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1 Introduction
1.1 Notation
Let N, Z, and R be the sets of natural numbers, integers, and real numbers, respectively,
and Nk := {n ∈ Z : n ≥ k} where k ∈ Z is fixed. For s, t ∈ Z such that s ≤ t, we use the
notation j = s, t, instead of writing s ≤ j ≤ t, for j ∈ Z. By [x], we denote the integer part of
a number x ∈ R (the integer part function or the floor function [2, 22, 28]). If α ∈ R and
j ∈N, then the quantity denoted by Cα

j , we define as follows

Cα
j :=

α(α – 1) · · · (α – j + 1)
j!

.

Note that for α ∈ N the quantity reduces to the Binomial coefficient Cn
j . If j = 0, then we

regard that Cα
0 = 1. Let us mention that when α ∈ N, many authors use the notation Cj

n

(see, e.g., [2, 22, 49]) instead of Cn
j , which we prefer (see, e.g., [40]), since index j is usually

the main running variable in a concrete situation, and the notation is more similar to the
robust one

(n
j
)
, which is perhaps the most frequently used (see, e.g., [21, 27–29]).

1.2 Motivation
Recently, there has been some interest in calculating the integer parts of the reciprocal
remainders of some sums. Motivated by the formulas in [31, 46, 48] for the integer parts
of the reciprocal remainders of some sums containing the Fibonacci and Pell numbers
([22, 28, 45]), author of [47] proposed to obtain related formulas for the integer parts of
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the reciprocal remainders of the Riemann zeta-function, that is, to calculate
[( ∞∑

k=n

1
ks

)–1]

, n ∈N,

for some s ∈N2.
It was proved therein that the following formulas hold

[( ∞∑

k=n

1
k2

)–1]

= n – 1, n ∈N, (1)

[( ∞∑

k=n

1
k3

)–1]

= 2n(n – 1), n ∈ N. (2)

Here, we present some historical facts connected to formulas (1) and (2), conduct some
analyses regarding the proofs given in [47], provide some comments on them, present a
very short and elegant proof of the main result therein, give another way for obtaining
some estimates of the remainders of the Riemann zeta-function in the case s = 3, present
a useful auxiliary result about the asymptotics of the remainders of the sums, and based
on it, we also present some extensions of the formulas (1) and (2).

2 Analyses, main results and some comments
2.1 Few words on the history of the problem
The author of [47] claims that, as far as he knows, it seems that none has studied the
problem yet and that he has not seen any related result before. However, problems of
this type are matter or folklore and have been relatively popular and circulated among
the fans of problems in elementary algebra and analysis. The literature devoted to the
elementary problem could be challenging to trace back. The problems of this type have
been known to the author of this paper for a long time. Formula (1) is Problem 3.1.46
in book [28]. The book was quite popular and has had several editions. However, unlike
many other books by Mitrinović and his collaborators, it was not translated into English,
so it predominately circulated among some Slavic countries. Unlike some other problems
in [28], Mitrinović and Adamović did not give any information about the source of the
problem. At the moment, we do not have an earlier reference. Nevertheless, [28] shows
that the problems of the type are known. It should also be mentioned that Problem 3.1.46
in [28] is proposed in an equivalent but camouflaged form. Namely, it is suggested to show
that the formula holds

[(
π2

6
–

n∑

k=1

1
k2

)–1]

= n, n ∈N.

2.2 On the proof of formula (1) in [47]
It is known that not only that formula (1), but, besides this, the proof of the formula given
in [47] is exactly the same as the one in [28]. Namely, for each n ∈N2, we have

1
n

=
∞∑

k=n

(
1
k

–
1

k + 1

)
=

∞∑

k=n

1
k(k + 1)

<
∞∑

k=n

1
k2 <

∞∑

k=n

1
(k – 1)k

=
∞∑

k=n

(
1

k – 1
–

1
k

)
=

1
n – 1
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and consequently

n – 1 <

( ∞∑

k=n

1
k2

)–1

< n

for each n ∈N2, from which together with the definition of the integer part function, for-
mula (1) easily follows for any such n.

Remark 1 Note that the above argument does not hold for n = 1, since the quantity 1
n–1

is not defined for the value of n. However, in this case, formula (1) follows from the Euler
formula

∞∑

n=1

1
k2 =

π2

6

[15] and the observation π2 > 6.

2.3 On the proof of formula (2) in [47]
The proof of formula (2) given in [47] is a modification of the above proof of formula (1).
First, for n ∈N2, one can get the following well-known estimate

∞∑

k=n

1
k3 <

∞∑

k=n

1
(k – 1)k(k + 1)

=
∞∑

k=n

1
2

(
1

(k – 1)k
–

1
k(k + 1)

)
=

1
2(n – 1)n

. (3)

At the same time, it was not noticed therein that the last sum is telescoping, so that there
are some unnecessary extra calculations in [47].

To get the inequality

1
2(n – 1)n + 1

<
∞∑

k=n

1
k3 (4)

from which, along with inequality (3), formula (2) easily follows, it was used the inequality

1
2(k – 1)k + 1

–
1

2(k + 1)(k + 2) + 1
<

1
k3 +

1
(k + 1)3 , k ∈N2, (5)

which was applied to the partial sums of odd and even indices separately. However, it was
also not noticed that the inequalities in Lemma 2 and Lemma 3 in [47] can be unified by
inequality (5), so there are also some unnecessary extra calculations therein. For this proof
of formula (2), we do not have a specific reference at the moment, so it may be new.

2.4 A short and elegant proof of inequality (2)
In order to prove (2), it seems less natural to use the difference

1
2(k – 1)k + 1

–
1

2(k + 1)(k + 2) + 1

for dealing with a telescoping sum in this case.
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Note that for k ∈ N2, we have

1
2(k – 1)k + 1

–
1

2k(k + 1) + 1
=

4k
(2k2 + 2k + 1)(2k2 – 2k + 1)

=
4k

4k4 + 1
<

1
k3 (6)

from which it follows that

1
2(n – 1)n + 1

=
∞∑

k=n

(
1

2(k – 1)k + 1
–

1
2k(k + 1) + 1

)
=

∞∑

k=n

4k
4k4 + 1

<
∞∑

k=n

1
k3 , (7)

which is a very short and elegant proof of inequality (4).
Hence, the estimations in (3) and (7) give a short and elegant proof of formula (2), which

is in the spirit of the proof of formula (1) given in [28].

2.5 A refinement of inequality (3)
Inequality (3) is a sort of an elementary set up estimate. A better one can be obtained using
the Hermite-Hadamard inequalities

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (t) dt ≤ f (a) + f (b)

2
, (8)

where f : [a, b] →R is a convex function [17, 18].
Namely, from (8), we have

f (k) = f
(k – 1

2 + k + 1
2

2

)
≤

∫ k+ 1
2

k– 1
2

f (t) dt

from which, it follows that

∞∑

k=n

f (k) ≤
∫ +∞

n– 1
2

f (t) dt.

Since, in our case,

f (t) =
1
t3 , (9)

we have

∞∑

k=n

1
k3 <

∫ +∞

n– 1
2

dt
t3 =

1
2(n – 1

2 )2
=

1
2n(n – 1) + 1

2
. (10)

Remark 2 Note that

[(
1

2n(n – 1) + 1
2

)–1]
= 2n(n – 1),

for n ∈N2.
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2.6 An estimate from below
If f is a real convex function, then using the second inequality in (8), we have

f (k) + f (k + 1)
2

≥
∫ k+1

k
f (t) dt (11)

for each k ∈N.
If the convex function f also satisfies the relation

lim
t→+∞ f (t) = 0, (12)

then from (11), it follows that

∞∑

k=n

f (k) ≥ f (n)
2

+
∫ +∞

n
f (t) dt, n ∈N. (13)

Since the function in (9) satisfies condition (12), and for the function, inequality (11) is
strict, from (13), it follows that

∞∑

k=n

1
k3 >

1
2n3 +

∫ +∞

n

dt
t3 =

n + 1
2n3 .

From this and since
[

2n3

n + 1

]
=

[
2n3 – 2n + n + 1 + n – 1

n + 1

]
= 2n(n – 1) + 1,

we have

ãn :=

[( ∞∑

k=n

1
k3

)–1]

≤ 2n(n – 1) + 1

from which, along with (10), we have that the quantity ãn takes one of the values 2n(n – 1)
and 2n(n – 1) + 1. This interesting fact shows the strength of elementary inequality (6).

Remark 3 It is highly expected that a better estimate from below for the sequence
∑∞

k=n
1

k3 ,
n ∈ N can be obtained using some more refined integral inequalities or using some inte-
gral formulas, such as the Euler-Maclaurin formula [14, 19, 20, 26] together with some
elementary inequalities. However, since we already have a few elementary proofs for the
estimate, we will not conduct further investigation in this direction.

2.7 Connection with difference equations
Bearing in mind that some authors have given formulas for the integer parts of some recip-
rocal sums of solutions to some linear difference equations with constant coefficients (see,
e.g., [31, 46, 48]), it is natural to make some connections between the topic and the prob-
lems mentioned above. Recall that solvability of the linear equations has been known to de
Moivre [11, 12] and D. Bernoulli [9] and that the theory was later developed by several au-
thors [10, 15, 23–25]. Their solvability implies the solvability of many nonlinear difference
equations, including some recent ones (see, e.g., [1, 10, 20, 22, 23, 26, 29, 30, 33, 38–44]
and the related references therein).
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Note that the sequence an = n2 is a solution to the difference equation

�3an = 0, n ∈N, (14)

where � is the forward difference operator defined by

�an = an+1 – an

([20, 26]). General solution to equation (14) is given by

an = an2 + bn + c, n ∈ N, (15)

where a, b, c ∈ R are some constants (a method for solving equation (14) was known to
D. Bernoulli [9]; a closed-form formula for solutions to equation (14) depending on initial
values can be found also in [15]).

Based on these facts and formula (1), it is natural to pose the following interesting prob-
lem.

Problem 1 Let (an)n∈N be the sequence in (15). Find closed-form formulas for the sequence

[( +∞∑

k=n

a
ak

)–1]

,

for all n ∈N or for sufficiently large n.

First, note that such formulas need not always exist for all n ∈ N, since the sequence an

defined in (15) can be equal to zero for some n ∈ N and some values of coefficients a, b,
and c. Besides this, the problem makes sense if the series

+∞∑

k=1

1
ak2 + bk + c

is convergent. Hence, it must be a �= 0 (see, e.g., [13, 28, 49]).
Of an interest is the case when the sequence an is positive, since then it naturally gener-

alizes the case an = n2 for which formula (1) holds. A necessary condition for this is a > 0.
In this case, it must also be a+b+c > 0. Since �2an = 2a for every n ∈N, we have 2a = �2a1

so that the initial values aj, j = 1, 3, have to satisfy the condition a3 – 2a2 + a1 > 0. If a > 0,
then a sufficient condition for this is min{b, c} ≥ 0.

However, since

an2 + bn + c ∼ an2,

as n → +∞, we will not assume the last condition, but only a �= 0, and will consider the
sequence

( +∞∑

k=n

a
ak2 + bk + c

)–1

, n ∈ N. (16)
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Since the coefficients a, b, c are arbitrary numbers, the values of (16) can vary drastically
for the small values of indices. Thus, the solution to the problem heavily depends on the
values of the coefficients, and the requested formulas could be quite complicated if we
want them to hold for every n ∈N. This is why some authors try to find some closed-form
formulas which hold for sufficiently large n.

In what follows, we consider Problem 1, as well as the corresponding problem for the
sequence

an = an3 + bn2 + cn + d, n ∈N. (17)

To do this, we will use some asymptotic methods, which are also used in studying se-
quences and difference equations from time to time (see, e.g., [3–8, 16, 32, 34–37] and the
related references therein).

We need a lemma, which could be of folklore type. We give proof of it for the complete-
ness and benefit of the reader.

Lemma 1 Let k > 1. Then, the following asymptotic formula holds

+∞∑

j=n

1
jk =

1
(k – 1)nk–1 +

1
2nk +

k
12nk+1 –

k(k + 1)(k + 2)
720nk+3 + o

(
1

nk+3

)
. (18)

Proof First, recall that the following known asymptotic relation holds

+∞∑

j=n

1
jk ∼

∫ +∞

n

dt
tk =

1
(k – 1)nk–1 , (19)

when k > 1 (see, e.g., [13, 28, 49]).
Let

xn :=
+∞∑

j=n

1
jk –

1
(k – 1)nk–1 . (20)

Since k > 1, the remainder of the series in (20) converges to zero, implying the convergence
to zero of the sequence xn.

Further, by some calculations and using the well-known asymptotic relation

(1 + x)α = 1 + Cα
1 x + Cα

2 x2 + · · · + Cα
l xl + o

(
xl), as x → 0, (21)

where α ∈ R \ {0} and l ∈N (see, e.g., [13, 21, 49]), we have

xj – xj+1 =
1
jk –

1
(k – 1)jk–1 +

1
(k – 1)(j + 1)k–1 =

1
jk–1

(
1
j

–
1

k – 1
+

(1 + 1
j )1–k

k – 1

)

=
1

jk–1

(
1
j

–
1

k – 1
+

1
k – 1

(
1 +

1 – k
j

+
(1 – k)(–k)

2j2 + O
(

1
j3

)))

=
k

2jk+1 + O
(

1
jk+2

)
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from which, together with (19), it follows that

xn =
+∞∑

j=n

(xj – xj+1) =
+∞∑

j=n

(
k

2jk+1 + O
(

1
jk+2

))
=

1
2nk + o

(
1
nk

)
.

Hence,

+∞∑

j=n

1
jk =

1
(k – 1)nk–1 +

1
2nk + o

(
1
nk

)
.

Let

yn :=
+∞∑

j=n

1
jk –

1
(k – 1)nk–1 –

1
2nk .

Then, using some calculations and (21), we have

yj – yj+1 =
1
jk –

1
(k – 1)jk–1 –

1
2jk +

1
(k – 1)(j + 1)k–1 +

1
2(j + 1)k

=
1

jk–1

(
1
2j

–
1

k – 1
+

(1 + 1
j )1–k

k – 1
+

(1 + 1
j )–k

2j

)

=
1

jk–1

(
1
2j

–
1

k – 1
+

1
k – 1

(
1 +

1 – k
j

+
C1–k

2
j2 +

C1–k
3
j3 + O

(
1
j4

))

+
1
2j

(
1 –

k
j

+
C–k

2
j2 + O

(
1
j3

)))
=

k(k + 1)
12jk+2 + O

(
1

jk+3

)

from which, together with (19), it follows that

yn =
+∞∑

j=n

(yj – yj+1) =
+∞∑

j=n

(
k(k + 1)
12jk+2 + O

(
1

jk+3

))
=

k
12nk+1 + o

(
1

nk+1

)
.

Let

zn :=
+∞∑

j=n

1
jk –

1
(k – 1)nk–1 –

1
2nk –

k
12nk+1 . (22)

Then, using some calculations and formula (21), we have

zj – zj+1 =
1

2jk –
1

(k – 1)jk–1 –
k

12jk+1 +
1

(k – 1)(j + 1)k–1 +
1

2(j + 1)k +
k

12(j + 1)k+1

=
1

jk–1

(
1
2j

–
1

k – 1
–

k
12j2 +

(1 + 1
j )1–k

k – 1
+

(1 + 1
j )–k

2j
+

k(1 + 1
j )–k–1

12j2

)

=
1

jk–1

(
1
2j

–
1

k – 1
–

k
12j2

+
1

k – 1

(
1 +

C1–k
1
j

+
C1–k

2
j2 +

C1–k
3
j3 +

C1–k
4
j4 +

C1–k
5
j5 + O

(
1
j6

))
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+
1
2j

(
1 +

C–k
1
j

+
C–k

2
j2 +

C–k
3
j3 +

C–k
4
j4 + O

(
1
j5

))

+
k

12j2

(
1 +

C–k–1
1
j

+
C–k–1

2
j2 +

C–k–1
3
j3 + O

(
1
j4

)))

= –
k(k + 1)(k + 2)(k + 3)

720jk+4 + O
(

1
jk+5

)

from which, together with (19), it follows that

zn =
+∞∑

j=n

(zj – zj+1) = –
+∞∑

j=n

(
k(k + 1)(k + 2)(k + 3)

720jk+4 + O
(

1
jk+5

))

= –
k(k + 1)(k + 2)

720nk+3 + o
(

1
nk+3

)
. (23)

From (22) and (23), asymptotic formula (18) follows. �

2.8 Case an = an2 + bn + c
Now, we consider Problem 1. First, note that using (21), it follows that

a
an

=
a

an2

(
1 +

b
an

+
c

an2

)–1

=
1
n2

(
1 –

b
an

+
b2 – ac

a2n2 + O
(

1
n3

))

=
1
n2 –

b
an3 +

b2 – ac
a2n4 + O

(
1
n5

)
,

as n → +∞, and consequently

+∞∑

j=n

a
aj

=
+∞∑

j=n

(
1
j2 –

b
aj3 +

b2 – ac
a2j4 + O

(
1
j5

))
. (24)

From Lemma 1, we have

+∞∑

j=n

1
j2 =

1
n

+
1

2n2 +
1

6n3 + O
(

1
n5

)
, (25)

+∞∑

j=n

1
j3 =

1
2n2 +

1
2n3 + O

(
1
n4

)
, (26)

+∞∑

j=n

1
j4 =

1
3n3 + O

(
1
n4

)
, (27)

and

+∞∑

j=n

O
(

1
j5

)
= O

(
1
n4

)
. (28)
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Employing (25)–(28) in (24), we have

+∞∑

j=n

a
aj

=
1
n

+
a – b
2an2 +

a2 + 2b2 – 3ab – 2ac
6a2n3 + o

(
1
n3

)
. (29)

From (29) and using (21), it follows that

[( +∞∑

j=n

a
aj

)–1]

=
[

n
(

1 +
a – b
2an

+
a2 + 2b2 – 3ab – 2ac

6a2n2 + o
(

1
n2

))–1]

=
[

n +
b – a

2a
+

a2 – b2 + 4ac
12a2n

+ o
(

1
n

)]
. (30)

From (30) and the definition of the integer part function, the following theorem easily
follows.

Theorem 1 Let a ∈R \ {0}, b, c ∈ R, and an = an2 + bn + c. Then, the following statements
hold.

(a) If b–a
2a /∈ Z, then

[( +∞∑

j=n

a
aj

)–1]

= n +
[

b – a
2a

]
, (31)

for sufficiently large n.
(b) If b–a

2a ∈ Z, and a2 – b2 + 4ac > 0, then

[( +∞∑

j=n

a
aj

)–1]

= n +
b – a

2a
,

for sufficiently large n.
(c) If b–a

2a ∈ Z, and a2 – b2 + 4ac < 0, then

[( +∞∑

j=n

a
aj

)–1]

= n +
b – 3a

2a
,

for sufficiently large n.

Corollary 1 Let an = n2. Then

[( +∞∑

j=n

1
aj

)–1]

= n – 1,

for sufficiently large n.

Proof First, note that the sequence an is obtained from (15) for a = 1, b = 0 and c = 0. Since,
in this case,

b – a
2a

= –
1
2

/∈ Z,
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we can use formula (31) and get

[( +∞∑

j=n

1
aj

)–1]

= n +
[

–
1
2

]
.

From this and since [– 1
2 ] = –1, the corollary follows. �

Remark 4 Since Corollary 1 is obtained from Theorem 1, it proves formula (1) for not all
n. However, Theorem 1 holds for any a ∈R \ {0}, b, c ∈ R. It is technically very difficult to
find the exact value of n0 = n0(a, b, c) such that any of the formulas in the theorem hold for
n ≥ n0.

2.9 Case an = an3 + bn2 + cn + d
To consider this case, we use the method that we have employed in the case of the sequence
an = an2 + bn + c. Due to more parameters (here, we have four parameters a, b, c, and d),
our consideration in the case will have more calculations, so that will be more technical
than the previous one.

Using some calculations and relation (21), it follows that

a
an

=
a

an3

(
1 +

b
an

+
c

an2 +
d

an3

)–1

=
1
n3

(
1 –

b
an

+
b2 – ac

a2n2 +
2abc – a2d – b3

a3n3 + O
(

1
n4

))

=
1
n3 –

b
an4 +

b2 – ac
a2n5 +

2abc – a2d – b3

a3n6 + O
(

1
n7

)
,

as n → +∞.
Hence, we have

+∞∑

j=n

a
aj

=
+∞∑

j=n

(
1
j3 –

b
aj4 +

b2 – ac
a2j5 +

2abc – a2d – b3

a3j6 + O
(

1
j7

))
. (32)

From Lemma 1, we have

+∞∑

j=n

1
j3 =

1
2n2 +

1
2n3 +

1
4n4 + O

(
1
n6

)
, (33)

+∞∑

j=n

1
j4 =

1
3n3 +

1
2n4 +

1
3n5 + O

(
1
n7

)
, (34)

+∞∑

j=n

1
j5 =

1
4n4 +

1
2n5 + O

(
1
n6

)
, (35)

+∞∑

j=n

1
j6 =

1
5n5 + O

(
1
n6

)
, (36)
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and

+∞∑

j=n

O
(

1
j7

)
= O

(
1
n6

)
. (37)

Employing the relations in (33)–(37) in (32), after some standard calculation, it follows
that

+∞∑

j=n

a
aj

=
1

2n2 +
3a – 2b

6an3 +
a2 + b2 – ac – 2ab

4a2n4

+
15ab2 – 10a2b – 15a2c + 12abc – 6a2d – 6b3

30a3n5 + O
(

1
n6

)
. (38)

From (38) and using (21), it follows that

[( +∞∑

j=n

a
aj

)–1]

=
[

2n2
(

1 +
3a – 2b

3an
+

a2 + b2 – ac – 2ab
2a2n2

+
15ab2 – 10a2b – 15a2c + 12abc – 6a2d – 6b3

15a3n3 + O
(

1
n4

))–1]

=
[

2n2
(

1 –
3a – 2b

3an
–

a2 + b2 – ac – 2ab
2a2n2

–
15ab2 – 10a2b – 15a2c + 12abc – 6a2d – 6b3

15a3n3

+
(3a – 2b)2

9a2n2 +
2(3a – 2b)((a – b)2 – ac)

6a3n3 –
(3a – 2b)3

27a3n3 + O
(

1
n4

))]

=
[

2n2 +
4b – 6a

3a
n +

9a2 – 6ab – b2 + 9ac
9a2 +

2f (a, b, c, d)
a3n

+ O
(

1
n2

)]
, (39)

where

f (a, b, c, d) =
10a2b – 15ab2 + 15a2c – 12abc + 6a2d + 6b3

15a3

+
(3a – 2b)((a – b)2 – ac)

3a3 –
(3a – 2b)3

27

From (39), the following theorem follows.

Theorem 2 Let a ∈ R \ {0}, b, c, d ∈ R, and an = an3 + bn2 + cn + d. Then, the following
statements hold.

(a) If af (a, b, c, d) > 0, then

[( +∞∑

j=n

a
aj

)–1]

=
[

2n2 +
4b – 6a

3a
n +

9a2 – 6ab – b2 + 9ac
9a2

]
,

for sufficiently large n.
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(b) If af (a, b, c, d) < 0, then

[( +∞∑

j=n

a
aj

)–1]

=
[

2n2 +
4b – 6a

3a
n +

9a2 – 6ab – b2 + 9ac
9a2

]
– 1,

for sufficiently large n.

Remark 5 It is interesting that formula (39) cannot be used for the following values of the
coefficients

a = 1, b = c = d = 0,

to get formula (2) for sufficiently large n. Namely, a direct calculation shows that from (39),
we have

f (a, 0, 0, 0) = 0, (40)

for any a ∈R.
Using relation (40) together with formula (39), we have that the following relation holds

[( ∞∑

k=n

1
k3

)–1]

=
[

2n2 – 2n + 1 + O
(

1
n2

)]
.

However, the sing of the asymptotic quantity O( 1
n2 ) appearing in formula (40) is not de-

termined.

To find a closed-form formula for the sequence [(
∑∞

k=n
1

k3 )–1], more members in the
corresponding asymptotic expansions should be taken.

Indeed, by Lemma 1, we have

+∞∑

j=n

1
j3 =

1
2n2 +

1
2n3 +

1
4n4 –

1
12n6 + O

(
1
n7

)
.

Hence,

[( +∞∑

j=n

1
j3

)–1]

=
[

2n2
(

1 +
1
n

+
1

2n2 –
1

6n4 + O
(

1
n5

))–1]

=
[

2n2
(

1 –
1
n

–
1

2n2 +
1

6n4 +
1
n2 +

1
n3 +

1
4n4 –

1
n3 –

3
2n4 +

1
n4 + O

(
1
n5

))–1]

=
[

2n2 – 2n + 1 –
1

6n2 + O
(

1
n3

)]
.

From this and since

1 –
1

6n2 + O
(

1
n3

)
< 1



Stević Journal of Inequalities and Applications        (2022) 2022:139 Page 14 of 17

for sufficiently large n, we obtain

[( +∞∑

j=n

1
j3

)–1]

= 2n(n – 1),

for sufficiently large n, as desired.

Remark 6 The method employed in proving above theorems can be applied to the se-
quences of the form

an = Pk(n), n ∈ N,

where

Pk(t) =
k∑

j=0

cjtj,

k ∈ N2, cj ∈ R, j = 0, k, ck �= 0, that is, to the sequences defined by polynomials of degree
greater than or equal to two.

Remark 7 Above type of problems for the case when a sequence is a solution to the ho-
mogeneous linear difference equation with constant coefficients

an+k + ck–1an+k–1 + · · · + c1an+1 + c0an = 0, n ∈N, (41)

where k ∈ N, cj ∈ R, j = 0, k – 1, c0 �= 0, such that the characteristic polynomial associated
to the equation

Pk(λ) = λk + ck–1λ
k–1 + · · · + c1λ + c0, (42)

has a unique dominant zero is dealt with in a relatively simple way and are essentially
folklore. Namely, it is well known that the general solution to equation (41) has the form

an =
l∑

j=1

Qj(n)λn
j , n ∈N, (43)

where 1 ≤ l ≤ k, λj, j = 1, l, are the distinct zeros of polynomial (42), and Qj(t) is a
polynomial of degree sj – 1, where sj ∈ N is the multiplicity of the zero λj (see, e.g.,
[23, 25, 26, 29, 30]).

Without loss of generality, we may assume that

|λ1| > max
j=2,l

|λj|, (44)

which implies that s1 = 1. Then from (43) and (44), we have

an ∼ cλn
1, (45)
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as n → +∞, for some constant c ∈ R \ {0}, since, in this case, Q1(t) is a constant polyno-
mial.

From (45), we see that in many cases, the problem reduces to dealing with a simpler
sequence (instead of an, we can consider the sequence cλn

1). Such a situation appears, e.g.,
in the case of the Fibonacci sequence (fn)n∈N, which is the solution to the difference equa-
tion

an+2 = an+1 + an, n ∈ N,

with the initial values a1 = a2 = 1 ([22, 28, 45]). The characteristic polynomial associated
to the equation is

P2(t) = t2 – t – 1,

and it has two different zeros

t1 =
1 +

√
5

2
and t2 =

1 –
√

5
2

.

Since,

fn =
tn
1 – tn

2
t1 – t2

, n ∈N,

and t1 > t2, it follows that

fn ∼ tn
1

t1 – t2
, (46)

as n → +∞.
Asymptotic relation (46) is essentially the reason why integer parts of the reciprocal re-

mainders of many sums containing the Fibonacci sequences can be found for sufficiently
large n.

Using this simple idea, it can be found many closed-form formulas for integer parts
of the reciprocal remainders of sums containing solutions to homogeneous linear dif-
ference equations with constant coefficients, which hold for sufficiently large n. When
such a formula is found, then it, together with some technical algebraic manipula-
tions, can be used in trying to find all the values of index n for which the formula
holds.
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44. Stević, S., Iričanin, B., Šmarda, Z.: Solvability of a close to symmetric system of difference equations. Electron. J. Differ.
Equ. 2016, 159 (2016)

45. Vorobiev, N.N.: Fibonacci Numbers. Birkhäuser, Basel (2002)
46. Wenpeng, Z., Tingting, W.: The infinite sum of reciprocal Pell numbers. Appl. Math. Comput. 218, 6164–6167 (2012)
47. Xin, L.: Some identities related to Riemann zeta-function. J. Inequal. Appl. 2016, 32 (2016)
48. Xu, Z., Wang, T.: The infinite sum of the cubes of reciprocal Fibonacci numbers. Adv. Differ. Equ. 2013, 184 (2013)
49. Zorich, V.A.: Mathematical Analysis I. Springer, Berlin (2004)


	On integer parts of the reciprocal remainders of some sums
	Abstract
	MSC
	Keywords

	Introduction
	Notation
	Motivation

	Analyses, main results and some comments
	Few words on the history of the problem
	On the proof of formula (1) in [47]
	On the proof of formula (2) in [47]
	A short and elegant proof of inequality (2)
	A reﬁnement of inequality (3)
	An estimate from below
	Connection with difference equations
	Case an=an2+bn+c
	Case an=an3+bn2+cn+d

	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Publisher's Note
	References


