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BACKGROUND

Lyapunov Functions:Useful for building stabilizing feedbacks when

given by explicit expressions. For example, Lyapunov functions for

ẋ = f(x)

yield input-to-state stability (ISS) stabilizersK(x) for

ẋ(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]

under standard assumptions. ISS was introduced bySontag (1989).
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ẋ = f(x)

yield input-to-state stability (ISS) stabilizersK(x) for

ẋ(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]

under standard assumptions. ISS was introduced bySontag (1989).

Literature: ISS was extended to delay systems byTeel (1998)using ISS

Lyapunov-Razumikhin functions (LRFs).Pepe-Jiang (2005)used an

alternative Krassovski approach.Jankovic (2001)constructed LRFs.

Fan-Arcak (2006)used an ISS small gain approach to feedback delays.
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(A3) |∂us/∂x(x, t)| ≤ L̄.
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β ∈ KL andγ ∈ K∞ such that

|x(t; to, xo, d, τ)| ≤ β(|xo|[to−τ,to], t− to) + γ(|d|[to,t])

for all to ≥ 0, τ ∈ (0, τ̄ ], xo ∈ Cn([to − τ, to]), andd ∈ L∞m ([0,∞)).

ISS-LKF: A continuousU : Cn(R)× [0,∞) → [0,∞) is called anISS

Lyapunov-Krasovskii functional (ISS-LKF)for (Σd) provided∀τ ∈ (0, τ̄ ]
andx(t) := x(t; to, xo, d, τ), the functiont 7→ U(xt, t) is locally AC &
∃αi ∈ K∞ andκ ∈ N s.t.∀x(t), φ ∈ Cn([−κτ̄ , 0]), andt ≥ to + κτ̄ ,

(i) α1(|φ(0)|) ≤ U(φ, t) ≤ α2(|φ|[−κτ̄,0]) and

(ii) DtU(xt, t) ≤ −α3(U(xt, t)) + α4(|d|[to,t]) a.e..
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THEOREM 1

Theorem 1:Under the above assumptions, the feedback delayed system

ẋ(t) = f(x(t), t) + g(x(t), t)[us(x(t− τ), t) + d(t)] (Σd)

with any constant feedback delay satisfying

0 < τ ≤ τ̄ :=
1

4K1

√
3K2 + 3K4 + 1

admits the ISS-LKF

U(xt, t) = V (x(t), t) +
1
4τ̄

∫ t

t−2τ̄

(∫ t

r

σ2(|x(l)|)dl

)
dr

and therefore is ISS.
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ẋ(t) = f(x(t), t) + g(x(t), t)[us(x(t− τ), t) + d(t)] (Σd)

with any constant feedback delay satisfying

0 < τ ≤ τ̄ :=
1

4K1

√
3K2 + 3K4 + 1

admits the ISS-LKF

U(xt, t) = V (x(t), t) +
1
4τ̄

∫ t

t−2τ̄

(∫ t

r

σ2(|x(l)|)dl

)
dr

and therefore is ISS.

Remark: WhenVt ≡ 0 and the driftf ≡ 0, we can make the delay bound
τ̄ arbitrarily large by takingK2 = 0 and scalingus:

σ → √
ησ, us → ηus, K1 → K1/

√
η, K4 → η3K4, η ↓ 0.



OUTLINE

• Background and Motivation

• Definitions and Assumptions

• Main Theorem

• Extensions to Cascades

• Identification Theory Example

• Two Other Examples

• Conclusions and Summary



EXTENSION to CASCADES

Cascades:Under the above assumptions on the subsystem

ẋ(t) = f(x(t)) + g(x(t))z(t)

with fictitious inputz and time-invariant functions, we designu to render




ẋ(t) = f(x(t)) + g(x(t))z(t),

ż(t) = u(x(t− 2τ), x(t− τ), z(t− τ)) + d(t)
(Σcas)

input-to-state stable.
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ż(t) = u(x(t− 2τ), x(t− τ), z(t− τ)) + d(t)
(Σcas)

input-to-state stable.

ISS Estimate:We use the generalization

|(x, z)(t)| ≤ β(|(x, z)|[to−τ,to], t−to) + γ(|d|[to,t])

of our earlier ISS estimate. Initial functions constant on(−∞, to − τ ].



EXTENSION to CASCADES (cont’d)

Theorem 2:Set

τ̄c = min{1/
√

8, τ̄} and Z(t) = z(t)− us(x(t− τ)).

Then for each constantτ ∈ (0, τ̄c], the dynamics (Σcas) is ISS when

u(x(t− 2τ), x(t− τ), z(t− τ)) :=

−Z(t− τ) +
∂us

∂x
(x(t−τ)) [f(x(t−τ))+g(x(t−τ))z(t−τ)] .



EXTENSION to CASCADES (cont’d)

Theorem 2:Set

τ̄c = min{1/
√

8, τ̄} and Z(t) = z(t)− us(x(t− τ)).

Then for each constantτ ∈ (0, τ̄c], the dynamics (Σcas) is ISS when

u(x(t− 2τ), x(t− τ), z(t− τ)) :=

−Z(t− τ) +
∂us

∂x
(x(t−τ)) [f(x(t−τ))+g(x(t−τ))z(t−τ)] .

Strategy of Proof:First build an ISS-LKF for theq = (x,Z) dynamics

q̇(t) = F (q(t)) + G(q(t))[Us(q(t− τ)) + D(t)] with

F (q) =

(
f(x) + g(x)Z

0

)
, G(q) =

(
g(x) 0

0 −1

)
,

the feedbackUs(q)=(us(x), Z)T andD(t)=(0,−d(t))T .
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along all trajectories oḟx(t) = −m(t)mT (t)x(t) when

P (t) = κI +
∫ t

t−c̃

∫ t

s
m(l)mT (l) dl ds

andκ = 1 + c̃
2 + 1

4α′ c̃
4. Moreover,|P (t)| ≤ κ + c̃2 everywhere.

Corollary: Let τ ∈ (0, τ̄ ]. Then(Σid) has this ISS-LKF and so is ISS:

U(xt, t) = xT (t)P (t)x(t) + α′
16τ̄

∫ t

t−2τ

(∫ t

r
|x(l)|2dl

)
dr.
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Example 1: ẋ = ux2/(1 + x2) with x ∈ R satisfies Assumption H with

V (x) = 1
2x2, σ(r) = r2/
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Example 1: ẋ = ux2/(1 + x2) with x ∈ R satisfies Assumption H with
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Example 2: ẋ = u(1 + x2)1/2 onR satisfies Assumption H with

us(x) = − ∫ x

0
1√

1+l2
dl, σ(r) = −us(r), V (x) = 1

2u2
s(x),

K1 = K4 = 1, and K2 = 0. Hence,

ẋ(t) =
√

1 + x2(t)
[
− ∫ x(t−τ)

0
1√

1+l2
dl + d(t)

]

is ISS when0 < τ ≤ 1/8 and we can build corresponding ISS-LKFs.
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