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Abstra.ct 

An algorithm to solve integer linear fractional programming 

problems is proposed. The procedure is reduced to the solution of a 

sequence of integer linear subproblems. The number of subproblems 

necessary to be solved is expected to be fairly smaIl, and the finite 

convergence to the global optimum is guaranteed. Some properties 

of the algorithm including the relations to the generalized Lagrangian 

method and to continuous fractional programming are discussed. 

Besides, the application to some goal programming problems is de­

scribed by an example. 

1. Introduction 

The problems of the type: 

( 1 ) 
. pTx+r 

mm 
JC qTX +S 

subj. to xEX={xIA.l~:(b,x>O}~E" 

where qTX+S>O for all x EX 

are called linear fractional programs. They belong to the class of 

quasiconvex programs since the objective function is quasiconvex over 

a convex subset of P, and a lot of effective solution procedures have 

been proposed in [5], [6], [12], [15], [16], [19]. 

If we restrict the variables in (1) to be integers, the problem 
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becomes an integer linear fractional program. In this paper, an 

algorithm to solve such programs is proposed, and some properties 

induding the relations to the generalized Lagrangian method and to 

some (continuous) linear fractional programming algorithms are dis­

cussed. Furthermore, a goal programming problem is solved by the 

algorithm so that its applicability to practical problems is suggested. 

The procedure is reduced to solving integer linear subproblems in 

each iteration, and the finite convergence to the global optimum is 

guaranteed if the feasible region is bounded and the degeneracy is 

avoided. Besides, the number of integer linear programs necessary to 

be solved is expected to be fairly small. 

2. Development of the Algorithm 

We restrict our attention to the problems of the following type 

in this paper: 

(2 ) 
pTx+r 

m i n -"'------''-----­
x qTX+S 

subj. to x E X={xIAx~b, x~o, x is an integer vector} 

where qTX+S>O for all x EX. 

To begin with, note that (2) is equivalent to the following problem: 

. pTx+rXn+l 
min T 
X,Xn+l q X+SXn+1 

subj. to x EX, x n+l=l 

where qTX+ SXn+1>O for all x E X, Xn+1=1. 

Hence, it is sufficient to develop an algorithm for the problems 

of the following type without loss of generality: 

( 3) 
. pTx 

mm-­
x qTx 

subj. to xEX={xIAx~b,x~O,x is an integer vector}. 

We deal with the problem (3) in this paper, and assume that X 
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is nonvoid and bounded, and qTX>O for all x E X. Let X={x1, "', X"}. 

Lemma 1. There exists a finite optimal solution such that only one 

component is positive and others all zero, y*=(yt, yt, "', y:y, of 

the problem: 

( 4 ) min 2:. pTx"y/c 
k 

subj. to 2:. qTx k yk=l 
k 

Yk~O. 

Proof. Since X=/=f/J, bounded and qlX>O for all x E X by the assump­

tion, the linear program (4) has a finite optimal solution. Furthermore, 

since it has just one equality constraint with positive right-hand side, 

there exists at least one optimal solution, y*, such that just one 

component is strictly positive. 

Theorem 1. Let y*=(yt, yt, "', Yi)T be an optimal solution of (4) 

such that y~>O and that yt=O for all k=/=r. Then, x' is an optimal 

solution of (3). 

Proof. Since Yk=l/qTx k, Yi=O (i=/=k) is a feasible solution of (4) for 

all k, 
pTX' . pTXk 
--=mln-­
qTx' k qTxk 

which implies that x' is an optimal solution of (3). 

Suppose that a feasible basic solution of (4) is given by the primal 

revised simplex method, and let rr be the current value of the simplex 

multiplier. Then, the cost coefficient of Yk is pTxk_rrqTxk for k=l, 

"', s. Let 

Z=pTXT _rrqTxT= minp~"xk-rrqTxk. 
k 

If z~O, the current feasible basis is optimal. Otherwise, yr should be 

brought into the basis. As X={x1, "', X S
}, x' can be found by solving 

the following integer linear program: 

( 5 ) min pTx-rrqTx 
x 

subj. to x E X. 
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If the optimal objective value of (5) is nonnegative, an optimal solu­

tion of (4) has been obtained. 

Barring the degeneracy, the optimum of (4) is attained by solving 

the finite number of the problems (5) by the assumption that X is 

bounded. Furthermore, if x* is the optimal solution of (5) at some 

iteration in the solution of (4), the basis inverse and the cost coefficient 

of the basic variable are l/qTx * and pTX*, respectively. Thus, the 

current value of the simplex multiplier is rr=qTx*/qTx*. 

Combining the above discussions with Theorem 1 provides the 

finite algorithm to solve (3) as follows. 

Step 1. Set rr=M, where M is a sufficiently large number. 

Step 2. Find an optimal solution of (5), x*. If the optimal objective 

value is nonnegative, stop. x* is an optimal solution of (3). 

Otherwise, go to Step 3. 

Step 3. Set rr=pTx*/qTx* and go to Step 2. 

Note that 

(a) the primal feasibility of (4) is retained after the first feasible 

solution is found, which implies that a value of the objective function 

of (4) at any iteration in Phase 2 provides an upper bound of the 

objective value of the original problem (3), and that (b) if (4) is in­

feasible, then (3) is infeasible. 

Practical interest for the algorithm consists in how many integer 

linear programs (5) should be solved to obtain an optimal solution of 

(4). But the number of iterations necessary in most linear programm­

ing problems is empirically around 3m where m is the number of 

constraints. Since m=l in (4), the number of problems necessary to 

be solved is fairly small, perhaps around 3 after the first feasible 

solution is found. 

Rlustrative Example 

Let us solve the following problem by the algorithm: 

. xl-3x2 
mm 
Xl,X2 3Xl +2X2 
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On Integer Fractional Programming 

Fig. 1. Feasible region and optimal contours of sub problems 

of the example in Section 2. 

subj. to X=(Xl, X2)T E X={xl-5xl+2x2~4 

2Xl+ x2~3 

Xl- x2~4 

Xl, X2~0, integer}. 

53 

Let the optimal solution and the corresponding objective value of 

(5) at the ith iteration be Xi and Zi, respectively. The optimal contour 

of the objective function of (5) in each iteration is illustrated in Fig. 

1. 

Iteration 1. Let 7r be a sufficiently large number, say, 100, then the 

subproblem (5) becomes: 

min (xl-3x2)-100(3xl +2X2) 
XEX 

= -299xl-203x2. 

Then, xl=(6, 3)T, zl=-2403. So n==: xl-3x2 I =-1/8. 
3Xl+2x2 x' 

Iteration 2: the subproblem (5) is: 

min (XI-3X2)+(1/8) (3Xl +2X2) 
XEX 
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= (11/8)Xl-(11/4)X2 . 

Then, x2=(2, 6Y, z2=-55/4, and 1r 

Iteration 3. the subproblem (5) is: 

min (xl-3x2)+(8/9) (3Xl +2X2) 
XEX 

= (11/3)Xl-(11/9)X2 . 

Then, x 3=(1, 4Y, z3=-11/9, and 7r=-1. 

Iteration 4: the subproblem (5) is: 

min (xl-3x2)+(3xl +2X2) 
xEX 

=4Xl-X2. 

Then, x4=(1, 4Y, Z4=0. Since the optimal objective value of (5) is 

nonnegative, an optimal solution is obtained, which is xl=l, x2=4, 

and the optimal objective value is -l. 

Extension to multisector problems. Consider the following large-scale 

nonlinear integer programming problem, in which p subsystems are 

coupled in the fractional objeGtive function: 

(6 ) 
. p[x1+··· +pJxP 

mln T T 
Xl.···.Xp q1 X 1+···+qp x p 

subj. to Xi E Xi={XiIAiXi~bi, Xi ";3; 0, integer vector}, 

i=l,···,p. 

We assume that Xi is nonvoid and bounded for all i=l, ... , p, and 
p 

:2jq[Xi>O for Xi E Xi, i=l, ... , p. 
i=l 

Applying the above algorithm to the problem (6), subproblems 

(5) become: 

p p 

min :2]p[x;-7r:2]q[x; 
Xl. ''', xpi=l i=l 

subj. to Xi E Xi, i=l, ... , p, 

or 

(7 ) 
• T T 

mlnpi Xi-7rq; Xi 
X; i=l, .'., p. 

subj. to Xi E Xi 
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Though (6) is the nonlinearly coupled system, its optimal solution can 

be obtained by the iterative solution of p independent linear sub· 

problems (7). Sinc.e the efficiency of integer programming algorithms 

generally decreases nonlinearly with the increase of the number of 

variables, the above machinary may improve the computational effi· 

ciency. Actually, the problem (3) is the special case of (6) for p=1. 

Rlustrative Example 

. -xl-3xi-X3+X4--XS 
mm --

2XI +x2+3x3+5xd-xs 

subj. to XI=(XI, X2)T E XI={xl-XI+2x2~9, 

4xI+x2~21, ;rl-3x2~0, 4XI+5X2;;;.12, 

Xl, X2;;;'0, integer} 

X2=(Xa, Xl, x!)T E X2={xl-2x8+6X4~21, 

7X3+4x4~39, xs=l, Xs, X4, xs;;;'O, integer}. 

Iteration 1: let 'Jr= 100, then the two subproblems (7) become: 

subproblem 1: min (-1, -3)xl-1OO(2, l)xl 
XIEXl 

= - 201xI --103x2 . 

subproblem 2: min (-1,1, -l)x2-100(3, 5, 1)x2 
X2 EX2 

= -301xs--499x4-101xs. 

Optimal solutions are xl=(4, 5Y, x~=(3, 4, l)T. The sum of the optimal 

objective values is z'=zl+zl= -4319.. Then, 

(-1, -3)xl+(-1, 1, -l)xl 
'Jr= 

(2, 1)xl+(3, 5, l)xl 
-19/43. 

Iteration 2: the subproblems (7) are: 

subproblem 1: min (-1, -3)Xl +(19/43) (2, l)xl 
XI E Xl 

= -(5/43):cl-(1l0/43)x2 , 

subproblem 2: min (-1,1, -1)x2+(19/43)(3, 5, 1)x2 
X2 E X2 

= (14/43)xs + (138/43)x4 - (24/43)xs . 

Then, xi=(3, 6)T, xl=(O, 0, l)T, and .;::'=zi+zl= -675/43-24/43= -699/43. 

And substituting xi and xi into the objective function, we obtain 
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n=-22j13. 

Jterption 3: the subproblems (7) are: 

subproblem 1: min (-1, -3)Xl +(22/13) (2, l)Xl 
X,EX, 

= (31j13)xl - (17 j13)x2, 

subproblem 2: min (-1, 1, -1)x2+(22j13)(3, 5, 1)x2 
X2 E X2 

Subsystem 1 

__ ~~ ____ ~~ ____ .~ ____________ .x, 

Subsystem 2 

with X5 = 1 

.::::, 
~~~-~~~~~~~~~~---- __ ~--~X3 

__ L Iteration 2 

Fig. 2. Feasible region and optimal contours of subproblems 

of the multi-sector example in Section 2. 
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= (53/13)x3 + (123/13)x! + (9/13)x5 . 

Then, x;=(O, 4)T, x;=(O, 0, I)T, and Z3=Z;+Z;= -98/13+9/13= -89/13. 

Substituting x; and r, into the objective function, we obtain rc= -13/5. 

Iteration 4: the subproblems (7) are: 

subproblem 1: min (-1, -3)xl+(13/5) (2, l)Xl 
XIEXI 

= (21/5)xl --- (2/5)X2 , 

subproblem 2: min (-1,1, -1)x2+(13/5) (3, 5, l)x2 
X2 E X2 

= (34/5)xa + 14x, + (8/5)xs . 

Then, x:=(O, 4Y, x:=(O, 0, l)T, and z'=z:+z;= -8/5+8/5=0. Since z! 

is nonnegative, an optimal solution is obtained, which is Xl=O, x2=4, 

X3=0, x,=O, xs=l. The optimal objective value is -13/5. 

The optimal contours of the subproblems in each iteration are 

shown in Fig. 2. 

3. Some Properties and Applications 

3.1 Relation to the generalized Lagrangian method 

Here, we consider some relations of the algorithm presented above 

to the generalized Lagrangian method [4], [9], [14], [17], [18], which is 

among the common methods to attack the nonlinear and/or integer 

programs. 

If we put l/qTx=t in (3), (3) is equivalent to the parametric pro­

gram: 

(8) min tpTx 
x, t 

subj. to tqTx= 1 

XEX. 

Define a constrained Lagrangian function corresponding to (8) to be 

i(x, t, rc)=tpTx-rc(tqTx-1) 

where t>O and x E X. If we fix the value of the paramater t, then 

we can define a generalized Lagrangian problem as follows: 

(9) min L(x)=pTx-rcqTx 
x 
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subj. to X E X. 

Since X is a nonvoid, finite set, a finite optimal solution of (9) exists 

for any n. 

In general, the procedures to change the values of multipliers in 

generalized Lagrangian methods are essentially trial and error, and 

solving Lagrangian problems may not provide the solution of the 

original problem whatever the values of multipliers are changed. 

However, note that (9) is just the sub problem (5) solved in our 

algorithm. Furthermore, it can be easily verified that an optimal 

solution of (9), x(n), is an optimal solution of (8) where the parameter 

t is fixed to be l/qTx(n). Thus, the algorithm presented in Section 2 

may be considered as the finite procedure to solve the Lagrangian 

problem (9) by suitably changing the value of n. In other words, 

our algorithm can also be classified as the generalized Lagrangian 

method with the finite convergence. 

3.2 Relation to the continuous fractional programming algorithms 

The proposed algorithm can be modified to solve the continuous 

linear fractional programs (1) if X is bounded as will be shown below. 

We assume that r=s=O in (1) without loss of generality and X is 

bounded in this section. 

It is well known that the optimum of (1) occurs at an extreme 

point of X [19]. Thus, defining X={xlx E X, x is a basic feasible 

solution}={xl, ... , X S
}, an optimal solution of (4) provides an optimal 

solution of (1). The column to enter the basis in each simplex itera­

tion of the solution of (4) is determined by min pTxk-nqTx'<, however, 
k 

it can be found by solving the linear subproblem: 

(10) minpTx-nqTx 
.le 

subj. to x EX, 

since Xk is an extreme point of X. Hence, the global optimum of (1) 

can be obtained directly by the proposed algorithm. 
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Since the optimum can be obtained at an extreme point of the 

feasible region in continuous fractional programs, some pivoting 

algorithms to search neighboring extreme points have been proposed 

in [12], [19]. Let us compare those with our method. 

Adding to constraints the equations related to the denominator 

and the numerator: 

2:: qjXj-ZI=O 
j 

2:: PjXj-Z2=0 
j 

and describing them in the canonical form related to some feasible 

basis, the equations can be written as follows: 

+ 

+ 
+ 

x'" +am, m+IX",+I + ... + a",,,x,, = b", 

-Zl +qm+I;Cm+I +···+q"x" =-Zl 

-Z2 +pm+l.rm+l +···+p"x" =-Z2. 

Pivoting at ars, new values of Zl, ZI: are 

-ZI=-ZI-8qs 

-Z2= -z2-8ps 

where 8=br/ars>0. Then the value of the fractional objective becomes 

z2+8ps 
zl+8q~ . 

The objective value is improved when Z<Z2/ZI, i.e., 

z2+8ps 

Zl +8ijs 

or, since Zl +8q.>0, 8>0, 

(11) c.=P.-(Z2/ZI)q.<0. 

The column to enter the basis is determined by min Cj. If Cj;;;;'O for 
J 
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all j, then the optimal solution with ZI, Z2 provides the optimum of 

(1). 

Note that Cj is just the cost coefficient of Xj in our subproblem 

(10). So the above procedure searches locally a good extreme point 

of X, but our method searches globally by resolving the linear pro· 

gram (10), both using the relative cost factor (11). 

The relative cost factor (11) is slightly different from ones in 

Gilmore and Gomory [12] or Swarup [19]. Since O/(ZI +01js) is eliminated 

in (11), min Cj need not provide the best neighboring extreme point. 
j 

This situation occurs in the same way as in [19], but, in [12], the best 

direction is searched by using directional derivatives. 

By the above reason, comparing to the other methods, ours is not 

the locally steepest descent method. Furthermore, different from [12] 

or [19], several linear programs should be solved in our method, though 

the primal simplex method can be effectively used by considering re 

as the cost parameter. 

3.3 Relation to the vector optimum problems 

As fractional programming is a relative optimization problem, it 

is naturally related to the optimization problems with multiple objec­

tives as follows [11]: 

(12) max (f1(X), "', j m,(X» 
JC 

subj. to x E Xt;;E'" 

where ji(X) is an arbitrary function of x. 

A common concept of optimality for such a problem is Pareto 

optimality. 

Definition. x E X is said to be a Pareto optimal solution of (12) if there 

exists no XEX such that ji(X);:.ji(X) for all i=l, "', m and j,,(x» 

j,,(x) for some h such that l~h~m. 

The relation between our problem (3) and the problems of the 

type (12) is specified as follows. 

Theorem 2. Consider the vector optimum problem: 
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(13) max (jl(X) = _pTX, j2(X)=qTX ) 

'" 
subj. to xEX={x!Ax",;b, x~o, integer vector} 

where jl(X)~O, j2(X»O for all x EX. 

Then an optimal solution of (3), x*, is a Pareto optimal solution of 

(13). 

Proof. Suppose that x* is not a Pan~to optimal solution of (13). Then 

there exists x E X such that jl(X) > fl(X*) and j2(X)~ j2(X*), or jl(X)~ 

jl(X*) and j2(X) > j2(X*). For both cases, 

That is, 

_jl(X*»_jl~) f * - X or x ,XE . 
j2(X*) j2(X) 

It contradicts the assumption that .x* is an optimal solution of (3). 

Note that the above result holds also if the feasible region is g, 
for the definition of Pareto optimality does not depend on topological 

properties of X or jt(x). 

3.4 Application to goal programming 

Fractional programming is essentially a relative optimization of 

the numerator and denominator function. Hence, as an important 

field to which it is applicable is the optimization of efficiency. For 

example, a multi-item production scheduling to maximize the rate of 

return under the resource and demand constraints. Another example 

is referred to by Gilmore and Gomory in cutting stock problems in 

the paper industries [12]. However, in fact, the maximization or mini­

mization of "efficiency" is sometimes meaningless. On the contrary, 

the goal attainment of efficiency is not only meaningful, but it is 

sometimes the more practical objective in actual social systems than 

ones such as the maximization of total profits or the minimization of 

total costs. 

Here, a goal attainment problem of the total rate of return in a 
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capital budgeting problem for the project selection is formulated as 

the 0-1 integer linear fractional program, and solved by the proposed 

algorithm. 

The goal programming problem to select projects from n condidate 

projects such that expected profit/total capital investment is closest 

to the given goal value of the rate of return under the constraints of 

upper and lower bounds of the total capital investment and the variance 

of profit can be formulated as follows: 

n 

. 2: p,X, 

(14) min I ':' A 
Xl' •••• xn'L,CiXi 

i=l 

n 

subj. to CL~ 2: c,x,~Cu 
i=l 

n 

:ZWiXi~V 
i=l 

x,=O or 1, i=l, ... , n, 
n 

where w,=v,c,/ 2: C,Xi, pi=r,C" 
i=l 

and e,: capital investment for the ith project 

r,: expected rate of return of the i th project 

v,: variance of rate of return of the ith project 

Cu: upper bound of the available total capital 

CL: lower bound of the available total capital 

V: upper bound of the sum of weighted variance 

of profit 

A: goal value of rate of return. 

Note that xi=1 if the ith project is selected and x,=O if not. 

An optimal solution of (14) can be obtained by solving the follow­

ing two 0-1 fractional programs: 

n 

±{:z (r,-Aci)x,} 

(15) min 
i=l 

n 

:Zc,x, 
i=l 
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n 

subj. to GL~ .2: CiXi~GU 
i=l 

n 

.2: (Vi- V)CiXi:;;;;O 
i=l 

n 

± { .2: (ri-ACi)Xi}>O 
i=l 

Xi=O or 1, i=l, "', n. 

The above problems can be solved by the proposed algorithm, 

where the subproblems (5) become 0-1 linear programs. 

The computational result of an example problem with 12 projects 

Table 1. Data for the project selection problem. 

Project No. 
Capital Expected Variance of 

investment rate of return rate of return 

1 47.0 0.17 0.0060 

2 55.0 0.25 0.0045 

3 86.0 0.20 0.0058 

4 23.0 0.41 0.0033 

5 98.0 0.59 0.0125 

6 25.0 0.33 0.0050 

7 74.0 0.48 0.0100 

8 74.0 0.35 0.0088 

9 70.0 0.08 0.0015 

10 45.0 0.27 0.0045 

11 93.0 0.15 0.0075 

12 55.0 0.56 0.0090 

Parameters: G=200.0, G=125.0, V=O.007. 

Table 2. Computational results for the project selection problem. 

Goal value Projects 
Total 

Expected 
Expected 

of rate of capital rate of I(A)-(B)I 
return (A) 

selected 
investment 

profit 
return (B) 

0.1 9, 11 163.0 19.6 0.120 0.020 

0.2 4, 9, 10 138.0 27.2 0.197 0.003 

0.3 4, 9, 10, 12 193.0 58.0 0.300 0.000 

0.4 2, 4, 12 133.0 54.0 0.406 0.006 

0.5 4, 6, 10, 12 148.0 60.6 0.410 0.090 

0.6 4, 6, 10, 12 148.0 60.6 0.410 0.190 
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is tabulated in Tables 1 and 2. Subproblems are solved by Balas' 

additive algorithm [1] and the average execution time for one case is 

about 30-40 secs (IBM 7040, FORTRAN IV). 

Note that (14) is essentially different from the problem with the 

objective function, minimize \ ~;PiXi-A~CiXi \. They have been 

sometimes confounded with in practical systems. 0-1 fractional pro· 

gramming algorithms were treated with by Ivanescu and Rudeaunu 

[13], but they considered basically the problems such that every term 

in the denominator has the plus sign and there are no constraints 

except 0-1 conditions. 

Comments 

1. As in nonlinear programming, it would be more popular to 

solve integer nonlinear programs by the iterative solution of integer 

linear subproblems (Benders' partitioning method [3] is a typical ex­

ample). Thus, the presented algorithm, which provides the solution 

of integer nonlinear programs, also suggests one of the main direc­

tions to attack formidable integer nonlinear programming, though it 

does not conquer the difficulties of handling with linear integer pro­

grams. 

2. Note that only the finiteness property of X is used in the 

construction of subproblems (5). This implies that, even if X in (3) 

is characterized as a finite set of another type, it is sufficient that 

practically solvable sub problems are constructed. It makes very wide 

the applicability of the algorithm. 
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