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Instantaneous frequency (IF) is necessary for understanding the detailed mechanisms for
nonlinear and nonstationary processes. Historically, IF was computed from analytic sig-
nal (AS) through the Hilbert transform. This paper offers an overview of the difficulties
involved in using AS, and two new methods to overcome the difficulties for computing
IF. The first approach is to compute the quadrature (defined here as a simple 90◦ shift
of phase angle) directly. The second approach is designated as the normalized Hilbert
transform (NHT), which consists of applying the Hilbert transform to the empirically
determined FM signals. Additionally, we have also introduced alternative methods to
compute local frequency, the generalized zero-crossing (GZC), and the teager energy
operator (TEO) methods. Through careful comparisons, we found that the NHT and
direct quadrature gave the best overall performance. While the TEO method is the most
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localized, it is limited to data from linear processes, the GZC method is the most robust
and accurate although limited to the mean frequency over a quarter wavelength of tem-

poral resolution. With these results, we believe most of the problems associated with the
IF determination are resolved, and a true time–frequency analysis is thus taking another
step toward maturity.

Keywords: Instantaneous frequency; Hilbert transform; quadrature; empirical mode
decomposition; normalized intrinsic mode function; empirical AM/FM decomposition.

1. Introduction

The term “instantaneous frequency” (IF) has always elicited strong opinions in

the data analysis and communication engineering communities, covering the range

from “banishing it forever from the dictionary of the communication engineer,1 to

being a “conceptual innovation in assigning physical significance to the nonlinearly

distorted waveforms.2 In between these extremes, there are plenty of more mod-

erate opinions stressing the need for and also airing the frustration of finding an

acceptable definition and workable way to compute its values.

Before discussing any methods for computing the IF, we have to justify the

concept of an instantaneous value for the frequency. After all, the traditional fre-

quency analysis method is mostly based on the Fourier transform, which gives time-

invariant amplitude and frequency values. Furthermore, the inherited uncertainty

principle associated with the Fourier transform pair has prompted Gröchenig3 to

say, “The uncertainty principle makes the concept of an Instantaneous Frequency

impossible.” As Fourier analysis is a well-established subject in mathematics and the

most popular method in time–frequency transform, this verdict against IF is a seri-

ous one indeed. This seemly rigorous objection, however, could be easily resolved,

for the uncertainty principle is a consequence of the Fourier transform (or any other

type of integral transform) pair; therefore, its limitation could only be applied to

such integral transforms, in which time would be smeared over the integral interval.

Consequently, if we eschew an integral transform in the frequency computation, we

would not be bounded by the uncertainty principle. Fourier analysis is only one of

the mathematical methods for time–frequency transform; we have to look beyond

Fourier analysis to find a solution. Indeed, the need of the frequency as a function

of time and the fact that the frequency should be a function of time, and hav-

ing an instantaneous value, can be justified from both mathematical and physical

grounds.

Mathematically, the commonly accepted definition of frequency in the classical

wave theory is based on the existence of a phase function (see, e.g., Refs. 4, 5). Here,

starting with the assumption that the wave surface is represented by a “slowly”

varying function consisting of time-varying amplitude a(x, t), and phase, θ(x, t),

functions, such that the wave profile is the real part of the complex valued function,

we have

ς(x, t) = R(a(x, t)eiθ(x,t)). (1)
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Then, the frequency, ω, and the wave-number, k, are defined as

ω = −
∂θ

∂t
and k =

∂θ

∂x
. (2)

Cross-differentiating the frequency and wave-number, one immediately obtains the

wave conservation equation,

∂k

∂t
+

∂ω

∂x
= 0. (3)

This is one of the fundamental laws governing all wave motions. The assumption

of the classic wave theory is very general: that there exists a “slowly” varying func-

tion such that we can write the complex representation of the wave motion given

in Eq. (1). If frequency and wave-number can be defined as in Eq. (2), they have

to be differentiable functions of the temporal and the spatial variables for Eq. (3)

to hold. Thus, for any wave motion, other than the trivial kind with constant fre-

quency sinusoidal motion, the frequency representation should have instantaneous

values. Therefore, there should not be any doubt of the mathematical meaning of

or the justification for the existence of IF. Based on the simple “slowly varying”

assumption, the classical wave theory is founded on rigorous mathematic grounds

and with many of the theoretical results confirmed by observations.5 This model

can be generalized to all kinds of wave phenomena such as in surface water waves,

acoustics, and electromagnetics. The pressing questions are how to define the phase

function and the IF for a given wave data set.

Physically, there is also a real need for IF in a faithful representation of under-

lying mechanisms for data from nonstationary and nonlinear processes. Obviously,

the nonstationarity is one of the key features here, but, as explained by Huang

et al.,2 the concept of IF is also essential for a physically meaningful interpretation

of nonlinear processes: for a nonstationary process, the frequency should be ever

changing. Consequently, we need a time–frequency representation for the data, or

that the frequency value has to be a function of time. For nonlinear processes, the

frequency variation as a function of time is even more drastic. To illustrate the need

for IF in the nonlinear cases, let us examine a typical nonlinear system as given by

the Duffing equation:

d2x

dt2
+ x + εx3 = γ cosωt, (4)

in which ε is a parameter not necessarily small, and the right-hand term is the

forcing function of magnitude γ and frequency ω. This cubic nonlinear equation

can be rewritten as

d2x

dt2
+ x(1 + εx2) = γ cosωt, (5)

where the term in the parenthesis can be regarded as a single quantity representing

the spring constant of the nonlinear oscillator, or the pendulum length of a nonlin-

early constructed pendulum. As this quantity is a function of position, the frequency
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of this oscillator is also ever changing, even within one oscillation. This intrawave

frequency modulation is the singular most unique characteristic of a nonlinear oscil-

lator as proposed by Huang et al.2,6 The geometric consequences of this intrawave

frequency modulation are the waveform distortion. Traditionally, such nonlinear

phenomena are represented by harmonics. As the waveform distortion can be fitted

by harmonics of the fundamental wave in Fourier analysis, it is viewed as harmonic

distortions. This traditional view, however, is the consequence of imposing a linear

structure on a nonlinear system: the superposition of simple harmonic functions

with each as a solution for a linear oscillator. One can only assume that the sum

and the total of the linear superposition would give an accurate representation of

the full nonlinear system. The difficulty here is this: we would need infinitely many

terms to represent a caustic point. But large number of terms would be impractical.

Even if we could obtain the Fourier expansion, all the individual harmonic terms,

however, are mathematic artifacts and have no physical meaning. For example,

in the case of water surface waves, the harmonics are not a physical wave train,

for they do not satisfy the dispersive relationship.6 Although, the perturbation

approach seems to have worked well for systems with infinitesimal nonlinearity,

the approach fails when the nonlinearity is finite and the motion becomes chaotic

(see, e.g., Ref 7). A natural and logical approach should be one that can capture

the physical meaning: the physical essence of this nonlinear system is an oscillator

with variable intrawave-modulated frequency assuming different values at different

times even within one single period. To describe such a motion, we should use IF

to represent this essential physical characteristic of nonlinear oscillators. In fact,

the intrawave frequency modulation is a physical meaningful and effective way to

describe the waveform distortions.

In real-world experimental and theoretic studies, the conditions of ever-changing

frequency are common, if not prevailing. Chirp signal is one class of the signals used

by bats as well as in radar. The frequency content in speech, though not exactly

a chirp, is also ever changing, and many of the consonants are produced through

highly nonlinear mechanisms such as explosion or friction. Furthermore, for any

nonlinear system, the frequency is definitely modulating not only among different

oscillation periods, but also within one period as discussed above. To understand the

underlying mechanisms of these processes, we can no longer rely on the traditional

Fourier analysis with components of constant frequency. We have to examine the

true physical processes through instantaneous frequency from non-Fourier based

methods.

There have been copious publications in the past on the IF, for example: Refs. 8–

16. Most of these publications, however, were concentrated on Wigner–Ville distri-

bution (WVD) and its variations, where the IF is defined through the mean moment

of different components at a given time. But the WVD is essentially Fourier based

analysis. Other than the WVD, IF obtained through the analytic signal (AS) pro-

duced by the Hilbert transform (HT) has also received a lot attention. Boashash,9,10

in particular, gave a summary history of the evolution of the IF definition. Most of
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On Instantaneous Frequency 181

the discussions given by Boashash8–10 were on monocomponent signals. For more

complicated signals, he again suggested utilizing the moments of the WVD. But

there are no a priori reasons to assume that the multicomponent signal should have

a single-valued instantaneous frequency at any given time and still be retaining

its full physical significance. Even for a monocomponent signal, the Wigner–Valle

method still relies on the moment approach. Boashash also suggested crossing the

WVD of the signal with a reference signal. This method will be seriously compro-

mised when the signal to noise ratio is high. We will return to these points and

discuss them in more detail later.

One of the most basic yet confusing points concerning IF stems from the erro-

neous idea that for each IF value there must be a corresponding frequency in the

Fourier spectrum of the signal. In fact, IF of a signal when properly defined should

have a very different meaning when compared with the frequency in the Fourier

spectrum, as discussed in Huang et al.2 But the divergent and confused viewpoints

on IF indicate that the erroneous view is a deeply rooted one associated with and

responsible for some of the current misconceptions and fundamental difficulties in

computing IF. Some of the traditional objections on IF actually can be traced to

the mistaken assumption that a single-valued IF exists for any function at any

given instant. Obviously, a complicated signal could consist of many different fre-

quencies at any given time, such as a recorded music of a symphonic orchestra

performance.

The IF witnessed two major advances recently. The first one is through the

introduction of the empirical mode decomposition (EMD) method and the intrin-

sic mode function (IMF) introduced by Huang et al.2 for data from nonlinear

and nonstationary processes. The second one is through wavelet based decom-

position introduced by Olhede and Walden17 for data from linear nonstationary

processes. Huang et al.6 have also introduced the Hilbert view on nonlinearly dis-

torted waveforms, which provided explanations to many of the paradoxes raised

by Cohen13 on the validity of IF, which will be discussed in detail later. Indeed,

the introduction of EMD or the wavelet decomposition resolved one key obsta-

cle for computing a meaningful IF from a multicomponent signal by reducing it

to a collection of monocomponent functions. Once we have the monocomponent

functions, there are still limitations on applying AS for physically meaningful IF

as stipulated by the well-known Bedrosian18 and Nuttall19 theorems. Some of the

mathematic problems associated with the HT of IMFs have also been addressed by

Vatchev.20

In this paper, we propose an empiric AM–FM decomposition21 based on a spline

fitted normalization scheme to produce a unique and smooth empiric envelope (AM)

and a unity-valued carrier (FM). Our experience indicates that the empiric envelope

so produced is identical to the theoretic one when explicit expressions exist, and it

provides a smoother envelope than any other method including the one based on AS

when there is no explicit expression for the data. The spline based empiric AM–FM
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182 N. E. Huang et al.

decomposition will not only remove most of the difficulties associated with AS, but

also enable us to compute the quadrature directly, and then compute IF through

a direct quadrature function without any approximation. The normalization also

resolves many of the traditional difficulties associated with the IF computed through

AS: it makes AS satisfy the limitation imposed by the Bedrosian theorem.18 At

the same time, it provides a sharper and easily computable error index than the

one proposed by the Nuttall theorem,19 which governs the case when the HT of

a function is different from its quadrature. Additionally, we will also introduce

alternative methods based on a generalized zero-crossing (GZC) and an energy

operator to define frequency locally for cross comparisons.

The paper is organized as follows: This introduction will be followed by a dis-

cussion of the definitions of frequency. Then we will introduce the empiric AM–FM

decomposition, or the spline normalization scheme, and all the different instan-

taneous frequency computation methods in Sec. 3. In Sec. 4, we will present the

comparisons of the IF values defined from various alternative methods to establish

the validity, advantages and disadvantages of each method through testing on model

functions and real data. We will also introduce the frequency-modulated (FM) and

amplitude-modulated (AM) representations of the data in Sec. 5. Finally, we will

discuss the merits of the different methods and make a recommendation for general

applications, and offer a short conclusion. To start, however, we will first present

the various definitions of frequency in the next section as a motivation for the

subsequent discussions.

2. Definitions of Frequency

Frequency is an essential quantity in the study of any oscillatory motion. The most

fundamental and direct definition of frequency, ω, is simply the inverse of period,

T ; that is

ω =
1

T
. (6)

Following this definition, the frequency exists only if there is a whole cycle of wave

motion. And the frequency would be constant over this length, with no finer tem-

poral resolution. In fact, a substantial number of investigators still hold the view

that frequency cannot be defined without a whole wave profile.

Based on the definition of frequency given in Eq. (6), the obvious way of deter-

mining the frequency is to measure the time intervals between consecutive zero-

crossings or the corresponding points of the phase on successive waves. This is very

easily implemented for a simple sinusoidal wave train, where the period is a well-

defined constant. For real data, this restrictive view presents several difficulties:

to begin with, those holding this view obviously are oblivious to the fundamental

wave conservation law, which requires the wave-number and frequency to be differ-

entiable. How can the frequency be differentiable if its value is constant over a whole

wavelength? Secondly, this view cannot reveal the detailed frequency modulations
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with ever-changing frequency in nonstationary and, especially, nonlinear processes

with intrawave frequency modulations. And finally, in a complicated vibration, there

might be multi-extrema between two consecutive zero-crossings, a problem treated

extensively by Rice,22–25 who restricted the applications of the zero-crossing method

to narrow-band signals, where the signal must have equal numbers of extrema and

zero-crossings. Therefore, without something like the EMD method to decompose

the data into IMFs, this simple zero-crossing method has only been used for the

band-passed data (see, e.g., Ref. 26), or more recently by the more sophisticated

wavelet based filtering proposed by Olhede and Walden.17 As the bandpass filters

used all work in frequency space, they tend to separate the fundamental from its

harmonics; the filtered data will lose most, if not all, of the nonlinear characteristics.

With these difficulties, the zero-crossing method has seldom been used in serious

research work.

Another definition of frequency is through the dynamic system. This elegant

method determines the frequency through the variation of the Hamiltonian, H(q, p),

where q is the generalized coordinate, and p, the generalized momentum (see, e.g.,

Refs. 27, 28) as,

ω(A) =
∂H(A)

∂A
, (7)

in which A is the action variable defined as

A =

∮

pdp, (8)

where the integration is over a complete period of a rotation. The frequency so

defined is varying with time, but the resolution is no finer than the averaging over

one period, for the action variable is an integrated quantity as given in Eq. (8).

Thus, the frequency defined by Eq. (7) is equivalent to the inverse of the period,

the classical definition of frequency. This method is elegant theoretically, but its

utility is limited to relatively simple low-dimensional dynamic systems, linear or

nonlinear, whenever integrable solutions describing the full process exist. It cannot

be used for data analysis routinely.

In practical data analysis, the data consist of a string of real numbers, which

may have multi-extrema between consecutive zero-crossings. Then, there can be

many coexisting frequency values at any given time. Traditionally, the only way

to define frequency is to compute through the Fourier transform. Thus, for a time

series, x(t), we have

x(t) = R

N
∑

j=1

aje
−iωjt, (9)

where

aj =

∫ T

o

x(t)eiωjtdt, (10)
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with R indicating the real part of the quantity. With classic Fourier analysis, the

frequency values are constant over the whole time span covering the range of the

integration. As the Fourier definition of frequency is not a function of time, we can

easily see that the frequency content would be physically meaningful only if the

data represent a linear (to allow superposition) and stationary (to allow a time-

independent frequency representation) process.

A slight generalization of the classic Fourier transform is to break the data into

short subspans. Thus the frequency value can still vary globally, but is assumed to be

constant within each subintegral span. Nevertheless, the integrating operation leads

to the fundamental limitation on this Fourier type of analysis by the uncertainty

principle, which states that the product of the frequency resolution, ∆ω, and the

time span over which the frequency value is defined, ∆T , shall not be less than

1/2. As Fourier transform theory is established over an infinite time span, then the

uncertainty principle dictates that this time interval cannot be too short related to

the period of the oscillation. At any rate, the uncertainty principle dictates that, for

the Fourier-type methods, it is impossible to resolve the signal with the frequency

varying faster than the integration time scale, certainly not within one period.3

This seemingly weak restriction has in fact limited the Fourier spectral analysis to

linear and stationary processes only.

A further generation of the Fourier transform is the wavelet analysis, a very

popular data analysis method (see, e.g., Refs. 29, 30), which is also extremely

useful for data compression, and image edge definitions, for example. True, the

wavelet approach offers some time–frequency information with an adjustable win-

dow. The most serious weakness of wavelet analysis is again the limitation imposed

by the uncertainty principle: to be local, a base wavelet cannot contain too many

waves; yet to have fine frequency resolution, a base wavelet will have to con-

tain many waves. As the numerous examples have shown, the uniformly poor

frequency resolution renders wavelet results only as a qualitative tool for time–

frequency analysis. The frequency resolution problem is mitigated greatly through

the Hilbert spectral representation based on the wavelet projection.17 Neverthe-

less, this improved method is still burdened by harmonics; therefore, their result

can only be physical meaningful when the data are from nonstationary but linear

processes.

Still another extension of the classical Fourier analysis is the WVD (see, e.g.,

Ref. 13), which is defined as

V (t, ω) =

∫

∞

−∞

x

(

t +
τ

2

)

x∗

(

t −
τ

2

)

e−iωτdτ. (11)

By definition, the marginal distribution, by integrating the time variable out, is

identical to the Fourier power density spectrum. Even though the full distribution

does offer some time–frequency properties, it inherits many of the shortcomings of

Fourier analysis. The additional time variable, however, provides a center of gravity
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type of weighted mean local frequency as

ω(t) =

(

∫

∞

−∞
ωV (t, ω)dω

)

(

∫

∞

−∞
V (t, ω)dω

) . (12)

Here we have only a single value as a mean for all the different components. This

mean value lacks the necessary details to describe the complexity imbedded in a

multicomponent data set. For example, if we have a recording of a symphonic music

piece, when many instruments are playing at the same time, Wigner–Ville would

allow one single frequency at any given time. This is certainly unreasonable and

unrealistic.

As our emphasis is on analyzing data from nonstationary and nonlinear pro-

cesses, we have to examine the frequency content of the data in detail at any given

time with the subperiod temporal resolution. We have proposed solutions: time–

frequency analysis based on AS functions and direct quadrature, which will be the

subject of the next section. It should be noted that all the above methods work

for any data, while the methods to be discussed in the next section work only for

monocomponent functions.

3. Instantaneous Frequency

Ideally, the IF for any monocomponent data should be through its quadrature,

defined as a simple 90◦ phase shift of the carrier phase function only. Thus

from any monocomponent data, we have to find its envelope, a(t), and carrier,

cosφ(t), as,

x(t) = a(t) cosφ(t), (13)

where ϕ(t) is the phase function to represent the AM and FM parts of the signal

respectively. Its quadrature then is

xq(t) = a(t) sin φ(t), (14)

where the change comparing to the original data is limited only to the phase. With

these expressions, the instantaneous frequency can be computed as in the classical

wave theory given in Eq. (2). These seemingly trivial steps have been impossible to

implement in the past. To begin with, not all the data are monocomponent. Even

though decomposing the data into a collection of monocomponent functions is now

available by wavelet decomposition17 or the empirical mode decomposition,2 there

are other daunting difficulties: to find the unique pair of [a(t), ϕ(t)] to represent-

ing the data, and to find a general method to compute the quadrature directly.

Traditionally, the accepted way is to use the AS through the HT as a proxy for

the quadrature. This has made the AS approach the most popular method to

define IF.

The approach of using AS, however, is not without its difficulties. The most

fundamental one is that AS is only an approximation to the quadrature, except
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for some very simple cases. And due to this and other difficulties associated with

this approach, it has also contributed to all the controversies related to IF. To

fully appreciate the subtlety of the IF defined through HT, a brief history of IF is

necessary. A more detailed one can be found in Boashash,8,9 for example. For the

sake of completeness and to facilitate our discussions, we will trace certain essential

historic milestones of the approach from its beginning to its present state as follows:

The first important step for defining IF was due to Van der Pol,31 a pioneer in

nonlinear system studies, who first explored the idea of IF seriously. He proposed the

correct expression of the phase angle as an integral of the IF. The next important

step was made by Gabor,32 who introduced the HT to generate a unique AS from

real data, thus removing the ambiguity of the infinitely many possible amplitude

and phase pair combinations to represent the data. Gabor’s approach is summarized

as follows: for the variable x(t), its HT, y(t), is defined as

y(t) =
1

π
P

∫

τ

x(τ)

t − τ
dτ, (15)

with P indicating the Cauchy principal value of the complex integral. The HT

provides the imaginary part of the analytic pair, y(t), of the real data. Thus, we

have a unique AS given by

z(t) = x(t) + iy(t) = A(t)eiθ(t), (16)

in which

A(t) = {x2(t) + y2(t)}1/2 and θ(t) = tan−1 y(t)

x(t)
, (17)

form the canonical pair, [A(t), θ(t)], associated with x(t). Gabor even proposed a

direct method to obtain AS through two Fourier transforms:

z(t) = 2

∫

∞

0

F (ω)eiωtdω, (18)

where F (ω) is the Fourier transform of x(t). In this representation, the original

data x(t) becomes

x(t) = R{A(t)eiθ(t)} = A(t) cos θ(t). (19)

It should be pointed out that this canonical pair, [A(t), θ(t)], is in general different

from the complex number defined by the quadrature, [a(t), ϕ(t)], though their real

parts are identical. For the analytic pair, the IF can be defined as the derivative of

the phase function of this analytic pair given by

ω(t) =
dθ(t)

dt
=

1

A2
(xy′ − yx′). (20)

In general, for stochastic data, the phase function is a function of time; therefore,

the IF is also a function of time. This definition of frequency bears a striking

similarity with that of the classical wave theory.
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Fig. 1. Data of the recorded word, “Hello”, digitized at a rate of 22,050Hz.

As the HT exists for any function of Lp class, there is a misconception that one

can put any function through the above operation and obtain a physically mean-

ingful IF as advocated by Hahn.33 Such an approach has created great confusion

for the meaning of the IF in general, and tarnished the approach of using the HT

for computing the IF in particular. Let us take the data recording of a voice saying

“Hello”, given in Fig. 1, as an example. Through HT, we have the AS plotted in

the complex phase plane given in Fig. 2, which just shows a collection of random

loops. If we designate the derivative of the phase function as the IF according to

Eq. (20), the result is shown in Fig. 3. Clearly, the frequency values are scattered

over a wide range with both positive and negative values. Furthermore, any speech

could have multicomponent sounds, but this representation gives only a single fre-

quency at any given time and ignores the multiplicity of the coexisting components.

Consequently, these values are not physically meaningful at all, instantaneously or

otherwise. The difficulties encountered here actually can be illustrated by a much

simpler example using the simple function employed by Huang et al.2:

x(t) = a + cosαt, (21)

with a as an arbitrary constant. Its HT is simply

y(t) = sin αt; (22)
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Fig. 2. Complex phase graph of the analytic signal derived from data in Fig. 1 through HT.

Fig. 3. The IF derivative through the AS given in Fig. 2, with the original data plotted in
arbitrary unit and a magnitude shift.
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therefore, the IF according to Eq. (20) is

ω =
α(1 + a sin αt)

1 + 2a cosαt + a2
. (23)

Equation (23) can give any value for the IF, depending on the value of a. To recover

the frequency of the input sinusoidal signal, the constant, a, has to be zero. This

simple example illustrates some crucial necessary conditions for the AS approach

to give a physical meaningful IF: the function will have to be monocomponent, zero

mean locally, and the wave will have to be symmetric with respect to the zero mean.

All these conditions are satisfied by either EMD or the wavelet projection methods

mentioned above. But these are only the necessary conditions. There are other more

subtle and stringent conditions for the AS approach to produce a meaningful IF. For

example, Loughlin and Tracer15 proposed physical conditions for the AM and FM

of a signal for IF to be physically meaningful, and Picinbono16 proposed spectral

properties of the envelope and carrier in order to have a valid AS representation.

Indeed, the unsettling state of the AM, the FM decomposition, and the associated

instantaneous frequency have created great misunderstanding, which has prompted

Cohen13 to list a number of “paradoxes” concerning instantaneous frequency. Some

of the paradoxes concerning negative frequency are a direct consequence of these

necessary conditions given by the IMFs. All the paradoxes will be discussed later.

In fact, the most general conditions are already summarized most succinctly by

the Bedrosian18 and Nuttall19 theorems. Bedrosian18 established another general

necessary condition for obtaining a meaningful AS for IF computation, which set a

limitation of separating the HT of the carrier from its envelope as

H{a(t) cos θ(t)} = a(t)H{cos θ(t)}, (24)

provided that the Fourier spectra of the envelope and the carrier are non-

overlapping. This is a much sharper condition on the data: the data has to be

not only monocomponent, but also narrow band; otherwise the AM variations will

contaminate the FM part. The IMF produced by EMD does not satisfy this require-

ment automatically. With the spectra from amplitude and carrier not clearly sepa-

rated, the IF will be influenced by the AM variations. As a result, the applications

of the HT as used by Huang et al.2,6 are still plagued by occasional negative fre-

quency values. Strictly speaking, unless one uses bandpass filters, any local AM

variation will violate the restriction of the Bedrosian theorem. If any data violate

the condition set forth in Eq. (24), the operations given in Eqs. (16) to (20) will not

be valid anymore. Although we can still obtain an AS with the real part identical

to the data, but the imaginary part would not be the same through the effect on

the phase function contaminated by the AM. The result will be meaningless as the

example given in Fig. 3.

It can be further shown that the Bedrosian condition is not the only prob-

lem. More fundamentally, Nuttall19 questions the condition under which we can
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write

H{cosφ(t)} = sin φ(t), (25)

for an arbitrary function of ϕ(t). This difficulty has been ignored by most investi-

gators using the HT to compute IF. Picinbono16 stated that it would be impossible

to justify Eq. (25) from only the spectral properties. He then entered an extensive

discussion on the specific properties of the phase function under which Eq. (25) is

true. The conditions were recently generalized by Qian et al.34 But such discus-

sions would be of very limited practical use in data analysis, for we cannot force

our data to satisfy the conditions prescribed. Picinbono finally concluded that “the

only scientific procedure would require the calculation of the error coming from

the approximation”, which resides only in the imaginary part of the AS. He also

correctly pointed out that there is no general procedure to calculate this error from

the spectrum of the amplitude function, for the error depends on the structure of

the phase function rather than on spectral properties of the amplitude function.

With the difficulties presented by Picinbono,16 we can only settle on the partial

solution provided by the Nuttall19 theorem.

Nuttall19 first established the following theoretic result: for any given function

x(t) = a(t) cosφ(t), (26)

for arbitrary a(t) and ϕ(t), not necessarily narrow band functions, and if the HT

of x(t) is given by xh(t), and the quadrature of x(t) is xq(t), then

E =

∫

∞

t=−∞

[xh(t) − xq(t)]2dt = 2

∫ ω0

−∞

Fq(ω)dω, (27)

where

Fq(ω) = F (ω) + i

∫

∞

−∞

a(t) sin θ(t)e−iωtdt, (28)

in which F (ω) is the spectrum of the signal, and Fq(ω) is the spectrum of the

quadrature of the signal. Therefore, the necessary and sufficient conditions for the

HT and the quadrature to be identical is E = 0. This is an important and brilliant,

yet not very practical and useful, result. The difficulties are due to the following

three deficiencies. First, the result is expressed in terms of the quadrature spectrum

of the signal, which is an unknown quantity, if quadrature is unknown. Therefore,

the error bound could not be evaluated easily. Second, the result is given as an

overall integral, which provides a global measure of the discrepancy. Therefore, we

would not know which part of the data causes the error in a nonstationary time

series. Finally, the error index is energy based; it only states that the xh(t) and xq(t)

are different, but does not offer an error index on the frequency.16 Therefore, the

Nuttall theorem offers only a proxy for the error index of IF; it is again a necessary

condition for the AS approach to yield the exact IF. These difficulties, however, do

not diminish the significance of Nuttall’s result: it points out a serious problem and
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limitation on equating the HT and the quadrature of a signal; therefore, there is a

serious problem on using the HT to compute physically valid IF values.

All these important results were known by the late sixties. For lack of a sat-

isfactory method to decompose the data into the monocomponent functions other

than the traditional bandpass filters, the limitations set by Bedrosian and Nuttall

were irrelevant, for the bandpassed signal is linear and narrow band and satisfies

the limitation automatically. As it is also well known that a bandpassed signal

would eliminate many interesting nonlinear properties from the data, the band-

pass approach could not make the Hilbert transform generated AS into a general

tool for physically valid IF computation. Consequently, the HT method remains

as an impractical method for data analysis. The solutions to these difficulties are

presented in the next section.

3.1. The normalization scheme: an empirical AM and

FM decomposition

Both limitations stated by the Bedrosian and Nuttall theorems have firm theoretic

foundations, and must be satisfied. To this end, we propose a new normalization

scheme, which is an empirical AM and FM decomposition method enabling us to

separate any IMF empirically and uniquely into envelope (AM) and carrier (FM)

parts. This normalization decomposition scheme has three important consequences:

first, and most importantly, the normalized carrier also enables us to directly com-

pute quadrature (DQ). Second, the normalized carrier has unity amplitude; there-

fore, it satisfies the Bedrosian theorem automatically. Finally, the normalized car-

rier enables us to provide a ready and sharper local energy based measure of error

than that given by the Nuttall theorem. The method using the empirical AM–

FM decomposition and the normalization scheme is designated as the normalized

Hilbert transform (NHT).

Other than direct quadrature and NHT based IF computations, we will also

introduce two additional methods for determining the local frequency independent

of the HT, each based on different assumptions, and each giving slightly different

values for IF from the same data. For all of these methods to work, the data will

have to be reduced to an IMF first. In this section, we shall present these different

approaches and the most crucial step, the normalization scheme.

The normalization scheme is designed to separate the AM and FM parts of the

IMF signal uniquely but empirically; it is based on iterative applications of cubic

spline fitting through the data. As this empirical AM–FM decomposition is of great

importance to the subsequent discussions, we will present it first as follows:

First, from the given IMF data in Fig. 4, identify all the local maxima of the

absolute value of the data as in Fig. 5. By using the absolute value fitting, we

are guaranteed that the normalized data are symmetric with respect to the zero

axis. Next, we connect all these maxima points with a cubic spline curve. This

spline curve is designated as the empiric envelope of the data, e1(t), also shown in
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Fig. 4. Arbitrary sample data used here as example to illustrate the empirical AM–FM decom-
position through the spline fitted normalization scheme.

Fig. 5. The maxima of the absolute values (dot) of the data (dash line) given in Fig. 4 and
the spline fitting (solid line) through those values. The spline line is defined as the envelope
(instantaneous amplitude) to be used as the base for normalizing the data.

A
d
v
. 
A

d
ap

t.
 D

at
a 

A
n
al

. 
2
0
0
9
.0

1
:1

7
7
-2

2
9
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 6

7
.2

2
4
.1

8
3
.1

1
4
 o

n
 0

3
/0

8
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S1793536909000096&iName=master.img-150.jpg&w=293&h=235
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S1793536909000096&iName=master.img-151.jpg&w=302&h=240


On Instantaneous Frequency 193

Fig. 5. In general, this envelope is different from the modulus of the AS. For any

given real data, the extrema are fixed; therefore, this empiric envelope should be

fixed and uniquely defined, with respect to a given spline function, without any

ambiguity. Having obtained the empiric envelope through spline fitting, we can use

this envelope to normalize the data, x(t), by

y1(t) =
x(t)

e1(t)
, (29)

with y1(t) as the normalized data. Ideally, y1(t) should have all the extrema with

unity value. Unfortunately, Fig. 6 shows that the normalized data still have ampli-

tudes higher than unity occasionally. This is due to the fact that the spline is fitted

through the maximum points only. At the locations of fast changing amplitudes, the

envelope spline line, passing through the maxima, can go below some data points.

Even with these occasional flaws, the normalization scheme has effectively sepa-

rated the amplitude from the carrier oscillation. To remove any flaws of this type,

the normalization procedure can be implemented repeatedly with e2(t) defined as

the empiric envelope for y1(t), and so on as,

y2(t) =
y1(t)

e2(t)
,

...

yn(t) =
yn−1(t)

en(t)
,

(30)

after nth iteration. When all of the values of yn(t) are less than or equal to unity,

the normalization is complete; it is then designated as the empirical FM part of the

data, F (t),

yn(t) = cosφ(t) = F (t), (31)

where F (t) is a purely FM function with unity amplitude. With the FM part deter-

mined, the AM part, A(t), is defined simply as,

A(t) =
x(t)

F (t)
= e1(t)e2(t) · · · e(t)n. (32)

Therefore, from Eq. (32), we have

x(t) = A(t) ∗ F (t) = A(t) cos φ(t). (33)

Thus, we accomplished the empiric AM–FM decomposition through repeated

normalization. Typically the converging is very fast; two or three rounds of itera-

tions would be sufficient to make all data points equal to or less than unity. The

thrice normalized result is given in Fig. 7 as an example, where no point is greater

than unity. The empiric AM and the modulus of AS from the data were all plotted

in Fig. 8. It is clear that the empiric AM is smoother and devoid of the higher-

frequency fluctuation and overshoots as in the modulus of AS. Our experience also
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Fig. 6. The one time normalized data (dotted line) compared with the original data (solid line).
Notice that the normalized data still have values greater than unity.

Fig. 7. The three times normalized data (dotted line) compared with the original data (solid
line). Notice that the normalized data have no value greater than unity.
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Fig. 8. The data (dotted line) and various envelopes: although both envelopes agree in general,
the modulus of AS (black line) shows high-frequency intrawave modulations, while the empiric
envelope (gray line) fitted by spline is smooth.

shows that the spline fitted envelopes serve as a much better base for the normal-

ization operations.

As in the EMD, this approach lacks analytic expressions for the operation and

the final results, which might hamper the formulation of a theoretical proof. This

approach, just like the EMD, is direct and simple to implement. Analyticity, how-

ever, is not a requirement for computing the IF. As we have shown that the resulting

empiric envelope is unique and even smoother than the modulus of the AS obtained

through HT. We will also show that the IF values determined are exactly based on

the phase function without any approximation. These advantages, in our judgment,

have far out-weighted the deficiency of lacking an analytic expression. After all, in

most cases there is no analytic expression for the data anyway.

It should be noted that the normalization process could cause some deformation

of the original data, but the amount of the deformation is negligible, for there are

rigid controling points for the periodicity provided by the zero-crossing points in

addition to the extrema. The zero-crossing points are totally unalternated by the

normalization process. As we discussed above, an alternative method to normalizing

an IMF is to use the modulus of the AS instead of the spline envelope in the

normalization scheme. This will certainly avoid the envelope dipping under the

data, but any nonlinear distorted wave form will give a jagged AS modulus envelope,

which could cause even worse deformation of the waveforms in the normalized data.
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Still another consideration in favor of the empiric envelope is in the applica-

tion of computing the damping of a dynamic system. Salvino and Cawley35 used

the modulus of AS as the envelope, which worked for simple nearly linear sys-

tems. In more complicated vibrations, the intrawave amplitude variations cause

the time derivative of the amplitude to be highly oscillatory and thus made the

damping computation impossible. Huang et al.36 had used the empirical envelope

and resolved the difficulties. Based on this consideration, we decided against using

the modulus of AS as the base for normalization.

3.2. Direct quadrature

Having proposed the empiric AM–FM decomposition, we can use the normalized

IMF as a base to compute its quadrature directly. This approach will eschew the

HT totally, and enable us to get an exact IF. After the normalization, the empirical

FM signal, F (t), is the carrier part of the data. Assuming the data to be a cosine

function, we have its quadrature simply as,

sin φ(t) =
√

1 − F 2(t). (34)

The complex pair formed by the data and its direct quadrature is not necessarily

analytic. They are computed solely to define the correct phase function, for they

preserve the phase function of the real data without the kind of distortion caused

by the AS. There seems to be many advantages for this direct quadrature approach:

it bypasses HT totally; therefore, it involves no integral interval. Its value is not

influenced by any neighboring points and the frequency computation is based only

on differentiation; therefore, it is as local as any method can be. Furthermore,

without any integral transform, it preserves the phase function of any data exactly

for an arbitrary phase function.

Once we have the quadrature, there are two possible ways to compute the phase

from the FM signal: one possibility is to compute the phase angle by simply tak-

ing the arc-cosine of the empiric FM signal as given in Eq. (31) directly. But the

computation is occasionally unstable near the local extrema. To improve the com-

putation stability, we propose a slightly modified approach through computing the

phase angle by

φ(t) = arc tan
F (t)

√

1 − F 2(t)
. (35)

Here F (t) has to be a perfectly normalized IMF after repeated rounds of normal-

ization. This is very critical, for any value of the normalized data that goes beyond

unity will cause the formula given in Eq. (34) to become imaginary, and Eq. (35)

to breakdown.

Although the arccosine and arctangent approaches are mathematically equiva-

lent, they are computationally different. The arctangent approach enables us to use

the four-quadrant inverse tangent to uniquely determine the specific quadrant of
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the phase function, which is essential for the proper unwrapping (from 2π cycles

to free running). Furthermore, the computational stability in the arctangent is also

much improved, as will be demonstrated later. Using arctangent, we could still

experience unstable results occasionally, when the data contain some irregularities

such as jumps or sharp slope changes. Yet the most serious problem is especially

sparse data points near the extrema. This occurs frequently for the high-frequency

components. Sparse data would also cause difficulties in the normalization, for the

maxima might not locate exactly on one of the available data points. Therefore,

using any available point would cause the waveform to deform. The computation

stability could be much improved with a three- or five-point medium filter, which

will not degrade the answer noticeably, for the derivative had already involved

two points in the computation. A three-point medium covers only a slightly wider

region. In all the subsequent computations, we have used the arctangent approach

and a three-point medium filter as the default operation in the Direct Quadrature

method unless otherwise noted.

The IF computed from the DQ is given in Fig. 9 together with the NHT method

to be discussed later. Here the improvement of the DQ is clearly shown: the ini-

tial negative IF values, from the simple non-normalized AS at the location of an

amplitude minimum region, totally disappeared. These negative frequency values,

near the neighborhood of this minimum amplitude location, are the consequence of

violating the condition stipulated by the Bedrosian theorem.
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Fig. 9. The IF of the sample data based on various methods: direct quadrature (DQ), HT, and
NHT, with the data plotted at one-tenth scale.
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By definition, the energy based error index as defined by Nuttall would be zero

identically for the quadrature method. DQ gives the correct phase functions even for

extremely complicated phase functions. In most locations, however, the numerical

difference between the quadrature and HT is small as shown in Fig. 9.

3.3. Normalized Hilbert transform

As the amplitude of the empirical FM signal is identically unity, the limitation of

the Bedrosian theorem is no longer a concern in computing AS through the HT.

The IF computed from the normalized data is also given in Fig. 9 marked as NHT

case. Here the improvement of the normalization scheme is also clearly seen: the

initial negative IF values, from non-normalized data near the amplitude minimum

locations, were eliminated, for the condition stipulated by the Bedrosian theorem

is satisfied automatically. The only noticeable differences between NHT and DQ

all occur near where the waveform suffers some distortion. Such distortions are

due to complicated phase function changes, the condition stipulated by the Nuttall

theorem. At such locations NHT can only give an approximate answer anyway.

Next, we can define a sharper error bound than given by the Nuttall theorem.

The principle is very simple: if the HT indeed produces the quadrature, then the

modulus of AS from the empiric envelope should be unity. Any deviation of the

modulus of AS from unity is the error; thus we have an energy based indicator of

the difference between the quadrature and the HT, which can be defined simply as

E(t) = [abs(analytic signal (z(t))) − 1]2. (36)

This error indicator is a function of time as shown in Fig. 10. It gives a local

measure of the error incurred in the amplitude, but not of the IF computation

directly.16 Nevertheless, this surrogate measure of error is both logically and prac-

tically superior to the constant error bound established by the Nuttall theorem. If

the quadrature pair and the AS are identical, the error should be zero. They usually

are not identical. Based on our experience, the majority of the error comes from the

following two sources: the first source is due to data distortion in the normalization

at a location near drastic changes of amplitude, where the envelope spline fitting

will not be able to turn sharply enough to cover all, but goes under some data

points. Repeated normalization will remove this imperfection in normalization, but

it would inevitably distort the wave profile, for the original location of the extrema

could be shifted in the process. This difficulty is even more severe when the ampli-

tude is also locally small, where any error will be amplified by the smallness of

the amplitude used in the normalization process in Eq. (30). The error index from

this condition is usually extremely large. Some of the errors in this category could

be alleviated by using different spline function in the normalization process. For

example, the Hermite cubic spline with the monotonic condition would not cause

overshoot or undershooting. In our implementation, there are occasion that this

approach indeed improves the results considerably. We, however, do not use this
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Fig. 10. The energy based error index values for the sample data. Notice the error index is high
whenever the waveform of the data is highly distorted from the regular sinusoidal form.

approach because the Hermite cubic spline is not continuous in slope, which would

give unsmooth IF values. The second source is due to the nonlinear waveform dis-

tortion of the waveform, which will cause a corresponding variation of the phase

function, φ(t), as stipulated by the Nuttall theorem. As discussed in Hahn33 and

Huang et al.,2 when the phase function is not an elementary function, the phase

function from AS and that from the DQ approach would not be the same. This is

the condition stipulated by the Nuttall theorem. The error index from this condition

is usually small.

Based on our experience, both the NHT and the DQ can be used routinely to

give valid IF. The advantage of NHT is that it has a slightly better computational

stability than the DQ method, but DQ certainly gives a more accurate IF, if the

data is dense enough.

3.4. Teager energy operator

The Teager energy operator (TEO; see, e.g., Refs. 37, 38) has been proposed as a

method to compute IF without involving integral transforms; it is totally based on

differentiations. The idea is based on a signal of the form,

x(t) = a sin ωt, (37)
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then, an energy operator is defined as

ψ(x) = ẋ2 − xẍ (38)

where the overdots represent first and second derivatives of x(t) with respect to

time. Physically, if x represents displacement, the operator, ψ(x), is the sum of

kinetic and potential energy, hence the method is designed as TEO. For this simple

oscillator with constant amplitude and frequency, we will have

ψ(x) = a2ω2 and ψ(ẋ) = a2ω4. (39)

By simply manipulating the two terms in Eq. (39), we have

ω =

√

ψ(ẋ)

ψ(x)
and a =

ψ(x)
√

ψ(ẋ)
. (40)

Thus one can obtain both the amplitude and frequency with the energy opera-

tor. Kaiser37 and Maragos et al.39,40 have proposed to extend the energy operator

approach to the continuous functions of AM–FM signals, where both the amplitude

and the frequency are functions of time. In those cases, the energy operator will

offer only an approximation, a rather poor one as will be shown presently. A dis-

tinct advantage of the energy operator is its superb localization property, a property

unsurpassed by any other approach, except DQ. This localization property is the

consequence of the differentiation based method; therefore, it involves at most five

neighboring data points to evaluate the frequency at the central point. No integral

transform is needed as in Hilbert or Fourier transforms. The shortcomings of the

method are also obvious: from the very definition of the frequency and amplitude,

we can see that the method only works for monocomponent functions; therefore,

before an effective decomposition method is available, the application of the method

is limited to bandpass data only. Even more fundamentally, the method is based

on a linear model for a single harmonic component only; therefore, the approxi-

mation produced by the energy operator method will deteriorate and even break

down when either the amplitude is a function of time or the wave profiles have

any intrawave modulations or harmonic distortions. Mathematically, Eqs. (39) and

(40) could only be true if amplitude and frequency are constant. Therefore, the

existence of either amplitude modulation or harmonics distortion violates the basic

assumptions of TEO. In comparisons, we found the nonlinear waveform distortion

present a more serious problem for TEO than the amplitude fluctuations, for the

derivatives from the amplitude fluctuations are general mild, while the derivative

values could vary widely from the nonlinear phase deformations. These difficulties

put a severe limitation on the application of TEO. In the past, TEO has only been

applied to the Fourier bandpassed signals. As a result, the difficulty with the nonlin-

ear distorted waveform was not assessed at all. Having employed EMD to produce

IMF, we are able to test TEO on nonstationary and nonlinear data for the first
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time. These very shortcomings and breakdown caused by nonlinear waveform distor-

tions, however, make TEO a very nice nonlinearity detector, which will be discussed

presently.

3.5. Generalized zero-crossing

Finally, we will present the GZC method. As discussed above, zero-crossing method

is the most fundamental method for computing local frequency, and it has long been

used to compute the mean period or frequency for narrow band signals.22–25 Of

course, this approach is again only meaningful for monocomponent functions, where

the numbers of zero-crossings and extrema must be equal in the data. Unfortunately,

the results are relatively crude, for the frequency so defined would be constant over

the period between zero-crossings. In GZC, we will improve the temporal resolution

to a quarter wave period by taking all zero-crossings and local extrema as the critical

control points.

In the present generalization, the time intervals between all the combinations of

critical control points are considered as a whole or partial wave period. For example,

the period between two consecutive up (or down) zero-crossings or two consecutive

maxima (or minima) can be counted as one whole period. Each given point along

the time axis will have four different values from this class of period, designed as

T4j, where j = 1 to 4. Next, the period between consecutive zero-crossings (from

up to the next down zero-crossing, or from down to the next up zero-crossing), or

consecutive extrema (from maximum to the next minimum, or from minimum to

the next maximum) can be counted as a half period. Each given point along the

time axis will have two different values from this class of period, designed as T2j ,

where j = 1 to 2. Finally, the period between one kind of extrema to the next zero-

crossings, or from one kind of zero-crossings to the next extrema can be counted

as a quarter period. Each given point along the time axis will have only one value

from this class of period, designed as T1. Clearly, the quarter period class, T1, is the

most local, so we give it a weight factor of 4. The half period class, T2, is the less

local, so we give it a weight factor of 2. And finally, the full period class, T4, is the

least local, so we give it a weight factor of 1. In total, at any point along the time

axis, we will have seven different period values, each weighted by their properties

of localness. By the same argument, each place will also have seven corresponding

different amplitude values. The mean frequency at each point along the time axis

can be computed as

ω =
1

12





1

T1
+

2
∑

j=1

1

T2j
+

4
∑

j=1

1

T4j



 , (41)

and the standard deviation can also be computed accordingly. This approach is

based on the fundamental definition of frequency given in Eq. (6); it is the most

direct, and also gives the most accurate and physically meaningful mean local fre-

quency: it is local down to a quarter period (or wavelength); it is direct and robust
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and involves no transforms or differentiations. Furthermore, this approach will also

give a statistic measure of the scattering of the frequency value. The weakness is

its crude localization, only down to a quarter wavelength at most. Another draw-

back is its inability to represent the detailed waveform distortion, for it admits

no harmonics and no intrafrequency modulations. Unless the waveform contains

asymmetries (either up and down, or left and right), the GZC will give it the same

frequency as a sinusoidal wave. With all these advantages and limitations, for most

of the practical applications, however, this mean frequency localized down to a

quarter wave period is already better than the widely used Fourier spectrogram,

say. This method is also extremely easy to implement, once the data is reduced to

a collection of IMFs. As this method physically measures the periods, or part of

them thereof, the values obtained can serve as the most stable local mean frequency

over the time span to which it is applied. In the subsequent comparisons, we will

use the GZC results as the baseline reference. Any method producing a frequency

or amplitude grossly different from the GZC result in the mean simply cannot be

correct. Therefore, GZC offers a standard reference in the mean for us to validate

the other methods.

Having presented all these IF or local frequency computing methods, we will

present some intercomparisons of the results in the following sections. In all these

cases, the data will have to be reduced to IMF components. For arbitrary data, we

have used the EMD method2 and ensemble EMD (EEMD, Ref. 41) to decompose

the data into the IMF components before applying any of the above methods to

compute the instantaneous frequency.

4. Intercomparisons of Results from Different Methods

and Discussions

For the intercomparisons, we will use two examples: one from a model and the other

from a real physical phenomenon, to illustrate the difference in the IFs produced by

the different methods. The first example is a model function to illustrate details and

the potential problems of the methods; the second example is a real speech signal,

which will give us an illustration of how the various methods perform in practical

applications. The methods used to compute the IF are the TEO, the GZC, the

NHT, the DQ, and sometimes also the simple HT methods.

4.1. Validation

The first example is the modeled damped Duffing wave with chirp frequency. The

explicit expression of the model gives us the truth and enables us to calibrate and

validate the methods quantitatively. The model is given by

x(t) = exp

(

−
t

256

)

cos

(

π

64

(

t2

512
+ 32

)

+ 0.3 sin
π

32

(

t2

512
+ 32

))

,

with t = 0 : 1024.

(42)
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Fig. 11. The modeled damped chirp Duffing waves based on Eq. (42).

Assuming the sampling rate to be 1Hz, the numeric values of the signal are

plotted in Fig. 11. As the amplitude decays exponentially, we have to normalize the

data using the method described in Eq. (30). From the normalized data, we can

also compute the quadrature. The complex phase graphs of all different methods

are given in Fig. 12, each representing the AS from the original un-normalized data

and the normalized empiric envelope, and also from the quadrature. As the HT

is implemented through Gabor32 method, the effect of the jump in values at the

beginning and the end is clearly visible from the imaginary part shown in Fig. 13,

where the amplitude of the imaginary part of the data deviates widely from the

data towards the end. The amplitude from the normalized data has corrected the

effect of the jump condition between the beginning and end, and gives a major

improvement of the result.

It is important to point out that, for this Duffing model, the quadrature and the

AS are not identical as shown vividly in this complex phase graph. Therefore, we

should anticipate problems for the IF computed from the AS methods. The phase

function of the quadrature is given by a perfect unity circle, for the modulus of the

complex number formed by the data and its quadrature is identically unity. But the

amplitude of AS from the HT deviates from the unity circle systematically. This

deviation results in an energy measure of the error in using the AS as an approx-

imation for the quadrature. In fact, the computed quadrature and the imaginary

part of the AS were shown in Fig. 13. The computed quadrature is exactly the same
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Fig. 12. The complex phase graph for the damped chirp Duffing wave model based on AS from
the original data (dash line), normalized data (dotted line), and directly computed quadrature
(thick solid line). Normalization has certainly improved the phase graph, but the phase graph is
still not a unit circle except for the quadrature.

as the one given by the theoretical expression. This offers a clear validation of the

direct quadrature computation method (DQ).

The amplitudes determined from the various methods are given in Fig. 14. The

empiric envelope determined through spline fitting agrees almost exactly with the

theoretic values, except near the beginning, where the end effects have caused the

empiric envelope to dip slightly. Again the empiric envelope is also the only one

agreeing well with the envelope determined from the GZC method over practi-

cally the whole range. The stepped values from the GZC method show the limit

of localization of the method. The amplitude from AS is influenced strongly by

the complicated phase function as stipulated by the Nuttall theorem. The worse

overall performance among all the methods is the TEO. Whenever the waveform is

distorted, the values of the amplitude drop even to zero, which bear no similarity

to the reality. The amplitude from HT performs poorly near the end of the data

span caused by the jump condition between the beginning and the end. Here the

limitations of both the Bedrosian and Nuttall theorems are visible.

To examine the effect of the Bedrosian theorem in detail, we computed the

Fourier power spectra for both the AM and FM signals as given in Fig. 15. Although

the AM signal is a monotonic, exponentially decaying function, the power spec-

tral density would treat it as a “saw-tooth” function, and have a wide spectrum.
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Fig. 13. Comparison of the imaginary part from AS based on the simple HT, NHT, and DQ.
While the quadrature is identical with the theoretic result, the ASs are visibly different from the
theoretic results especially the one without normalization, where the jump condition at the ends
forced the AS to diverge from the data.

Therefore, the spectra of the AM and FM signal are not disjoint at all. Consequently,

the phase function of the AS will be contaminated by the amplitude variations, for

they violate the Bedrosian theorem. As we will see later, the spectra from the AM

and FM signals of an IMF would never be disjoint in general, unless the signals

were separated specifically by a bandpass filter. The small but nonzero overlap-

ping indicates that the FM part of the AS generated through the HT is always an

approximation contaminated by the AM variations.

Now, let us examine the IF values given in Fig. 16. Here again, the IF from

the DQ method coincides with the theoretic values with no visible discrepancy in

the figure on this scale. To examine the discrepancy in detail, a selected section is

expanded in Fig. 17. Here, the IF values from DQ show some deviation from the

true theoretic ones near the peaks of each wave toward the end, where the spare

data points become a problem. Nevertheless, the overall performance is still very

good. The HT without normalization performs poorly with many negative values,

especially toward the end, where the jump condition between the beginning and

the end had caused the imaginary to deviate too far from the true value and hence

the poor IF performance. The IF values from either HT (even when it performs
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Fig. 14. The amplitude determined from various methods: TEO, GZC, and HT, spline fitting
used in DQ and NHT. The spline line is identical to the theoretic value; therefore, it is defined as
the envelope in the direct quadrature method.

well) or NHT show insufficient modulation than the theoretic values as reported

by Huang et al.2 The normalization step indeed has provided more stable, albeit

still insufficiently modulated, IF values. The GZC gives a slightly stepped constant

sloped mean value as expected. The result of TEO is again plagued by the nonlinear

distortion of the waveform to the degree that the frequency is totally useless.

A crucial criterion for judging the viability of the different methods is to examine

the error from two points of view. First, we will use the energy based criterion as

given in Fig. 18. Based on the energy considerations, we can only compute the errors

from the normalized signals. The errors from the DQ and GZC are negligible, for

the envelope determined from the GZC is nearly perfect. The error is relatively low

for NHT compared to the much larger values from TEO. Second, we will examine

the error by direct comparisons of the ratios of IF values from the various methods

to the truth as the base. The overall results are given in Fig. 19, and the details

are given in Fig. 20. Here the DQ result is almost exactly as computed from the

theoretic expression. The only large discrepancies occur at the beginning due to

the end effect from the spline envelope fittings. Toward the end, the insufficient

digitalization rate has caused some small discrepancy as discussed before. At most

of the time, the IF values are identical to the theoretic true values computed from

the model. NHT shows great improvement over HT, because of the removal of the

effects stipulated in the Bedrosian theorem through normalization. The effect of
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Fig. 15. Fourier power spectral density for the normalized carrier (FM, the solid line) and enve-
lope (AM, the dash line). They are overlapping each other indicating that the data violated the
limitation of the Bedrosian theorem; therefore, the contamination of the FM part defined from
AS by the AM variations is to be expected.

the Nuttall theorem is visible from the insufficient intrawave frequency modulation.

The ratio from GZC is pretty poor, for it totally missed the intrawave frequency

modulation, but it still is correct in the mean. This result offers a good proof of

the claim by Picinbono16: error of IF cannot be measured by the envelope spectra

alone as given by Nuttall theorem. It should be pointed out, however, that the

TEO still offers the poorest agreement. The IF values could even reach zero at

many locations near the amplitude equal to zero line, and never give reasonable

value almost everywhere except at one point in every wave near the local maximum

or minimum.

Finally, we will give a comparison between the arccosine and arctangent

approaches. The difficult in using arccosine is in the unwrapping, for the typi-

cal arccosine will only give phase function between 0 and π. As a result, to have a

proper phase will involve an additional step of flipping the directly computed phase

before the unwrapping. Without such a step, the result will be erroneous. Though

such a step could be implemented, the four-quadrant inverse tangent is much eas-

ier. Figure 21 gives IF values obtained from the arccosine, arctangent, and the

truth. Without proper unwrapping, the result based on direct arccosine approach

contains frequency in the negative range, while the result based on four-quadrant

inverse tangent are in good agreement with the truth. A detailed view shows this

comparison in Fig. 22, in which the improvement of the three-point medium filter
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Fig. 16. The IF computed from the various methods: TEO, GZC, HT, NHT, DQ, and the
theoretic value (truth). IF from HT (without normalization) and TEO perform poorly.
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Fig. 17. Details of Fig. 16 near the end, where the slight deviation of DQ from the truth due to
the data rate at this high frequency is visible. Even with this discrepancy, DQ still outperform all
the other methods.
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Fig. 18. The energy based error index of the damped chirp duffing model. The error of NHT is
nonzero everywhere as a consequence of Nuttall theorem, but it is consistently smaller than the
TEO method.
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Fig. 19. Using the ratios of IF values give in Fig. 16 to the truth as a measure of error directly.
Other than at the very beginning, the DQ gives nearly a perfect ratio of one.
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Fig. 20. Details of Fig. 19, where the deviations of the DQ values are barely discernable, where
the discrepancies from all the other method are clearly visible.
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Fig. 21. Comparison of IF values obtained from the arccosine and arctangent approaches. The
four-quadrant inverse tangent method employed in the DQ gives correct IF values. The difficulty in
the unwrapping for the phase function obtained from direct arccosine approach results in erroneous
IF values.
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Fig. 22. Details of Fig. 21, where the DQ values from the arctangent approach always gives the
correct results, except when the data become sparse.

values (DQ3) over the unfiltered results (DQ1) can be seen clearly. The effect of

sparse data points near the maxima is also shown as discussed above.

As mentioned above, the energy based index is only sensitive to the envelope

fitting by definition. As such, it only serves as a surrogate for the IF values. In

analyzing real data, the true frequency is unknown anyway; therefore, the energy

based error index is the only error measure available. If it is large, there certainly

should be problems. Even if the error index is small, as in the case of GZC, the IF

values still might not be small. Thus, the energy based error index might not be a

foolproof indication of error in the IF values; it thus provides only a guidance and

a necessary condition for small errors.

There are several lessons learned here through this validation exercise: the TEO

is for linear signals, and the GZC can only give a mean value, but not the intrawave

frequency modulation, which is a sure sign of signal from nonlinear processes. This

exercise has clearly validated the NHT method and, more importantly, the superi-

ority of the direct quadrature approach is clearly demonstrated.

4.2. An application

Having examined the different methods with the model equation and validated

both DQ and NHT, we will proceed to test the methods on an example of practical

application, an IMF extracted from the voice record of “Hello”. The original signal
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Fig. 23. The intrinsic mode functions (IMF) derived from the data given in Fig. 1 plotted on
the same scale. The second IMF is clearly the most energetic, and is used as sample data for this
study.

of the sound for “Hello” is given in Fig. 1, with the IMF components extracted from

EMD given in Fig. 23, where the most energetic component, given in Fig. 23, is

selected as the test data, shown in Fig. 24, to make comparisons among the different

methods. It should be note that we used only EMD rather than EEMD to accentuate

the potential problems of large amplitude fluctuation of amplitude and IF values

caused by mode mixing. Such case is very common in everyday applications. This

signal could be decomposed much more reasonably with EEMD as demonstrated

by Wu and Huang,41 in which the mode mixing is totally removed and the large

amplitude fluctuation absent.

Now, let us proceed with the comparisons of different methods. First, we will

present the different envelopes obtained from spline and HT fittings and all the

other methods as in Fig. 25. From this global view, the amplitude from the TEO

fitting has already shown serious problems, with the magnitude exceeding the data

by a large margin. All the other methods (HT, spline, and GZC) seem to have

collated in a narrow-band symmetric to the silhouette of the data, indicating all

envelopes having been reasonable.
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Fig. 24. The sample data of the second IMF from Fig. 23.
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Fig. 25. The envelopes determined from various methods: TEO, GZC, HT (Hilbert), and spline,
together with the data plotted as a reference. As the data is an IMF, it is symmetric; therefore,
any envelope deviation from the symmetric image of the data, such as the one from TEO, could
not be right. All the other methods performed reasonably well.
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Fig. 26. Details of a section with small and highly variable amplitude values near 0.1 s. TEO is
still erroneous; the HT also shows visible variations from the spline, which follows the stepped
GZC closely.

To examine the details, we have selected and enlarged two subsections near 0.1

and 0.2 s given in Figs. 26 and 27. From these figures, we can immediately see

that the envelope from the TEO becomes problematic whenever the waveform is

distorted. This is to be expected from the model functions discussed above. It is a

clear indication that the TEO is based on a stationary and linear model. As the

error occurs most seriously at the location of nonlinear wave form distortion as

discussed above, this shortcoming can be turned into an advantage: to use it as an

indicator for nonlinear wave deformation. Other than the TEO envelope, all the

envelopes are much closer to each other. Indeed, from the performance of TEO

here we can surmise that the speech signal is highly nonlinear with high confidence.

The empiric spline envelope is the smoothest one, while the Hilbert envelope shows

some subperiod intrawave fluctuations due to the nonlinear waveform distortion.

As the GZC is the most robust, albeit coarsely localized, definition for envelope and

period, it is reassuring to see that the empiric envelope follows the one from GZC

closely almost everywhere. This is especially true when the amplitude variation is

small as in Fig. 27, yet the empiric envelope still retains the smoothness that is

lacking in the GZC envelope.

As before, the misfits by the HT method are indicating the limitations stipulated

by the Bedrosian and Nuttall theorems. To examine the condition of the Bedrosian

theorem, we again plot the spectra of the FM (normalized carrier) and AM (the

empiric envelope) signals in Fig. 28. Clearly, they are not disjoint, just as in the case
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Fig. 27. Details of a section with large and uniform amplitude values near 0.2 s. TEO is
still erroneous; the HT also shows visible variation from the spline, which is almost identical
with GZC.

Fig. 28. Similar to Fig. 15, Fourier power spectral density for the normalized carrier (FM, the
solid line) and envelope (AM the dotted line). They are overlapping each other again, indicating
that the data violated the limitation of the Bedrosian theorem, and thus a problem in IF values
through AS is expected.
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Fig. 29. Similar to Fig. 16, the IF computed from the various methods: TEO, GZC, HT, NHT,
and DQ. No theoretic value is available here for comparison. Again, IF from HT (without nor-
malization) and TEO perform poorly with large fluctuations for HT and numerous zero-frequency
values from TEO.

of the Duffing model. With this in mind, we should expect the IF derived from the

AS signal to be problematic. An independent way to confirm the limitation imposed

by the Bedrosian theorem, we have used a narrow window to exclude the large

amplitude variation within the window and obtained positive frequency locally.

This window is very difficult to implement. Normalization of the IMF resolves the

problem of amplitude variation; it also drastically reduces the error index.

Now, we will examine the IF, with the global view given in Fig. 29. Two features

become obvious. First, there are numerous instances when the TEO values drop

to zero level, an indication of nonlinear processes. Second, there are also large

fluctuations of the HT determined IF values dipping even into the negative range.

These wild fluctuations are the consequence mostly of the limitation stipulated by

the Bedrosian theorem. As all the problem areas occur at the locations when the

signal has very small amplitude values and in the neighborhood of large amplitude

fluctuations, we can also assume that the IF value calculations are unstable at small

amplitude values. Therefore, the poor performance of HT could be the combination

of both small local amplitude values and the large fluctuation of the amplitude in

the neighborhood. The IF values obtained from the NHT, having removed the AM

fluctuations, certainly satisfy the Bedrosian theorem and eliminate these anomalies

from the simple AS approach. In fact, the results from the NHT have never dipped
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Fig. 30. Details of a section with small and highly variable amplitude values near 0.1 s. TEO
performs well except near the location when amplitude values have a problem. The IF values
hit zero value there as well. HT shows visible deviations from the GZC values, mostly from the
violation of the Bedrosian theorem, an error corrected successfully with normalization. Quadrature
again outperforms all the other methods.

to zero or a negative range. Again, we will use the identical two sections as in the

amplitude study to examine the details of IF shown in Figs. 30 and 31. From Fig. 30,

we can see that the IF values from HT are very unstable whenever the amplitude

values are small or the amplitude of the signal experiences large magnitude changes.

The IF values for TEO are relatively stable with respect to the amplitude changes as

we argued before, but they suffer at the locations of waveform distortions. The best

results again come from the DQ and NHT methods, which are closely intertwined

with each other and both matched with the GZC values. DQ values show some

deeper modulations especially at the locations with large waveform distortions as

expected. Although we do not have the truth here to make an absolute comparison,

based on the validation study of the Duffing model above we believe that the deep

modulating DQ values offer the best answer.

Finally, let us examine the errors from the various methods. The error indices

of the HT, NHT, and DQ are given in Fig. 32, where HT here stands for the

normalization using the modulus from un-normalized AS. The results indicate that

the error index for NHT is consistently smaller than that from HT except for one

location near 0.4 s. The results of this particular location of large NHT error is

enlarged and examined in Fig. 33. We found that the envelope from NHT had cut
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Fig. 31. Details of a section with large and uniform amplitude values near 0.2 s. TEO is still
erroneous; the HT shows no visible discrepancy from the normalized, the quadrature and GZC,
except DQ shows some deeper modulation especially at the location where wave form distortion
is strong, which is also the locations where the TEO perform the poorest.

through the data near the location of very low amplitude and caused waveform

distortions in poor normalization. If the modulus of AS is used as the base for

normalization, there will not be any case with the envelope below the data. It

is tempting to adopt this alternative for a normalization scheme. But as discuss

above, and from the overall performance of HT and NHT, we believe the empirical

spline envelope based normalization is still the preferred option. All the failures of

NHT are at the locations of low amplitude with negligible energy density; therefore,

even with large error, the impact on energy–time–frequency spectral distribution is

insignificant. The overall performance of NHT is far better than HT. By definition,

the energy based error index from DQ is identically zero. As discussed above, this

might not be an indication of zero error in IF, but it is a necessary condition for

small errors.

5. AM and FM Representation of the Data

Until now, the main result of Hilbert spectral analysis has always emphasized the

FM part of the data: the data is decomposed into IMFs first. The IF and amplitude

of each IMF is then computed through AS to form the Hilbert spectrum with the

frequency calculated from the carriers. Through the empirical AM–FM decompos-

ing, we have uniquely separated the AM from the FM part of the data. Though the
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Fig. 32. The energy based error index. Normalization has improved the error drastically.

variations on the AM or envelope variations (FM) are included in the Hilbert spec-

trum, they have not been examined in detail. In the EMD and Hilbert spectral

analysis approach, it is justifiable not to put too much attention on the amplitude

variations, for if there is mode mixing, the amplitude variation from such mixed

mode IMF really does not reveal any true underlying physical processes. Mode

mixing can be alleviated through an intermittence test6 or by the EEMD.41 Either

way, we can obtain IMF sets without mode mixing. Then, the envelope variation

would contain additional information, for example, when there is a beating sig-

nal representing the sum of two co-existing sinusoidal waves. In an earlier paper,

Huang et al.2 tried to extract individual components out of the sum of two linear

trigonometric functions such as

x(t) = cos at + cos bt. (43)

Through 3000 repeated siftings, two seemingly separate components were recovered.

But the intrinsic mode functions (IMFs) were not clean trigonometric functions

anymore, and there were obvious aliases in the resulting IMF components and the

residue. The approach proposed then is both unnecessary and unsatisfactory. The

problem, in fact, has a much simpler solution: treating the envelope as an amplitude
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Fig. 33. Detail of Fig. 32, at the location where NHT shows large error. This is caused by the
spline as it went under the peak of an extremely low amplitude wave, located near 0.406 to 0.407 s,
that distorted the normalized profile.

modulation and just processing the envelope data. Thus the function x(t) given in

Eq. (43) can be rewritten as

x(t) = cos at + cos bt = 2 cos

(

a + b

2
t

)

cos

(

a − b

2
t

)

. (44)

There is no difference between the sum of the individual components and the mod-

ulating envelope form; they are trigonometric identities. If one can obtain both

the frequency of the carrier wave, (a + b)/2, and the frequency of the envelope,

(a− b)/2, then one has indeed extracted all the information in the data. The prob-

lem of whether one could or could not separate two components forming a beating

signal have been studied by Rilling and Flandrin42 thoroughly. Their conclusion is

both rigorous and thoughtful. To separate the signal is to conform to the mathe-

matic requirement under the Fourier scheme of reason. In fact, if one would match

one’s results with physics and/or perception, to treat the signal as one component

is more reasonable. For example, if one is to make a monotonal sound with slightly

variable amplitude, should we label such a sound as two tone? Most likely and

more reasonably we would not do so. Yet, mathematically, once the amplitude is

fluctuating regularly, the signal would be represented as two tones under the strict

stationary and linear Fourier model. For complicated AM, the modulation itself

contains valuable information that is worthy exploring.
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Fig. 34. The intrinsic mode functions for the AM signal of the data (given in Fig. 24), which is
defined as the spline fitted envelope (given in Fig. 25).

This discussion gives us the reason to look for a new approach to extract addi-

tional information from the envelope. In the simple example given in Eq. (44), the

envelope becomes a rectified cosine wave; the frequency would be easier to determine

from the simple period counting than from the Hilbert spectral result. For a more

general case, when the amplitudes of the two sinusoidal functions are not equal, the

modulation is no longer so simple. For even more complicated cases, when there

are more than two co-existing sinusoidal components with different amplitudes and

frequencies, there is no general expression for the envelope and carrier anymore.

The final result could be represented as more than one frequency-modulated band

in the Hilbert spectrum. It is, then, impossible to describe the individual compo-

nents under this situation. In these cases, to represent the signal as an FM and AM

variation is more meaningful, for the dual representations of frequency arise from

the different definitions of frequency: in the Hilbert view, amplitude and frequency

modulations still render a correct representation of the signal, but this view is very

different from that of the Fourier analysis. In such cases, if the process is indeed sta-

tionary and linear, Fourier analysis could be used, as suggested by Huang et al.,2

which will give the more familiar results. In this case, the judgment for method
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Fig. 35. The Hilbert spectrum for the AM signal (white contours) compared to the FM signal
(given in color contours). The frequency content of the AM signal in general is lower than the FM
counterpart.

selection is not based on which one is correct, for they both are; rather, it is on

which one is more familiar and more revealing.

When we have a more complicated data as in the case of the speech signal, we

can also find the amplitude variation information by processing the envelope or the

AM part of the data. When the empiric envelope of the data given in Fig. 24 is

decomposed through EMD, we have the IMF given in Fig. 34. Using these IMFs,

we can construct the Hilbert spectrum of the AM part as given in Fig. 35, where

the FM counterpart is also given as a reference. The physical meaning of the AM

spectrum is not as clearly defined in this case as in the FM signal, for obvious

intermittence is still present. The methodology introduced here, however, serves to

indicate the AM contribution to the variability of the local frequency. In speech

analysis, the AM spectrum would give additional information on the pause and the

speech pattern. For most of the problems with AM and FM variations, the total

information of the data is fully represented if we process both the AM and FM

spectra.

6. Discussions

Having presented all different methods for computing the IF, we would like to

emphasize that the IF is a very different concept from the frequency content of the
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data derived from Fourier based methods as discussed in great details by Huang

et al.2 IF introduced here is based on the instantaneous variation of the phase func-

tion from the direct quadrature or AS through the HT on adaptively decomposed

monocomponent functions, while the traditional Fourier-type frequency content is

an averaged frequency based on integral transform of the data with an a priori

basis. Therefore, when the basis is changed, the frequency content will also change.

Similarly, when we change the decomposition method, the IF will also change. The

IF and the integral transform computed mean frequency do not have the same phys-

ical meaning, and would not have an exact one-to-one correspondent relationship.

Before getting into the discussions of the results from different methods presented

here, a few words to dispel some of the common misconceptions (or paradoxes as

given in, e.g., Ref. 13) on IF are necessary.

One of the most prevailing misconceptions of IF is that, for a data with discrete

line spectrum, how can IF be a continuous function? A variation of this miscon-

ception is that IF can give frequency values that are not even one of the discreet

spectral lines. Both of these paradoxes can be resolved easily. In the case of signals

from nonlinear processes, IF methods treat the harmonic distortions as continu-

ous intrawave frequency modulations; on the other hand, Fourier based methods

treat the frequency content as discreet harmonic spectral lines. In case of a two or

more beating waves, IF methods treat the data as AM and FM modulation, while

Fourier based methods treat each constituent wave as a separate discreet spectral

line. Although they appear perplexingly different, they are representing the same

data from two different viewpoints. The discrete spectral lines are the product of

Fourier analysis based on linear stationary assumption. While frequency defined as

the derivative of phase function is mathematically and physically sound definition.

There should be no mystery.

Another misconception is on the negative IF values from AS. Cohen13 again

contended that, according to Gabor’s approach,32 the AS is computed through

two Fourier transforms: first transform the data into frequency space, then use an

inverse Fourier transform after discarding all the negative frequency parts (see, e.g.,

Ref. 13). Therefore, because all the negative frequency content has been discarded,

how can there still be negative IF values? This is a total misunderstanding of the

nature of negative IF computed based on AS. The direct cause of negative frequency

in AS is the consequence of multi-extrema between two zero-crossings, which will

cause local loops in the complex phase plane not centered at the origin of the

coordinate system as discussed by Huang et al.2 Negative frequency values can also

occur even if there is no multi-extrema but with large amplitude fluctuations, which

can also make the AS phase loop miss the origin, a consequence of violating the

Bedrosian theorem as discussed above. At any rate, the negative IF has nothing

to do with Gabor’s implementation of the AS computation; they are from the

data violating known theoretic limitations, the Bedrosian theorem. The negative

IF values can be successfully removed by the direct quadrature and NHT methods

presented here, or by a window method to be discussed presently.
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Next, we have to address a subtler question: how local is the IF, if the HT is

evaluated over the real axis theoretically? Unfortunately, no theoretic value can be

offered here. Empirically, however, the HT indeed gives a very local representation

as discussed in Huang et al.2 albeit with some distortion in both amplitude and

frequency values within the integration window. DQ does not involve integration,

so it should be extremely local. The HT is a singular integral with the integrand

decaying as 1/t, a very narrow window. Limiting the amplitude variation implies

that anytime a 1/t decay of a large amplitude wave can overpower the neighboring

low amplitude wave; there would be a violation of the Bedrosian theorem. Indeed we

have tried a windowed approach where short data piecewisely limited the amplitude

variation within the window to a certain preassigned value, and this has improved

the answer. But this is only a patched remedy; it does not offer a true solution.

Normalization is a way to resolve the difficult of amplitude variation. With these

discussions, the common misconceptions could be settled easily.

Now, let us discuss the results obtained above. From these examples, we can

see that most of the methods presented here perform reasonably well. Yet all the

methods that produce IF can only be applied to the IMFs, a necessary condition

not just for HT based methods, but also for all the additional methods discussed

here. The strength and weakness of each method are summarized as follows:

TEO is by far a very local method, for it is totally based on differentiation

operations. But, as it is based on and derived from a linear assumption; there-

fore, whenever there is pronounced nonlinear (harmonic) waveform distortion, the

TEO result breaks down and gives zero for IF even after the five-point medium

filtering. In the past, TEO is used in conjunction with band pass filtering of the

signal. As the traditional filtering is based on the linear Fourier analysis, it has thus

destroyed the nonlinear characteristics of the signal. Therefore, the problem of TEO

with nonlinearity was not revealed, and the filtered data will give the impression of

well-behaved IF from the TEO. The examples here, however, clearly indicate the

problems of applying TEO to data from nonlinear processes. It should be empha-

sized that, though TEO involved some nonlinear manipulation of the data, it is not

a nonlinear method as suggested by Quatieri,38 for the method is based on a linear

wave model, and can only be applied to data from such processes. The shortcom-

ing of TEO can be turned into a useful tool: to detect nonlinear distortion of the

waveform, as used by Huang et al.36

Next, we will examine the GZC method. This method, based on the fundamen-

tal definition of the frequency, is physically the most direct but mathematically

the least elegant. As the method relies only on the intervals of the critical points

consisting of extrema and zero-crossings, it cannot resolve the subtlety of intrawave

frequency modulation from nonlinear waveform distortions. Through different com-

binations of the intervals between the critical points, we can get a mean frequency

and the standard deviation from the mean, but all the values are smoothed with

a temporal resolution of a quarter wave period at most. The combination of this

mean and standard deviation, however, offer the most stable and accurate overall
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smoothed mean frequency over a whole or part of the wave. Because of this stable

property, the IF determined from GZC has been used as a standard in the above

comparisons, for no method can offer any IF totally different from this method in

the mean and still be correct. For many engineering applications where information

on the detailed waveform distortion is not of critical importance, the GZC should

be the method of choice for its stability, directness, and simplicity.

The HT (based on AS from un-normalized data) is mathematically the most

simple, elegant, and intuitively pleasing one. Yet in detailed examination, we find

that the AS approach has certain limitations. Mathematically, the only signal that

will give physically meaningful results has to be monocomponent and also obeys

the limitation stipulated in the Bedrosian18 and Nuttall19 theorems. When the data

violate these conditions, HT will give physically meaningless IF results. The problem

is usually aggravated when the amplitude is locally small. The Bedrosian theorem

also indicates that the HT is not perfectly local, for the frequency is not determined

by the carrier wave only as discussed above. Furthermore, a more fundamental

limitation on the AS approach is given by the Nuttall theorem, which states that

not all analytic pairs from HTs are identical to the quadrature. The consequence

is that the frequency would, in most cases, be only an approximation. Even with

these limitations, our experience indicates that the results provided by the HT are

consistently better than most of the other methods.

If we use the normalized data as in NHT, the results are drastically improved

over the HT whenever the amplitude variation is large. When the amplitude varies

gradually, the difference between NHT and HT is negligible. But when the ampli-

tude is small and the variation large, NHT consistently gives more stable IF values.

Therefore, NHT should be the preferred method, if AS is used. It satisfies the lim-

itation set by the Bedrosian theorem, and offers a local measure of error sharper

than the Nuttall theorem. As the normalization procedure is introduced specifi-

cally for ameliorating the difficulties of obtaining meaningful AS, the smooth spline

fitting empirical AM–FM decomposing method offers the best results.

Finally, the direct quadrature as implemented here offers an easy and direct

method to compute IF from any IMF. With the quadrature, we can eschew the

HT generated AS; theoretically, all the problems associated with the AS and IF

could be eliminated. Once the IMF is normalized properly, the quadrature can be

computed without any integration or transform; it gives the exact local IF without

any limitations and approximations. The IF is even more local than the TEO,

for DQ depends only on the first derivative. It should be the method of choice.

The occasional computational instability, however, is an annoying problem, which

prevents the method to give the exact IF. Using a medium value filter could alleviate

the problem, but the problem could not be totally eliminated by filters alone. This

problem is especially severe when the sampling rate is low that leave the high

frequency wave with a few data points per oscillation. Under such condition, local

spline of the data to add additional points could improve the result. Otherwise, the
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HT method actually performs better. Until the computation instability problem is

resolved completely, HT is still very useful.

Ever since the introduction of the HMD and Hilbert spectral analysis method by

Huang et al.,2,6,43 the method has attracted increasing attention. Recently, Flandrin

et al.44 and Wu and Huang45 have established the EMD as a bank of dyadic filters.

But Flandrin has refrained from using the HT based method to compute the IF. In

our present analysis, we conclude that the caution of not invoking the AS through

the HT is fully justified. The limitations imposed by Bedrosian and Nuttall, on

using AS to compute a physically meaningful IF, certainly have a solid theoretic

foundation. We hope the normalization procedure proposed here, the NHT and the

DQ computations have removed the difficulties of computing IF for an adaptive

time–frequency analysis.

Before ending this discussion, a few words have to be added in regard to the

latest development of EMD, the ensemble approach or EEMD.41 In EEMD, noises

are introduced to help eliminating mode mixing, which lead to a robust and physi-

cally meaningful decomposition. The resulting IMFs, however, would always contain

contribution from noise. Theoretically, this noise contribution could be reduced to

zero, but that would call for an ensemble of infinite many trials, a practical impos-

sibility. As a result, all results from EEMD would contain noise of small but non-

zero noise elements. Under such condition, the normalization scheme induced here

would encounter some difficulties, for the small noise could introduce large unde-

sirable overshooting in the spline fitting during the normalization processes. Our

preliminary finding at this time is as follows. The best normalization scheme for

EEMD results is to use the analytic signal through regular HT, in which the HT

could effectively control the undesirable overshooting. The next best choices would

be cubic Hermite spline, which also limits the overshooting, or even linear spline.

The resulting IF would be less regular compared to the values produced by the

analytic signal approach. This whole problem of computing IF for EEMD will be

investigated thoroughly and reported in the future.

7. Conclusion

Based on extensive comparisons and detailed theoretic considerations of all the

instantaneous or local frequency computations, it is determined that the DQ and

NHT are the better methods to determine the IF. Depending on the applications,

data characteristics and data analysis goals, one or the other of these methods can

also provide quite satisfactory answers. But the DQ and NHT are clearly the best

overall methods for determining the IF for nonlinear and nonstationary data.

With the introduction of the empirical AM–FM decomposition through spline

fitted normalization procedure, we have removed one of the major obstacles

for Hilbert spectral analysis and made a true time–frequency analysis feasible.

Together with the establishment of the confidence limit41,46 through the varia-

tion of the stoppage criterion and EEMD,41 and the statistically significant test of
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the information content for IMF44,45 the EMD and Hilbert spectral analysis has

indeed taken another step toward being a mature time–frequency analysis method.

Thus EMD has provided a solid base for time–frequency analysis empirically if not

theoretically.
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