On Input-to-State Stability for Nonlinear Systems with Delayed Feedbacks

MICHAEL MALISOFF

Department of Mathematics Louisiana State University

Joint with Frédéric Mazenc (Projet MERE INRIA-INRA) and Zongli Lin (University of Virginia)

Lyapunov-Based Stability of Nonlinear Systems Session 2007 American Control Conference – July 11-13, 2007 Marriott Marquis Hotel at Times Square, New York City

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

Lyapunov Functions: Useful for building stabilizing feedbacks when given by explicit expressions. For example, Lyapunov functions for

 $\dot{x} = f(x)$

yield input-to-state stability (ISS) stabilizers K(x) for

 $\dot{x}(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]$

under standard assumptions. ISS was introduced by Sontag (1989).

Lyapunov Functions: Useful for building stabilizing feedbacks when given by explicit expressions. For example, Lyapunov functions for

 $\dot{x} = f(x)$

yield input-to-state stability (ISS) stabilizers K(x) for

 $\dot{x}(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]$

under standard assumptions. ISS was introduced by Sontag (1989).

Literature: ISS was extended to delay systems by Teel (1998) using ISS Lyapunov-Razumikhin functions (LRFs).

Lyapunov Functions: Useful for building stabilizing feedbacks when given by explicit expressions. For example, Lyapunov functions for

 $\dot{x} = f(x)$

yield input-to-state stability (ISS) stabilizers K(x) for

 $\dot{x}(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]$

under standard assumptions. ISS was introduced by Sontag (1989).

Literature: ISS was extended to delay systems by Teel (1998) using ISS Lyapunov-Razumikhin functions (LRFs). Pepe-Jiang (2005) used an alternative Krassovski approach.

Lyapunov Functions: Useful for building stabilizing feedbacks when given by explicit expressions. For example, Lyapunov functions for

 $\dot{x} = f(x)$

yield input-to-state stability (ISS) stabilizers K(x) for

 $\dot{x}(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]$

under standard assumptions. ISS was introduced by Sontag (1989).

Literature: ISS was extended to delay systems by Teel (1998) using ISS Lyapunov-Razumikhin functions (LRFs). Pepe-Jiang (2005) used an alternative Krassovski approach. Jankovic (2001) constructed LRFs.

Lyapunov Functions: Useful for building stabilizing feedbacks when given by explicit expressions. For example, Lyapunov functions for

 $\dot{x} = f(x)$

yield input-to-state stability (ISS) stabilizers K(x) for

 $\dot{x}(t) = f(x(t)) + g(x(t))[K(x(t)) + d(t)]$

under standard assumptions. ISS was introduced by Sontag (1989).

Literature: ISS was extended to delay systems by Teel (1998) using ISS Lyapunov-Razumikhin functions (LRFs). Pepe-Jiang (2005) used an alternative Krassovski approach. Jankovic (2001) constructed LRFs. Fan-Arcak (2006) used an ISS small gain approach to feedback delays.

Our Approach: Use a given Lyapunov function V for a UGAS system

$$\dot{x} = f(x,t) + g(x,t)u_s(x,t) \qquad (\Sigma_{\rm nd})$$

to explicitly construct an ISS Lyapunov-Krassovski functional for

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(\xi_\tau(t), t) + d(t)], \qquad (\Sigma_d)$$

where $\xi_{\tau}(t) = (x_1(t - \tau_1), x_2(t - \tau_2), \cdots, x_n(t - \tau_n))$ and $0 \le \tau_i \le \bar{\tau}$.

Our Approach: Use a given Lyapunov function V for a UGAS system

$$\dot{x} = f(x,t) + g(x,t)u_s(x,t) \tag{\Sigma_{nd}}$$

to explicitly construct an ISS Lyapunov-Krassovski functional for

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(\xi_\tau(t), t) + d(t)], \qquad (\Sigma_d)$$

where
$$\xi_{\tau}(t) = (x_1(t - \tau_1), x_2(t - \tau_2), \cdots, x_n(t - \tau_n))$$
 and $0 \le \tau_i \le \bar{\tau}$.

Motivation: General delayed systems of this kind are useful in networks; see e.g. Nesic-Teel (2004).

Our Approach: Use a given Lyapunov function V for a UGAS system

$$\dot{x} = f(x,t) + g(x,t)u_s(x,t) \qquad (\Sigma_{\rm nd})$$

to explicitly construct an ISS Lyapunov-Krassovski functional for

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(\xi_\tau(t), t) + d(t)], \qquad (\Sigma_d)$$

where
$$\xi_{\tau}(t) = (x_1(t - \tau_1), x_2(t - \tau_2), \cdots, x_n(t - \tau_n))$$
 and $0 \le \tau_i \le \bar{\tau}$.

Motivation: General delayed systems of this kind are useful in networks; see e.g. Nesic-Teel (2004). Here we assume $\tau := \tau_1 = \tau_2 = \ldots = \tau_n$ for simplicity, but see the journal version for the general case.

Our Approach: Use a given Lyapunov function V for a UGAS system

$$\dot{x} = f(x,t) + g(x,t)u_s(x,t) \tag{\Sigma_{nd}}$$

to explicitly construct an ISS Lyapunov-Krassovski functional for

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(\xi_\tau(t), t) + d(t)], \qquad (\Sigma_d)$$

where
$$\xi_{\tau}(t) = (x_1(t - \tau_1), x_2(t - \tau_2), \cdots, x_n(t - \tau_n))$$
 and $0 \le \tau_i \le \bar{\tau}$.

Motivation: General delayed systems of this kind are useful in networks; see e.g. Nesic-Teel (2004). Here we assume $\tau := \tau_1 = \tau_2 = \ldots = \tau_n$ for simplicity, but see the journal version for the general case. Explicit Lyapunov function(al)s yield explicit gains, β and γ in ISS estimate,

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

ASSUMPTIONS and DEFINITIONS

Assumption A: f, g, and u_s are locally Lipschitz. \exists constant $\bar{L} > 0$ s.t. $\forall x \in \mathbb{R}^n, t \ge 0$, (A1) $|f(x,t)| \le \bar{L}|x|$, (A2) $|g(x,t)| \le \bar{L}(|x|+1)$, and (A3) $|\partial u_s / \partial x(x,t)| \le \bar{L}$.

ASSUMPTIONS and DEFINITIONS

Assumption A: f, g, and u_s are locally Lipschitz. \exists constant $\bar{L} > 0$ s.t. $\forall x \in \mathbb{R}^n, t \ge 0$, (A1) $|f(x,t)| \le \bar{L}|x|$, (A2) $|g(x,t)| \le \bar{L}(|x|+1)$, and (A3) $|\partial u_s / \partial x(x,t)| \le \bar{L}$.

Consequences: (I) For all choices of $t_o \ge 0, \tau > 0, x_o \in C_n([t_o - \tau, t_o]),$ and $d \in \mathcal{L}_m^{\infty}([0, \infty))$, the initial value problem

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u(x(t-\tau), t) + d(t)]$$

$$\forall t \ge t_o \text{ a.e. and } x(r) = x_o(r) \quad \forall r \in [t_o - \tau, t_o].$$
(IP)

has a unique solution $t \mapsto x(t; t_o, x_o, d, \tau)$ defined on $[t_o - \tau, +\infty)$.

ASSUMPTIONS and DEFINITIONS

Assumption A: f, g, and u_s are locally Lipschitz. \exists constant $\overline{L} > 0$ s.t. $\forall x \in \mathbb{R}^n, t \ge 0$, (A1) $|f(x,t)| \le \overline{L}|x|$, (A2) $|g(x,t)| \le \overline{L}(|x|+1)$, and (A3) $|\partial u_s / \partial x(x,t)| \le \overline{L}$.

Consequences: (I) For all choices of $t_o \ge 0, \tau > 0, x_o \in C_n([t_o - \tau, t_o]))$, and $d \in \mathcal{L}_m^{\infty}([0, \infty))$, the initial value problem

$$\dot{x}(t) = f(x(t), t) + g(x(t), t)[u(x(t-\tau), t) + d(t)]$$

$$\forall t \ge t_o \text{ a.e. and } x(r) = x_o(r) \quad \forall r \in [t_o - \tau, t_o].$$
(IP)

has a unique solution $t \mapsto x(t; t_o, x_o, d, \tau)$ defined on $[t_o - \tau, +\infty)$. (II) For each $\kappa \in \mathbb{N}$ and $\tau > 0$, we can construct $\bar{\gamma}_{\kappa,\tau} \in \mathcal{K}_{\infty}$ s.t. $|x(t; t_o, x_o, d, \tau)| \leq \bar{\gamma}_{\kappa,\tau}(|x_o|_{[t_o - \tau, t_o]}) + \bar{\gamma}_{\kappa,\tau}(|d|_{[t_o, t]}) \quad \forall t \in [t_o, t_o + \kappa\tau]$ for all $t_o \geq 0, x_o \in \mathcal{C}_n([t_o - \tau, t_o])$, and $d \in \mathcal{L}_m^{\infty}([0, \infty))$.

INPUT-TO-STATE STABILITY

We say $\beta \in \mathcal{KL}$ provided $\beta(\cdot, t) \in \mathcal{K}_{\infty} \ \forall t \ge 0, \ \beta(s, \cdot)$ non-increasing $\forall s \ge 0$, and $\beta(s, t) \to 0$ as $t \to +\infty \ \forall s \ge 0$. Set $x_t(\theta) = x(t + \theta)$.

INPUT-TO-STATE STABILITY

We say $\beta \in \mathcal{KL}$ provided $\beta(\cdot, t) \in \mathcal{K}_{\infty} \ \forall t \ge 0, \ \beta(s, \cdot)$ non-increasing $\forall s \ge 0$, and $\beta(s, t) \to 0$ as $t \to +\infty \ \forall s \ge 0$. Set $x_t(\theta) = x(t + \theta)$.

ISS: We say that (Σ_d) is input-to-state stable (ISS) provided there are $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that

 $|x(t;t_o,x_o,d,\tau)| \leq \beta(|x_o|_{[t_o-\tau,t_o]},t-t_o) + \gamma(|d|_{[t_o,t]})$

for all $t_o \ge 0, \tau \in (0, \overline{\tau}], x_o \in \mathcal{C}_n([t_o - \tau, t_o])$, and $d \in \mathcal{L}_m^{\infty}([0, \infty))$.

INPUT-TO-STATE STABILITY

We say $\beta \in \mathcal{KL}$ provided $\beta(\cdot, t) \in \mathcal{K}_{\infty} \ \forall t \ge 0, \ \beta(s, \cdot)$ non-increasing $\forall s \ge 0$, and $\beta(s, t) \to 0$ as $t \to +\infty \ \forall s \ge 0$. Set $x_t(\theta) = x(t + \theta)$.

ISS: We say that (Σ_d) is input-to-state stable (ISS) provided there are $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that

 $|x(t;t_o,x_o,d,\tau)| \leq \beta(|x_o|_{[t_o-\tau,t_o]},t-t_o) + \gamma(|d|_{[t_o,t]})$

for all $t_o \ge 0, \tau \in (0, \overline{\tau}], x_o \in \mathcal{C}_n([t_o - \tau, t_o])$, and $d \in \mathcal{L}_m^{\infty}([0, \infty))$.

ISS-LKF: A continuous $U : C_n(\mathbb{R}) \times [0, \infty) \to [0, \infty)$ is called an *ISS* Lyapunov-Krasovskii functional (ISS-LKF) for (Σ_d) provided $\forall \tau \in (0, \bar{\tau}]$ and $x(t) := x(t; t_o, x_o, d, \tau)$, the function $t \mapsto U(x_t, t)$ is locally AC & $\exists \alpha_i \in \mathcal{K}_\infty$ and $\kappa \in \mathbb{N}$ s.t. $\forall x(t), \phi \in C_n([-\kappa \bar{\tau}, 0])$, and $t \ge t_o + \kappa \bar{\tau}$,

(i) $\alpha_1(|\phi(0)|) \le U(\phi, t) \le \alpha_2(|\phi|_{[-\kappa\bar{\tau}, 0]})$ and (ii) $D_t U(x_t, t) \le -\alpha_3(U(x_t, t)) + \alpha_4(|d|_{[t_o, t]})$ a.e..

MORE DEFINITIONS and ASSUMPTIONS

Assumption H: The feedback $u_s \in C^1$. Also, there are $\sigma \in \mathcal{K}_{\infty}$ such that $\sigma(r) \leq r$ for all $r \geq 0$; constants $K_1 \geq 1$ and $K_i \geq 0$ (i = 2, 3, 4); and a C^1 uniformly proper and positive definite $V : \mathbb{R}^n \times [0, \infty) \to [0, \infty)$ such that for all $x \in \mathbb{R}^n$, $q \in \mathbb{R}^n$, $l \geq 0$, and $t \geq 0$, we have H1 $V_t(x,t) + V_x(x,t)[f(x,t) + g(x,t)u_s(x,t)] \leq -\sigma(|x|)^2$; H2 $|V_x(x,t)g(x,t)| \leq K_1\sigma(|x|), \left|\frac{\partial u_s}{\partial x}(x,t)f(x,l)\right|^2 \leq K_2\sigma(|x|)^2$; H3 $\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right|^2 \leq K_3(\sigma(|x|)+1)$; and H4 $\left[\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right| |u_s(q,l)|\right]^2 \leq K_4[\sigma^2(|x|) + \sigma^2(|q|)]$.

MORE DEFINITIONS and ASSUMPTIONS

Assumption H: The feedback $u_s \in C^1$. Also, there are $\sigma \in \mathcal{K}_{\infty}$ such that $\sigma(r) \leq r$ for all $r \geq 0$; constants $K_1 \geq 1$ and $K_i \geq 0$ (i = 2, 3, 4); and a C^1 uniformly proper and positive definite $V : \mathbb{R}^n \times [0, \infty) \to [0, \infty)$ such that for all $x \in \mathbb{R}^n$, $q \in \mathbb{R}^n$, $l \geq 0$, and $t \geq 0$, we have H1 $V_t(x,t) + V_x(x,t)[f(x,t) + g(x,t)u_s(x,t)] \leq -\sigma(|x|)^2$; H2 $|V_x(x,t)g(x,t)| \leq K_1\sigma(|x|), \left|\frac{\partial u_s}{\partial x}(x,t)f(x,l)\right|^2 \leq K_2\sigma(|x|)^2$; H3 $\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right|^2 \leq K_3(\sigma(|x|)+1)$; and H4 $\left[\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right| |u_s(q,l)|\right]^2 \leq K_4[\sigma^2(|x|) + \sigma^2(|q|)]$.

Allows stable linear system with bounded g and quadratic V, plus cases where the system is not exponentially stable or g is unbounded.

MORE DEFINITIONS and ASSUMPTIONS

Assumption H: The feedback $u_s \in C^1$. Also, there are $\sigma \in \mathcal{K}_{\infty}$ such that $\sigma(r) \leq r$ for all $r \geq 0$; constants $K_1 \geq 1$ and $K_i \geq 0$ (i = 2, 3, 4); and a C^1 uniformly proper and positive definite $V : \mathbb{R}^n \times [0, \infty) \to [0, \infty)$ such that for all $x \in \mathbb{R}^n$, $q \in \mathbb{R}^n$, $l \geq 0$, and $t \geq 0$, we have H1 $V_t(x,t) + V_x(x,t)[f(x,t) + g(x,t)u_s(x,t)] \leq -\sigma(|x|)^2$; H2 $|V_x(x,t)g(x,t)| \leq K_1\sigma(|x|), \left|\frac{\partial u_s}{\partial x}(x,t)f(x,l)\right|^2 \leq K_2\sigma(|x|)^2$; H3 $\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right|^2 \leq K_3(\sigma(|x|)+1)$; and H4 $\left[\left|\frac{\partial u_s}{\partial x}(x,t)g(x,l)\right| |u_s(q,l)|\right]^2 \leq K_4[\sigma^2(|x|) + \sigma^2(|q|)]$.

Allows stable linear system with bounded g and quadratic V, plus cases where the system is not exponentially stable or g is unbounded. Set

$$\bar{\tau} := \frac{1}{4K_1\sqrt{3K_2 + 3K_4 + 1}}$$

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

THEOREM 1

Theorem 1: Under the above assumptions, the feedback delayed system

 $\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(x(t-\tau), t) + d(t)]$ (Σ_d)

with any constant feedback delay satisfying

$$0 < \tau \le \bar{\tau} := \frac{1}{4K_1\sqrt{3K_2 + 3K_4 + 1}}$$

admits the ISS-LKF

$$U(x_t,t) = V(x(t),t) + \frac{1}{4\bar{\tau}} \int_{t-2\bar{\tau}}^t \left(\int_r^t \sigma^2(|x(t)|) \mathrm{d}t \right) \mathrm{d}r$$

and therefore is ISS.

THEOREM 1

Theorem 1: Under the above assumptions, the feedback delayed system

 $\dot{x}(t) = f(x(t), t) + g(x(t), t)[u_s(x(t-\tau), t) + d(t)]$ (Σ_d)

with any constant feedback delay satisfying

$$0 < \tau \le \bar{\tau} := \frac{1}{4K_1\sqrt{3K_2 + 3K_4 + 1}}$$

admits the ISS-LKF

$$U(x_t,t) = V(x(t),t) + \frac{1}{4\bar{\tau}} \int_{t-2\bar{\tau}}^t \left(\int_r^t \sigma^2(|x(t)|) \mathrm{d}t \right) \mathrm{d}r$$

and therefore is ISS.

Remark: When $V_t \equiv 0$ and the drift $f \equiv 0$, we can make the delay bound $\bar{\tau}$ arbitrarily large by taking $K_2 = 0$ and scaling u_s :

$$\sigma \to \sqrt{\eta}\sigma, \ u_s \to \eta u_s, \ K_1 \to K_1/\sqrt{\eta}, \ K_4 \to \eta^3 K_4, \ \eta \downarrow 0.$$

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

EXTENSION to CASCADES

Cascades: Under the above assumptions on the subsystem

$$\dot{x}(t) = f(x(t)) + g(x(t))z(t)$$

with fictitious input z and time-invariant functions, we design u to render

$$\begin{cases} \dot{x}(t) = f(x(t)) + g(x(t))z(t), \\ \dot{z}(t) = u(x(t-2\tau), x(t-\tau), z(t-\tau)) + d(t) \end{cases}$$
(Σ_{cas})

input-to-state stable.

EXTENSION to CASCADES

Cascades: Under the above assumptions on the subsystem

$$\dot{x}(t) = f(x(t)) + g(x(t))z(t)$$

with fictitious input z and time-invariant functions, we design u to render

$$\begin{cases} \dot{x}(t) = f(x(t)) + g(x(t))z(t), \\ \dot{z}(t) = u(x(t-2\tau), x(t-\tau), z(t-\tau)) + d(t) \end{cases}$$
(Σ_{cas})

input-to-state stable.

ISS Estimate: We use the generalization

$$|(x,z)(t)| \le \beta(|(x,z)|_{[t_o-\tau,t_o]}, t-t_o) + \gamma(|d|_{[t_o,t]})$$

of our earlier ISS estimate. Initial functions constant on $(-\infty, t_o - \tau]$.

EXTENSION to CASCADES (cont'd)

Theorem 2: Set

$$\bar{\tau}_c = \min\{1/\sqrt{8}, \bar{\tau}\}$$
 and $Z(t) = z(t) - u_s(x(t-\tau)).$

Then for each constant $\tau \in (0, \bar{\tau}_c]$, the dynamics (Σ_{cas}) is ISS when

$$u(x(t-2\tau), x(t-\tau), z(t-\tau)) := -Z(t-\tau) + \frac{\partial u_s}{\partial x} (x(t-\tau)) \left[f(x(t-\tau)) + g(x(t-\tau)) z(t-\tau) \right].$$

EXTENSION to CASCADES (cont'd)

Theorem 2: Set

$$\bar{\tau}_c = \min\{1/\sqrt{8}, \bar{\tau}\}$$
 and $Z(t) = z(t) - u_s(x(t-\tau)).$

Then for each constant $\tau \in (0, \overline{\tau}_c]$, the dynamics (Σ_{cas}) is ISS when

$$\begin{aligned} &u(x(t-2\tau), x(t-\tau), z(t-\tau)) := \\ &-Z(t-\tau) + \frac{\partial u_s}{\partial x} (x(t-\tau)) \left[f(x(t-\tau)) + g(x(t-\tau)) z(t-\tau) \right]. \end{aligned}$$

Strategy of Proof: First build an ISS-LKF for the q = (x, Z) dynamics $\dot{q}(t) = F(q(t)) + G(q(t))[U_s(q(t - \tau)) + D(t)]$ with

$$F(q) = \begin{pmatrix} f(x) + g(x)Z \\ 0 \end{pmatrix}, \quad G(q) = \begin{pmatrix} g(x) & 0 \\ 0 & -1 \end{pmatrix},$$

the feedback $U_s(q) = (u_s(x), Z)^T$ and $D(t) = (0, -d(t))^T$.

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

When $m:\mathbb{R}\to\mathbb{R}^n$ is continuous, we build an ISS-LKF for

$$\dot{x}(t) = -m(t)m^{T}(t)[x(t-\tau) + d(t)].$$
 ($\Sigma_{\rm id}$)

When $m: \mathbb{R} \to \mathbb{R}^n$ is continuous, we build an ISS-LKF for

$$\dot{x}(t) = -m(t)m^{T}(t)[x(t-\tau) + d(t)].$$
 ($\Sigma_{\rm id}$)

Assume $|m(t)| = 1 \ \forall t \in \mathbb{R}$ and $\exists \alpha' \in (0, 1)$ and $\beta', \tilde{c} > 0$ such that

 $\alpha' I_{n \times n} \leq \int_{t}^{t + \tilde{c}} m(\tau) m^{T}(\tau) d\tau \leq \beta' I_{n \times n} \quad \forall t \in \mathbb{R}.$

When $m : \mathbb{R} \to \mathbb{R}^n$ is continuous, we build an ISS-LKF for

$$\dot{x}(t) = -m(t)m^{T}(t)[x(t-\tau) + d(t)].$$
 ($\Sigma_{\rm id}$)

Assume $|m(t)| = 1 \ \forall t \in \mathbb{R}$ and $\exists \alpha' \in (0, 1)$ and $\beta', \tilde{c} > 0$ such that

$$\alpha' I_{n \times n} \leq \int_t^{t+c} m(\tau) m^T(\tau) d\tau \leq \beta' I_{n \times n} \quad \forall t \in \mathbb{R}.$$

Lemma: The function $V(x,t) := x^T P(t)x$ satisfies $\dot{V} \le -\alpha' |x|^2/2$ along all trajectories of $\dot{x}(t) = -m(t)m^T(t)x(t)$ when

$$P(t) = \kappa I + \int_{t-\tilde{c}}^{t} \int_{s}^{t} m(l) m^{T}(l) \, \mathrm{d}l \, \mathrm{d}s$$

and $\kappa = 1 + \frac{\tilde{c}}{2} + \frac{1}{4\alpha'}\tilde{c}^4$. Moreover, $|P(t)| \le \kappa + \tilde{c}^2$ everywhere.

When $m : \mathbb{R} \to \mathbb{R}^n$ is continuous, we build an ISS-LKF for

$$\dot{x}(t) = -m(t)m^{T}(t)[x(t-\tau) + d(t)].$$
 ($\Sigma_{\rm id}$)

Assume $|m(t)| = 1 \ \forall t \in \mathbb{R}$ and $\exists \alpha' \in (0, 1)$ and $\beta', \tilde{c} > 0$ such that

$$\alpha' I_{n \times n} \leq \int_t^{t+\tilde{c}} m(\tau) m^T(\tau) \mathrm{d}\tau \leq \beta' I_{n \times n} \quad \forall t \in \mathbb{R}.$$

Lemma: The function $V(x,t) := x^T P(t)x$ satisfies $\dot{V} \le -\alpha' |x|^2/2$ along all trajectories of $\dot{x}(t) = -m(t)m^T(t)x(t)$ when

$$P(t) = \kappa I + \int_{t-\tilde{c}}^{t} \int_{s}^{t} m(l) m^{T}(l) \, \mathrm{d}l \, \mathrm{d}s$$

and $\kappa = 1 + \frac{\tilde{c}}{2} + \frac{1}{4\alpha'}\tilde{c}^4$. Moreover, $|P(t)| \le \kappa + \tilde{c}^2$ everywhere.

Corollary: Let $\tau \in (0, \overline{\tau}]$. Then (Σ_{id}) has this ISS-LKF and so is ISS:

$$U(x_t, t) = x^T(t)P(t)x(t) + \frac{\alpha'}{16\bar{\tau}} \int_{t-2\tau}^t \left(\int_r^t |x(t)|^2 dt \right) dr.$$

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

Example 1: $\dot{x} = ux^2/(1+x^2)$ with $x \in \mathbb{R}$ satisfies Assumption H with

$$V(x) = \frac{1}{2}x^2, \ \sigma(r) = r^2/\sqrt{1+r^2}, \ u_s(x) = -x,$$

 $K_1 = 1, K_2 = 0$ and $K_4 = 2$.

Example 1: $\dot{x} = ux^2/(1+x^2)$ with $x \in \mathbb{R}$ satisfies Assumption H with

$$V(x) = \frac{1}{2}x^2, \ \sigma(r) = r^2/\sqrt{1+r^2}, \ u_s(x) = -x,$$

 $K_1 = 1, K_2 = 0$ and $K_4 = 2$. Therefore, when $0 < \tau \le \bar{\tau} = 1/(4\sqrt{7})$,

$$\dot{x}(t) = -\frac{x^2(t)}{1+x^2(t)} [x(t-\tau) - d(t)]$$

is ISS and we can build an explicit ISS-LKF.

Example 1: $\dot{x} = ux^2/(1+x^2)$ with $x \in \mathbb{R}$ satisfies Assumption H with

$$V(x) = \frac{1}{2}x^2, \ \sigma(r) = r^2/\sqrt{1+r^2}, \ u_s(x) = -x,$$

 $K_1 = 1, K_2 = 0$ and $K_4 = 2$. Therefore, when $0 < \tau \le \bar{\tau} = 1/(4\sqrt{7})$,

$$\dot{x}(t) = -\frac{x^2(t)}{1+x^2(t)} [x(t-\tau) - d(t)]$$

is ISS and we can build an explicit ISS-LKF.

Example 2: $\dot{x} = u(1+x^2)^{1/2}$ on \mathbb{R} satisfies Assumption H with $u_s(x) = -\int_0^x \frac{1}{\sqrt{1+l^2}} dl, \ \sigma(r) = -u_s(r), \ V(x) = \frac{1}{2}u_s^2(x),$ $K_1 = K_4 = 1, \text{ and } K_2 = 0.$

Example 1: $\dot{x} = ux^2/(1+x^2)$ with $x \in \mathbb{R}$ satisfies Assumption H with

$$V(x) = \frac{1}{2}x^2, \ \sigma(r) = r^2/\sqrt{1+r^2}, \ u_s(x) = -x,$$

 $K_1 = 1, K_2 = 0$ and $K_4 = 2$. Therefore, when $0 < \tau \le \bar{\tau} = 1/(4\sqrt{7})$,

$$\dot{x}(t) = -\frac{x^2(t)}{1+x^2(t)} [x(t-\tau) - d(t)]$$

is ISS and we can build an explicit ISS-LKF.

Example 2: $\dot{x} = u(1+x^2)^{1/2}$ on \mathbb{R} satisfies Assumption H with $u_s(x) = -\int_0^x \frac{1}{\sqrt{1+l^2}} dl, \ \sigma(r) = -u_s(r), \ V(x) = \frac{1}{2}u_s^2(x),$

 $K_1 = K_4 = 1$, and $K_2 = 0$. Hence,

$$\dot{x}(t) = \sqrt{1 + x^2(t)} \left[-\int_0^{x(t-\tau)} \frac{1}{\sqrt{1+l^2}} dl + d(t) \right]$$

is ISS when $0<\tau\leq 1/8$ and we can build corresponding ISS-LKFs.

OUTLINE

- Background and Motivation
- Definitions and Assumptions
- Main Theorem
- Extensions to Cascades
- Identification Theory Example
- Two Other Examples
- Conclusions and Summary

• ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.

- ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.
- Our results complement this work by building explicit ISS-LKFs for feedback delayed dynamics in terms of LFs for undelayed dynamics.

- ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.
- Our results complement this work by building explicit ISS-LKFs for feedback delayed dynamics in terms of LFs for undelayed dynamics.
- Explicit Lyapunov functions are useful for obtaining closed form expressions for β and γ in the ISS estimate and for feedback design.

- ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.
- Our results complement this work by building explicit ISS-LKFs for feedback delayed dynamics in terms of LFs for undelayed dynamics.
- Explicit Lyapunov functions are useful for obtaining closed form expressions for β and γ in the ISS estimate and for feedback design.
- We allow unbounded time-varying vector fields with different delays in different components of the state. Our results extend to cascades.

- ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.
- Our results complement this work by building explicit ISS-LKFs for feedback delayed dynamics in terms of LFs for undelayed dynamics.
- Explicit Lyapunov functions are useful for obtaining closed form expressions for β and γ in the ISS estimate and for feedback design.
- We allow unbounded time-varying vector fields with different delays in different components of the state. Our results extend to cascades.
- Extensions to feedback delayed systems for which ISS is achieved via output feedback and the construction of IOS-LKFs would be useful.

- ISS has been studied by several authors who provided small-gain and Lyapunov-type approaches to proving robustness to feedback delays.
- Our results complement this work by building explicit ISS-LKFs for feedback delayed dynamics in terms of LFs for undelayed dynamics.
- Explicit Lyapunov functions are useful for obtaining closed form expressions for β and γ in the ISS estimate and for feedback design.
- We allow unbounded time-varying vector fields with different delays in different components of the state. Our results extend to cascades.
- Extensions to feedback delayed systems for which ISS is achieved via output feedback and the construction of IOS-LKFs would be useful.
- This work was supported in part by NSF/DMS Grant 0424011 and was carried out in part during Frederic Mazenc's visit to LSU.