argument :  let F '  denote  the set 

all finite sequences of I~; for each infinite sequence ~ = (~a) of F, let F v denote  the  subset  of 

I ~' consisting of all finite sequences which s ta r t  7, i.e., F~ = ((ill . . . . .  ilk): k is a posit ive integer  

and  fl~=7~ for all 1 ~<i ~</c). Then  9 : '=  (FT: ~ is an infinite sequence of F )  has the  desired 

properties,  and since card I ~ =  ca rd  1 ~, the existence of 9: follows.) 

Next ,  let (rl, r2, ...) be a f ixed sequence of dist inct  real numbers  in the  open uni t  

interval ,  with 1--Lr r t > 0 ,  and for each F E 9:, let ~0~ be a funct ion mapp ing  F one-to-one 

onto {ra: n = l ,  2 . . . .  ). Finally,  for each FE9: ,  let MF be the  subset  of [0, lJ r equal  to  

1-L~r Y~, where for all a, Y~=[O, 1] if ~ F ,  and Y~=[0 ,  W~(~)] if :r We claim tha t  

= {MF: F E 9:) has the  desired properties.  Since card 9: = 11u~ it suffices to show t h a t  

given k and l, and E 1 . . . .  , -Fk; G1, ..., G l any  ]c + 1 dist inct  member s  of 9:, t h e n P  = A ~=lMa~ N 

N~=I~MFi has  posit ive measure.  

For  each aE Ul=lGt,  set x a = m i n  (~a~(~): 1 <~i<~l and ~EGi) .  Note  t h a t  there  are a t  

mos t  f ini tely m a n y  ~'s, say m of them,  belonging to more  t han  one set  G~, and  for each 

such ~, xa~>inf (r~: n = l ,  2 .... )>~-~=ir~. Hence  I-I(x~: ~E (J~=~G~)>~(I~=lra) ~+~. Now 

for each ] with 1 ~<j~<k, choose ~ belonging to the  infinite set F ~ (  U F~ U U~=IG~),  
l ~ t ~ k  

and set  a~ =Vr~(a~). Note  t h a t  if yE[0,  1] r is such t ha t  y~E(a~, 1], then  y~M~f  Finally,  

define Z~ for all ~ E F as follows: I f  ~ E (J ~ G~, set Z a = [0, xa]; if a = ~ for some j, set  Z~ = 

(a~, 1]; for all o ther  a, set Z~ = [0, l]. 

Then  I ~ r Z ~  is a subset  of P of measure  a t  least ~ m§ k (1-In=ira) I~1=1(1 -a~) ,  a posit ive 

number .  Thus (d) is proved.  

I n  the  nex t  result,  the t e rms  Cm and A ,  have  the  same meaning  as in 5.1 (c). 

:PROPOSITION 5.2. Let S be a compact Hausdor// space with dim C ( S ) = m ,  and suppose 

/or each infinite cardinal 1t ~ m there exists a/amily  9:, o] closed subsets o/S,  with the/ollowing 

properties: 

(i) card 9:n=2 m 

(ii) For each FE9:n, there exists a positive mFEM(S) with mF supported on 2' (i.e., 

mF( ~ F ) =  0) and LI(mF) isometric to LI[0, 1] n. 
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Suppose /urther that distinct members o/ Un~cr.:~. are disjoint. Then C(S)* is isometric 

to the space 
X = l l m o  ~ ~ Q(LI[0,1]")a.  

n e e  m a ~ A ~  

In particular, S = G r" satis/ies these properties, so C( Gm) * is isometric to X. 

Proo] o/5.2. We first remark tha t  since dim C(S)= m, card C(S)* < 2m; our hypotheses 

thus imply tha t  card S = 2 m. 

Next,  we observe that  if a is an infinite cardinal number  with LI[0, 1] a isomorphic to a 

subspace of C(S)*, then a~<m. Indeed, LI[0, 1] a contains a subspace H isomorphic to a 

Hilbert  space of dimension a (cf. Proposition 1.5 of [25]); by  Proposition 1.2 of [25], a 

reflexive subspace of C(S)* is automatically weak* closed, and thus H* is isomorphic to 

a quotient space of C(S). Hence a = dim H = dim H* ~< dim C(S) = m. 

Now for each s E S, let 88 be the measure assigning mass one to any  set containing s, and 

let $ = {mF: 2' E :~., n E C~} O {~8: s E S}. $ is thus a family of mutual ly  singular measures on 

S; moreover, we notice tha t  if/x is a regular Borel measure singular with respect to all the 

measures in $, then ju{s} = 0 for all s E S; the regularity of # then implies tha t  the measure 

space corresponding to/x is atomless. 

Thus by  Zorn's Lemma and Maharam's  theorem, there exists a maximal family 

$ '~  S of mutual ly singular positive members of M(S), where each m E S ' ~  $ is such tha t  

Ll(m) is isometric to LI[0, 1] a for a unique infinite cardinal a with a < m; i.e., for some aE Cm- 

Moreover, since C(S)* has cardinality 2 m, card S'=2 m. Now ~m,s.| is isometric to 

C(S)*. But  for each itECm, if we set $,={mES': Ll(m) is isometric to LI[O, 1In), then 

card Sn = 2m since card S. f3 $ = 2 m. Thus 

(~LI(m)=(~ OLl(~s))@)( ~. ~ | 
rueS" s~S  RECnl rueS11 

and the right side of this equality is isometric to X. 

To see tha t  G m possesses such a family of :~,'s, let F be a set of eardinality nt, and 

regard G r as a compact abelian group, with (x +y)~ = (x~ + y~) mod 1 for all x, y E G r and 

aEF.  Now since 2 r e : m ,  we may  choose F1 and F~ disjoint subsets of F with F = F I U  F~ 

and card F~ = m for i = 1, 2. For each x E G r ' ,  let H x = {g E Gr: gv = xv for all 7 E F2}. Then 

:~ = {Hx: x E G r'~) is a pairwise disjoint family of closed subsets of G r, each homeomorphie 

to G r, with card : ~ : 2  m. Since card Cm~<m~<2 m and 2m2m=2 m, we may  choose a family 

{J. :  nE Cm) such tha t  for all n, II' ECm, ~n ~ ~ and ~ .  f3 :~n' = O  if n # n ' .  Thus U.~cm:~. 

is a pairwise disjoint family of closed sets. 

Now for each cardinal n ECm, there exists a positive g EM(G m) with LX(g) isometric to 

LI[O, 1]". (Choose F . c F  with card F . = n ;  then let g be Haar  measure on {gEGr: g~ = 0  
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for all ~ F ~ } ,  a compact subgroup of Gr). Thus given FE ~.,  we may choose a positive 

mFEM(Gm), supported on F, with LI(mF) isometric to LI[0, 1] ~t. Since dim C(G m) =m,  the 

proof of Proposition 5.2 is now complete. 

Remark. The argument given at the beginning of the above proof shows that  if X is a 

Banach space with dim X ~< m such that  X* is isomorphic to Li(~t) for some (not necessarily 

finite) measure ~, then X* is isomorphic to a complemented subspace of (~m|  1]m)l . 

For by Maharam's theorem and the Kakutani  representation theorem (cf. [17] and [14] 

respectively), X* is isomorphic to (~m~s | where S is a family of measure spaces 

such that  for each m ~ S, L~(m) is either one-dimensional or isomorphic to L 1[0, 1] ~ for some 

infinite cardinal ~. Fixing m~ S, we have by the argument of 5.2 that  dim LS(m)~m. 

Thus Ll(m) is isomorphic to a complemented subspace of L~[0, 1] m. Hence X* is isomorphic 

to a complemented subspace of (~car~ sL ~ [0, 1]m)l . Since dim X ~< In, card X* ~< 2 m, whence 

card S ~< 2 m, and thus the result follows. 

LEMMA 5.3. Let ~ be an extremely disconnected compact Hausdor// space, S a compact 

Hausdor/] space, A a uni/ormly-closed conjugation-closed subalgebra o/ C( S), and q~: A ~ C ( ~  ) 

an algebraic homomorphism. Then there exists ~: C( S)-~ C(~ ) an algebraic homomorphism, with 

~[A =q~. 

Proo/. We first observe, using the theory of Boolean algebras, that  there exists an 

algebraic homomorphism ~ mapping la~ onto C(~) (we regard C(~)=  lr176 Indeed, the 

Boolean algebra A0 of clopen subsets of ~ may be regarded as a subalgebra of ~(~) ,  the 

Boolean algebra of all subsets of ~.  Let  i: A0-~A0 denote the identity homomorphism. 

Since A0 is complete, by a theorem of Sikorski (page 112 of [29]), there exists a homo- 

morphism i: ~(~)-~A0 such that  i ]A0=i .  Thus A0 is isomorphic to a quotient algebra of 

~)(~). Again from the theory of Boolean algebras, this means that  the Stone space of A0 

(which is homeomorphic to ~)  is homeomorphic to a subset of the Stone space of ~)(~) 

(which is homeomorphic to fl(~d), ~a denoting the set ~ in the discrete topology), from 

which the existence of ~ follows by the Tietze extension theorem. 

Now for each 7 E~, a-~ (r defines a multiplicative linear functional on A. Thus 

by the general theory of Banach algebras (of. part  I I  of [7]) there exists a multiplieative 

linear functional My on C(S) such that  Mv(a ) = (~(a))(7) for all a EA. 

Now define T: C(S)~l~(~) by (T/)(7) =Mv(/) for a l l /EC(S)  and 7 E~ ;  finally set 

= v  o T. Since T and T are each algebraic homomorphisms, so is ~, and of course 

~ [ A = ~ .  Q.E.D. 

Our next  result completes the proof of Theorem 5.1. 

16 - 702901 Acta  mathematica. 124. I m p r i m ~  le 28 Mai 1970. 
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TREO~EM 5.4. Suppose that m~>c, let S be a compact Hausdor// space such that C(G m) 

is algebraically isometric to a subalgebra o/C(S), and let ~ be a Stonian compact Hausdor/] 

space such that dim C(~) ~< 111. Then ~ is homeomorphic to a subset o] S. I/moreover dim C(S) = 

m and 11t ~. = 11t, then C(S)* is isometric to C(Gm) *. 

Before beginning the proof, we wish to make two observations. The first is tha t  if we 

replace the condition "I1t ~0 = nt" by the condition "11a0 ~< m for all 11 < m",  the conclusion 

tha t  C(S)* is isometric to C(Gm) * still holds. (See Remark  6 following the proof of 5.4; 

note also tha t  by Proposition 5.2, C(Gm) * is isometric to the space given in (c) of 5.1.) 

If  one assumes the generalized continuum hypothesis, then all cardinals m satisfy the latter 

condition. 

The second observation is that  5.4 together with (d) implies (c) and (e) of 5.1, thus 

completing its proof. For letting B and ~ be as in 5.1, and identifying the Banach algebra 

B with a C(S), we have by  (d) and 5.4 tha t  ~ is homeomorphie to a subset of S, whence 

C(~) is algebraically isometric to a quotient algebra of C(S), i.e., of B. Moreover, if B =L~176 

or I~(A) where/~, A, and m are as in 5.1, then by  our proof of (d), m ~0 = m ,  thus by  the 

final s tatement of 5.4, (c) holds. 

Proo/ o/ 5.4. Let us first show tha t  ~ is homeomorphic to a subset of S (assuming the 

hypotheses of the first sentence of 5.4). Since dim C(~) ~< m, ~ is homeomorphic to a subset 

of Gm. (Choose F a dense subset of the set of members of C(~) with values in [0, �89 with 

card F = dim C(~). Then ~: ~-+  G r given by (v(x)) 7 =~,(x) for all x E ~ and 7 E F, is a homeo- 

morphism of ~ with ~(~)). Thus there exists an algebraic homomorphism mapping C(G m) 

onto C(~); whence by our assumptions and Lemma 5.3, there exists an algebraic homo- 

morphism mapping C(S) onto C(~). Thus ~ is homeomorphic to a subset of S, by the 

theory of commutat ive B* algebras. 

Now assume that  m ~0 = m. By the proof of 5.2, we may  choose a family {:~: 1l ECm} 
P 111 such tha t  Un~cm~ is a pairwise disjoint family of subsets of G m, with card :~n=2 and 

each member  of ~ homeomorphic to G m, for all 11 ECm. Now our assumptions imply tha t  

there exists a continuous function ~v mapping S onto Gm. For each 11 ECm, let :~n = {YJ-I(F): 

F E ~ } .  We shall show tha t  {~,: 11E Cm} satisfies the hypotheses of 5.2 for the space S, 

thus completing the proof by Proposition 5.2. In  turn, it is immediate tha t  the :~n's satisfy 

all the desired properties except possibly (if) of 5.2. 

Fix 1t ECm and F E ~n; choose F ' E  :~  with F = ~ - - 1  ( F ' ) .  Let ~n be the Stonian space 

such tha t  C(~n) may  be identified with L~[0, 1] n. Since F' is homeomorphic to G m, C(G n~) 

is isomorphic to a subalgebra of C(F), and dim C(~,)  = n a0 < m. Thus by  the first par t  of 

our proof, ~n is homeomorphic to a subset of F. Now simply choose m~EM(S) with m~ 
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supported on a homeomorphic image of ~n in F ,  with LI(mF) isometric to LI[0, 1] ~'. Thus the 

:~n's satisfy (ii) of 5.2, so the proof is complete. Q.E.D. 

Remark 1. Rover t  Solovay has recently proved the following profound generalization 

of our proof of (d) of Theorem 5.1: Let ~ be an in/inite complete Boolean algebra satis/ying 

the countable chain condition, and let m equal the cardinality o/the set o/elements o~ B. Then 

there exists a/tee Boolean subalgebra o / B  with m/ree generators. He also proved tha t  if 

is any  infinite complete Boolean algebra, then (card B)~~ = card B. I t  thus follows t h a t  

if S is a Stonian space satisfying the C.C.C., then if m = d i m  C(S), C(D m) and hence C(G m) 

are algebraically isometric to a subalgebra of C(S), and hence sett ing B = C(S), all of t he  

properties (a) th rough  (f) of Theorem 5.1 hold for B, by  our proof of 5.1. 

I n  particular, we have tha t  5.1 holds with the word homogeneous omit ted  from its 

s tatement ,  since the measure algebra of a finite measure is a complete Boolean algebra 

satisfying the C.C.C. We shall indicate the a rgument  for this special consequence of  

Solovay 's  result. Let  ( Y, Z, ~u) be a finite measure space with dim Li(#) : 11. We wish to 

show tha t  C(G n~~ is algebraically isometric to a subalgebra of L~(~u). If  11 = ~0, then  l ~176 

is algebraically isometric to a subalgebra of L~(ju), and so this case follows from (d). More- 

over, if there exists a measurable set E with 51(~ ] E) isometric to LI[0, 1] n, we are again 

done by  (d). I f  none of  these possibilities occur, we m a y  choose by  Maharam's  theorem 

sequence of pairwise disjoint measureable sets El,  E2, ... and infinite cardinals 111 <n2 < ... 

with LI(# I E~) isometric to LI[0, 1] ni for all i and 11 = l imi_~ n~. 

We now produce a family ~ of measureable subsets satisfying the same conditions as 

in our proof of I I  of (d), to  complete the argument .  Call such a family Boolean independent;  

we first observe tha t  there exists a Boolean independent  family of cardinali ty at  least 1t. 

Indeed,  by  our proof of (d), we m a y  choose for each i a Boolean independent  family ~ 

of measureable subsets of Ei  with card ~ i = n ~  o. Now choose by  Zorn's  L e m m a  a subset 

:~ of 1-I~-i ~ maximal  with respect to the proper ty  tha t  if a and b are distinct elements of 

:~, then a~ = b i for at  most  finitely m a n y  i's. Then card :~ >~ 11; for each a E :~, set M a = :r �9 (J t f la i ,  

then {Ma: a E :~} is a Boolean independent  family of cardinali ty at  least 11. 

Finally, we m a y  choose pairwise disjoint sets F 1, F 2 . . . .  such tha t  for each i, LI(F ] Ft) 

is isometric to Li(/~). We have just  demonst ra ted  tha t  for each i we m a y  choose ~ ;  a Boolean 

independent  family of measureable subsets of F~ with card ~ ;  = 11. Now if F is a set with 

card F = n, we know there exists a family of countable infinite subsets of F of cardinali ty 1t a0 

any  distinct pair of which intersect in at  most  a finite set. We m a y  then choose :~ '~ 1-I~l ~ 

with card :~' = 1l ~o such tha t  if a and b are distinct members  of :~', a, = b i for at  most  finitely 

m a n y  i. Then setting ~ = { [J~_lat: aE :~'}, ~ is a Boolean independent  family of measure- 

able subsets of Y of cardinali ty 11~0. 
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Remark 2. Letting B denote one of the Banach algebras L~(~u) or l~(A) where p is a 

finite measure and A is an infinite set, and letting S denote the maximal ideal space of B, 

then it follows from (e) and the above remark tha t  if ~ is a Stonian space with dim C(~) ~< 

dim B, then ~ is homeomorphie to a subset of S. Actually, if B = l~~ this is a known 

result. For it is known that  if 11 = card A, then ~(A), the Boolean algebra of all subsets of A, 

contains 2 n independent elements (cf. page 40 of [29]). Consequently if B is a complete 

Boolean algebra with card B ~< 2", then B is isomorphic to a quotient Boolean algebra of ~)(A), 

which means that  the Stone space ~ of B is homeomorphic to a subset of fl(A), the Stone 

space of ~)(A). (Use w 14 and w 33 of [29]). Thus it is known, but worth stating, tha t  i] 

is a Stonian space with dim C(~) = c, then ~ and f i n  are each homeomorphic to a subset o/ the 

other (cf. [18] for a special case of this.) 

Remark~ 3. I t  follows from the proof of 5.1 tha t  if S is any  compact Hausdorff space with 

dim C(S) = r and f in  homeomorphic to a subset of S, then C(S)* is isometric to (/~)*. 

Remark d. Given a Banach space X,  set X ( I * ) = X  * and inductively define the nth 

conjugate space of X for n > 1 by  X (n*~ = (X(('-I)*)) *. Now let B be as in the s ta tement  of 

5.1, with m = dim B. Define 11tl = m and mn+l = 2m" for all positive integers n. Then Theorem 

5.1 shows that  for all positive n, 

B ((~n-1)*) is isomorphic to ~ OLI[0 ,  1] m2.-1 
m 2n 

and B (2n*) is isomorphic to l ~ .  

We remark also that  if B 1 and B2 are as in 5.1, then if dim B1 ~:dim B2, B~ is not 

isomorphic to B~. Indeed one can prove tha t  if m and 11 are infinite cardinals with m < 11, 

then (~m@Ll[0,  1]m)i contains no subspace isomorphic to a Hilbert space of dimension 11, 

while (~2n| 1]')1 contains such a subspace. 

Remark 5. (a) of 5.1 (without the distance coefficient assertion) may  be generalized 

as follows: let X be a Banach space such that X* is isomorphic to/1(~)/or some not necessarily 

[inite measure ~, with lira isomorphic to a subspace o[ X and dim X = m. Then X* is isomorphic 

to (~2m | L 1 [0, 1]m)i. The proof is obtained by showing tha t  each of X* and ( ~ m  | L l [0,1 ] m)l 

is isomorphic to a complemented subspace of the other from which this follows (by the 

argument  of Proposition (*) of [20], since each of these spaces is isomorphic to its own 

square by Maharam's  theorem). We have already remarked following Proposition 5.2 tha t  

X* is isomorphic to a complemented subspace of (~2m| 1]r")l; in turn by  Proposition 

3.3 of [19], we have tha t  C({0, 1}m) * is isomorphic to a subspace of X*, and we know tha t  
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C((0, 1)m) * is isomorphic to (~2m| 1]m)i by our Proposition 5.2 above. The remainder 

of the proof follows from the Kakutani  representation theorem and Maharam's  theorem. 

Remark 6. Suppose S and m satisfy the assumptions of the first sentence of 5.4, and 

suppose tha t  dim C(S)= nl, with rt ~. ~ m for all n < m. Then C(S)* is isometric to C(Gm) *. 

To see this we construct families :~  and their associated measures as in the proof of 5.4, 

for all 11 < 11l. We also define :~m as in that  proof. Then fixing F E ~m there exists an atom-free 

EM(F) so that  LI[0, 1] m is isometric to a subspace of LI(Q). (This follows from Proposition 

1.4 of [25] and the fact tha t  by  definition, G m is a continuous image of F.) Now dimLX(~) ~< m 

by  Propositions 1.2 and 1.5 of [25]. Moreover, by  Maharam's  theorem, there exists a count- 

able decomposition of F into Borel subsets $1, S 2 . . . .  and infinite cardinals nl, 113, ... such 

that  L 1 (~ I S~) is isometric to L 1 [0, 1] n~. Thus n~ ~< m for all i; since L 1 [0,1] m is isometric to a 

subspace of LI(~), we may  choose an i such tha t  11i = m, by a recent result of Lindenstrauss. 

We then set mF=~IS~. Thus ( :~:  n ECm} fulfills the conditions of Proposition 5.2. 

Through the end of the next  remark, X denotes the space (~c |  0, 1])1 | 11 c. Theo- 

rem 5.1 shows tha t  C(G~o) * is isometric to X which is in turn isomorphic to ~c| 1] 

by the proof of (c) ~(a) of 5.1. However, an argument simpler than that  for 5.1 shows tha t  

for every perfect compact metric space S, C(S)* is isometric to X. In  fact, we have 

PROPOSITIOn 5.5. Let K be a weakly compact subset o /a  Banach space, such that 

card K = c, and such that K contains an infinite per/ect subset. Then C(K)* is isometric to X. 

Before indicating the proof of this, we note tha t  there are non-metrizable compact 

sets K satisfying the hypotheses of Proposition 5.5; for example, let K be the unit cell of 

a Hilbert  space H of dimension c, in its weak topology. We then obtain tha t  there exists a 

non-separable Banaeh space, C(K), such tha t  C(K)* is isometric to C[0, 1]*, the dual of the 

separable Banach space C[0, 1]. Professor Pelczynski has shown us the following simpler 

example of this phenomenon: let ~ be the one-point compactification of an uncountable set 

of cardinality the continuum, and let K= [0, 1] (J ~ .  A simple example of a perfect K 

may  be obtained by  taking the one-point eompactification of the locally compact space 

[.]{[0, 1] • {a}: ~E~}  (in which [0, 1] • {a} is declared open for all a). (These are both 

special cases of 5.5; however, it is easily seen directly that  they have the desired properties.) 

Proo/ o/ Proposition 5.5. We first observe tha t  if / t  is a positive member  of C(K)*, then 

LI(Ft) is separable (and consequently isometric to a subspaee of LI[0, 1]). Indeed, by  a 

result of Grothendieck (cf. Theorem 4.3 of [16]), ft must  have metrizable support, call it L. 

But  then C(L) is separable, and injects densely into LI(#), from which this follows. I t  also 

shows tha t  it is a weak* limit of a sequence of finitely supported measures (i.e., of linear 
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combinations of point masses). Thus the cardinality of C(K)* is less than or equal to the 

cardinality of all sequences of finitely supported measures, which equals c a0 = c. 

Since K contains an infinite perfect subset, there exists a closed subset K 1 of K and a 

continuous map ~ of K 1 onto D ~~ (cf. Proposition 1.3 of [25]; D ~~ is, of course, homeomorphic 

to the Cantor set). Regarding D = {0, 1 } as a group under addition modulo 2, the argument 

at the end of Proposition 5.2 shows tha t  there exists a family :~ of pairwise disjoint closed 

subsets of D ~0 each homeomorphic to D ~~ with card :~ = 2 a~ = c. Letting ), be the product 

measure on D ~., we may  choose for each F E :~, a positive atomless (i.e., continuous) 

measure m~EM(cf-a(F)) with Ll(~t) isometric to a subspaee of Ll(m~) (cf. Proposition 1.4 of 

[25]). Since/ i (mF) is separable, we must  have that  LI(mF) is isometric to LI[0, 1]. The re- 

mainder of the argument,  using Zorn's Lemma,  is completed as in the proof of Proposition 

5.2. (Indeed, Proposition 5.2 remains valid if one replaces the hypothesis "dim C(S)= m" 

in its s tatement  by the hypotheses "dim C(S)* = 2 m and such that  if/~ is a positive member  

of C(S)*, then dimLa(/~)~m".)  Q.E.D. 

Remark. I t  is not difficult to see that  if S is a compact Hausdorff space, then C(S)* 

is isometric to X if and only if C(S)* is isomorphic to X if and only if the following three 

conditions are all satisfied: 

1. card C(S)* = C. 

2. C(S) contains an infinite-dimensional reflexive subspace. 

3. Every  reflexive subspace of C(S)* is separable. 

An example of a space C(S) satisfying 1-3 and non-isomorphic to any  of the spaces 

C(K) of Proposition 5.5 is obtained by  letting C(S) be the Banach algebra, under supremum 

norm, of all bounded functions on the closed unit interval which are right continuous and 

whose limits from the left exist at  every point. (This space was introduced by Corson in 

[3].) S denotes the maximal ideal space of this Banaeh algebra; C[0, 1] may  be considered 

as a snbspace of C(S), from which 2 follows. C(S)[C[O, 1] is isometric to c0(F ), where F is a 

set with card F = c, from which 1 follows. Moreover, since C[0, 1]" is thus isometric to/I(F) ,  

every reflexive subspace of C(S)* must  have a finite-codimensional subspace isomorphic 

to a subspace of C[0, 1]*, by  Corollary 3 of [26]. Thus 3 holds. Finally, S is separable since 

the rational numbers of the unit interval imbed densely in it. Thus C(S) is isometric to a 

subspace of 1% and C(S) is, of course, non-separable. Hence C(S) is not weakly-compactly- 

generated, and thus is not isomorphic to C(K) for any  K homeomorphie to a weakly compact 

subset of a Banaeh space (cf. [16]). 

I t  follows from Theorem 5.1 tha t  if Y is an injeetive Banach space with dim Y =  c, 

then Y is isomorphic to a quotient space of 1% (dim Y < c is impossible, for it is shown in 
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[23] that  any injective Banach space must  contain a subspace isomorphic to I%) Our final 

result shows tha t  Y* is then isomorphic to (l~) *. 

THEOREM 5.6. Let the Banach space Y be isomorphic to a quotient space o / l  ~176 and a 

complemented 8ubspace o /C(S ) /o r  some compact Hausdor// space S. Then Y* is isomorphic 

to (l~)*. 

Proo/. Set E = (~2c (~)L l [0 ,  1]c)1; by Theorem 5.1, we know tha t  E* is isomorphic to 

(l~~ *. We shall show tha t  each of the Banach spaces Y* and E are isomorphic to a comple- 

mented subspace of the other. Since E is isomorphic to (E |  E |  ...)1, it follows by  Proposi- 

tion 1.4 tha t  E and Y* are isomorphic. 

Now our assumptions imply tha t  there exists a compact t tausdorff  space S 1 such tha t  

dim C(S1) <~ r and such that  Y is isomorphic to a complemented subspace of C(S1). Indeed, 

dim Y ~< r since dim l ~ = r and Y is a continuous linear image of I% Now letting Z be a 

complemented subspace of C(S) isomorphic to Y, let Z 1 be the closed conjugation-closed 

subalgebra of C(S) generated by  Z. Then dim Z 1 ~< r Y is isomorphic to a complemented 

subspace of Z1, and Z 1 is isometric to C(S1) where S 1 is the maximal ideal space of Z r 

Thus Y* is isomorphic to a complemented subspace of C(S1)* , which is in turn iso- 

morphic to a complemented subspace of E by  the remark following the proof of Proposi- 

tion 5.2. 

Now Y is not reflexive since we assume always tha t  Y is infinite dimensional, and it is 

a theorem of Grothendieck [10] tha t  no infinite-dimensional complemented subspace of 

a C(S) is reflexive. But  then by  Theorem 2 of [23], Y contains a subspace isomorphic to 

1% Since 1 ~ is injective, i t  follows tha t  (l~~ * and hence E is isomorphic to a complemented 

subspace of Y*. Q.E.D. 

Remark. I t  follows easily from the fact that  11 c is isomorphic to a subspace of 1 ~176 tha t  

the following two statements are equivalent for any  Banach space Y: 

1. dim Y ~< c and Y is isomorphic to a quotient space of some injective Banach space. 

2. Y is isomorphic to a quotient space of 1 ~176 

6. Open p r o b l e m s  

We summarize here the conjectures and problems stated above, and mention some 

additional questions also. Throughout, " X "  denotes a Banach space (of infinite dimension). 
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1. CONJECTURS. Let X satisfy the Dun/ord-Pettis property, and suppose that X is 

isomorphic to a subspace o /a  weakly compactly generated conjugate Banach space. Then X is 

separable. 

(Theorem 2.1 implies that  if X satisfies these hypotheses and is WCG, then X is 

separable.) 

2. CONJECTURE. Let X be a complemented subspace o/ LI[0, 1] and suppose that X is 

isomorphic to a conjugate Banach space (or less restrictively, to a subspace o /a  WCG conjugate 

Banach space). Then X is isomorphic to l 1. (Of. Corollary 2.2.) 

3. CONJECTURE. Let X be a complemented subspace o/ L1(2) /or some measure 2, 

and suppose that X is isomorphic to a conjugate Banach space. Then X contains a subspace 

isomorphic to P{F), where F is a set with card F =d im X. 

As we remarked at the end of w 2, this conjecture would have as a consequence that  

every injective double conjugate Banach space is isomorphic to I~(F) for some set P. 

4. Suppose that  X is injective, isomorphic to a conjugate Banach space, and is such 

that  every weakly compact subset of X is separable. Does there exist a finite measure # 

such that  X is isomorphic to L~(#)? 

Theorem 4.9 states our present knowledge concerning X's satisfying these three pro- 

perties; we mention also that  if/~ is a finite measure, then by Proposition 4.7 and known 

results, L~(/t) is such an X. Finally, we note that  the answer to this question is affirmative 

if and only if the answer to the following question is affirmative: 

4'. Let /x  be a finite measure, and let A be a closed subspace of Ll(/z) with dim A = 

dim Ll(/x). Suppose further that  A* is injective. Is LI(/~) isomorphic to a quotient space of A? 

(Theorem 3.7 shows that  the answer to 4' is affirmative if A* is isomorphic to L~(/x). 

Theorem 4.9 shows that  if A satisfies these hypotheses, then A* is isomorphic to a subspace 

of L~(#). Thus if the answer to 4' were yes, L~(ft) would be isomorphic to a subspace of 

A*, and hence A* would be isomorphic to L~(#) by Proposition 1.4.) 

5. Suppose that  X is injective and X* is weak* separable. Is X isomorphic to l~? 

(If X satisfies the additional hypothesis that  X is isomorphic to a conjugate Banach 

space, then the answer is affirmative; ef. the second remark following Theorem 4.8 above.) 

Of course, the answer is affirmative if these hypotheses imply that  X is isomorphic to a 

subspace of 1% However, we don't  even know if these hypotheses imply that  X is isomorphic 

to a subspace of L~(/~) for some finite measure/~. (The latter implication holds if X is 

isomorphic to C(S) for some compact Hausdorff space S, by Theorem 4.5 (b).) 

6. For each infinite cardinal number In, let Lm= (~m|  1]m)- Let  L o denote the 
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one-dimensional space of scalars. We conjecture tha t  P-sums of the spaces Lm (over m = 0  

or m >~0) exhaust the isomorphism types of Ll-spaces isomorphic to conjugate spaces. 

CONJECTURE. Let # be a measure. I /L i ( l x  ) is isomorphic to a conjugate Banach space, 

then there exists an infinite set I ~ and a /unc t ion  q~ /rom F to a set o/ cardinal numbers with 

q~(7) = 0 or q~(7) >~ ~o /or all ~ E F, such that LI(#) is isomorphic to the space 

X = ( Y | L~(v))r 

Theorem 5.1 shows that  conversely any  space X of the above form is isomorphic to 

C(S)* for some compact Hausdorff space S. Indeed, by  5.I, X is isomorphic to 

Y = ( ~ | (C(a~v)))*)~, 

where G O equals the one-point space. There exists a locally compact Hausdorff space S 1 

possessing a family {Uv: ?EF}  of pairwise disjoint compact and open subsets with their 

union dense in $1, and with U v homeomorphic to G ~(v~ for all y EF. Then Y is isometric to 

C(S)*, where S is the one-point compactification of S 1. 

7. Let  X be an injective Banach space, and let r e = d i m  X. 

(a) Is  m a ' = m ?  

(b) Let  F be a set with card F = m. Is  ll(P) isomorphic to a subspace of X? 

(c) Is  X* isomorphic to ( ~ m |  1]m)17 

I t  follows from the known characterization of ~)1 spaces and an unpublished result of 

Solovay tha t  the answer to 7 (a) is affirmative if X is isomorphic to a 01 space. I f  X is a 

given injective space such tha t  X* is isomorphic to L1(2) for some measure 2, then if the 

answer to 7 (b) is affirmative for X, so is the answer to 7 (c) (of. the fifth remark following 

Theorem 5.4). The results of w 5 and of [23] show that  the answers to 7 (b) and 7(c) are af- 

f irmative if m = c, and, of course, 5.1 and the first remark following 5.4 give special cases 

of 01 spaces X for which the answers are affirmative. 
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