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ON INTEGERS FREE OF LARGE PRIME FACTORS

ADOLF HILDEBRAND1 AND GERALD TENENBAUM

ABSTRACT. The number *(x,y) of integers < x and free of prime factors
> y has been given satisfactory estimates in the regions y < (log x)3/4~e
and y > exp{(log log x)5/3+£}. In the intermediate range, only very crude
estimates have been obtained so far. We close this "gap" and give an expression
which approximates *(x, y) uniformly for x > y > 2 within a factor 1 +
O((log j/)/(log i) -I- (log y)/y). As an application, we derive a simple formula
for *(ci, y)/'t>(x, y), where 1 < c < y. We also prove a short interval estimate
for *(x,y).

1. Introduction. Let V(x, y) denote the number of positive integers not exceed-
ing x and free of prime factors larger than y. Besides their own interest, estimates
for ty(x,y) have found applications in various problems in number theory [6,17],
and there exists a large literature on this subject. A comprehensive bibliography
can be found in Norton's memoir [15].

The earliest result is due to Dickman [7] who gave, about fifty years ago, an
asymptotic formula for ^(x, y) in the case a; is a fixed power of y. Dickman showed
that
(1.1) *(x, y) ~ xp(u)        (x -> co, y = x1/u)

for every fixed u > 0, where p(u), the "Dickman-function", is defined as the con-
tinuous solution of the differential difference equation

(1.2) up'(u) + p(u-l) = 0       (u>l),

with the initial condition

(1.3) p(u) = 1        (0 < u < 1).
That a function defined in such a way occurs is a typical feature of a sieve problem.
It is due to the fact that $f(x,y) satisfies a functional equation, the Buchstab
identity, which, after smoothing, reduces to the differential difference equation (1.2).

In 1938, in a famous paper on large differences of consecutive primes, Rankin
[17] derived an upper bound for ^(x,y) in a special case, namely when log a: is of
order (log y)2. To this end, he used a remarkably simple but effective device, which
can be applied to many similar situations and has become known as "Rankin's
method". It is based on the inequality

(1.4) ¥(*,„)<    £    Q°=x°X\(l-p-°rl       (tf>0),
n>l P<V

P(n)<y
_
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266 ADOLF HILDEBRAND AND GERALD TENENBAUM

where P(n) stands for the largest prime factor of n. By choosing o optimally and
estimating further the right-hand side of (1.4), one arrives at an upper bound for
^l(x, y) which turns out to be especially useful when y is relatively small compared
with x. When y is a fixed or slowly decreasing power of x, however, (1.4) becomes
weaker than the trivial bound ^l(x,y) < x. Rankin's method was fully exploited
by de Bruijn [4] in 1966.

Most of the work on ty(x,y) in the literature deals with the case when u =
(log x)/(log y) is relatively small. The aim is then to give quantitative and uniform
versions of Dickman's relation (1.1). In 1951, de Bruijn [3] produced an estimate
for ty(x,y) which implies that the formula

(1.5) tfe,)-*.)(l + 0t(ï£±2))
(where, here and in the sequel, we write systematically u = (log i)/(log y)), and
hence (1.1), hold uniformly in the range

(1.6) x > 2,        exp{(log x)5/s+£} <y<x,

where e is any fixed positive number. Similar results have been established sub-
sequently by several authors on using different methods, but de Bruijn's estimate
remained for a long time the best of its type. It can be shown that the error term
in (1.5) is best possible, and it was only recently that the range of validity (1.6)
was improved. Maier [14] established (1.5) for the range

x > 2,       exp{(log x)6} <y<x.

Hensley [10] proved the lower estimate

¥(z,y) »£  xp(u)

for an even larger range, namely

(1.7) x>2,        exp{(loglogx)5/3+£} < y < x.

In [12] the first author showed that de Bruijn's formula (1.5) actually holds in
the above range (1.7). It seems that this is the limit of what can be reached
unconditionally. On the Riemann hypothesis, one can prove that (1.5) holds in the
range x > 2, (log x)2+£ < y < x.

The behavior of V(x, y) is quite different when y is very small compared with x.
Ennola [9] showed that uniformly for

(1.8) 2 < y < v/ïog^
the estimate

holds, where n(y) is the prime counting function. The right-hand side of (1.9)
depends strongly on irregularities in the distribution of primes and cannot be re-
placed by a smooth function as in (1.5). Ennola also gave a similar, but much more
complicated, formula for the range

(1.10) 2 < y < (log xf'4-E.
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Between the ranges (1.10) and (1.7), in which asymptotic formulae for ^(x,y)
are known, there remains a large gap where the estimates available are much less
precise. For these intermediate values, the best known upper bound is due to de
Bruijn [4] and achieved by Rankin's method. Various lower bounds have been given
[4, 6, 10, 12], but they are far from being asymptotically equal to the corresponding
upper estimates. In the case y = log x, for instance, the known upper and lower
bounds differ by a factor S>£  exp{j/1_£} for every £ > 0.

The main purpose of this paper is to close this gap and give an expression
approximating ^(x, y) uniformly for x > y > 2 within a factor l+0(l/u+(log y)/y)
and thus yield an asymptotic formula whenever y and u = (log x)/(log y) tend to
infinity.

2. Statement of results.  For complex s = o + it, put

c(S)î/) = n(1-^sr1-
p<y

This finite part of the Euler product for the Riemann zeta function is meromorphic
in s in the whole plane. It never vanishes, and all its poles are located on the line
o — 0. We also set

4>(x,y) := log ç(s,y)        (o > 0),
and denote by 4>k(s,y), k >0, the kth partial derivative of 4>(s,y) with respect to
s. From the definition of (f)(s, y) we thus have

p<yy p<y   ^

By Rankin's upper bound (1.4) we have

(2.1) *(x,I/)< mi x°c(o,y).
CT>0

This infimum is in fact a minimum, and is attained for a = a = a(x, y) defined as
the (unique) solution of the equation

(2.2) 0i(a,i/)-r-log 1 = 0.

We reserve henceforth the letter a to denote the solution of (2.2). Our approx-
imation for 4'(x,?/) will consist of the right-hand side of (2.1), namely xac(a,y),
multiplied by a factor of a fairly simple shape.

We now state our main result.

THEOREM l.   We have uniformly for x > y > 2,

(2.3) »(,,„)=   fffry)   (l+ofl+^l)).
ay/2ir<t>2(a,y) \ \u        y   J J

It is plain from the definitions that a, and hence 4>2(a,y), are positive. Thus
dividing the right-hand side of (2.1) by ct\j2ir(j)2(a.,y) yields an asymptotic formula
for $(x, y) whenever y and u tend to infinity.

For applications, it is useful to have approximations of a — a(x, y) and 02(a, y)
at hand. Although these quantities are defined only implicitly, via prime number
sums, they can be replaced in (2.3) by smooth functions at the cost of a weaker error
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term. The following theorem shows that they can both be well approximated over
the whole range x > y > 2. This takes into account the factor (a\l/2ir(f>2(a,y))~1
in (2.3) and enables one to compare Rankin's upper bound with the true order of
magnitude of ty(x,y). Moreover, if x is not too large with respect to y, we can
derive a reasonably smooth approximation for the whole right-hand side of (2.3).

THEOREM 2.   (i) We have uniformly for x > y > 2,

(2.4) a{Xjy) = ^(l + y/logx)/l + 0floglog(l + y)
logy        V        V      i°g y

and

(2.5)       «»,„) = (l + Üp) log x . tag , (l + O (jjj-L-j + A

(ii) Let £, 0 < £ < 1/2, be fixed. Then we have uniformly for x>2, (log x)1+£ <
y<x,

xac(a,y)

ay/2Tr(f)2(a,y)

'ç»V/2        Í a ^      [iiu)e°-l
(2.6) = x (ï^p)      expL- uç» + lo ds

s

+0£(i^i)+Uexp{-(logy)3/^})},

where 7 denotes Euler's constant, £ = £(u) is the unique positive solution of the
equation e^ = 1 + u£ and £'(u) is the derivative of the function £(w).

From part (i) of Theorem 2, we see that

asj2-K<t>2(a,y) « y/y/log y.

Thus Rankin's upper bound differs from V(x,y) by a factor at most 0(\/y/log y).
This is surprisingly small, compared with the precision of the estimates for v|/(x, y)
available in the literature, which in the case y = log x, for example, involve an error
factor of order >£  exp{y1~£}. On the other hand, (2.4) and (2.5) also imply

ct\/2-K(i>2(a,y) » log y

uniformly for x > y > 2, so we never have asymptotic equality in (2.1).
Combining Theorem 1 with part (i) of Theorem 2, we obtain the following corol-

lary.

COROLLARY l.   If y and u tend to infinity, we have

*(x, y) ~ x«c(a, y) (2™ (l + ^) ) (loS (l + ^

In particular

H/(x,y) ~    J?*[*,y}-r        Wvfiog * - 00),
v27rulog(y/log x)
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and

0/(x,y) ~ -2fe¿=    (if y/log x-+0).
y/2iry/log y

This shows that the behaviour of ty(x,y) is quite different according as y /log x
is small or large. This phenomenon has already been stressed by de Bruijn [4].
It is due to the fact that for y > yo(e) and ky < (1 — e)log x, we have by the
prime number theorem that (ILk« P)k — x so tnat tne numbers that do not have a
prime factorization with exceptionally high powers contribute little to $(x,y)—for
instance the squarefree numbers contribute at most x1^. This feature does not
occur when y /log x is large.

When we combine Theorem 1 with part (ii) of Theorem 2, we derive a smooth
approximation for Si!(x,y), which in the range

x > 2,        (loglog x)5/3+£ < log y < \/log x

is as sharp as de Bruijn's estimate (1.5). Apart from the upper restriction for y,
this range coincides with (1.7), where (1.5) is known to be valid. For larger y,
estimates (2.3) and (2.6) together are less precise than (1.5) because of the error
term 0(1/«) in (2.3).

The approximations (1.5) and (2.6) are of quite different type. Equalizing the
two expressions in the case u = (log 2?/)1/2, say, we obtain the following result.

Corollary 2. 4s u —* oo, we have

(2.7)     p(„) = (, + o(i))(^)1/!expj^„«tl)+jr£W!^i,i»j.

This formula is not new. Thirty years ago, de Bruijn [2] established the asymp-
totic relation

(2.8) p(u) ~ ~^=exp i -y - <(«) + f
V2'ku Jo

1 Mf   n        /•««) e* _ 1       j-ds

which is a weaker form of (2.7) since £'(«) ~ 1/«, as can easily be shown. De
Bruijn's proof was quite elaborate. A different demonstration has been given re-
cently by Canfield [5]. The more precise formula (2.7) has been first proved by
Alladi [1, p. 186] using de Bruijn's method. In our case, this formula arises quite
naturally, since both sides appear as approximations, obtained from different meth-
ods, for the same arithmetical quantity ^(x,y)/x.

From Theorem 1, we shall deduce the following simple formula for the ratio
$(cx,y)/^(x,y), where 1 < c < y.

THEOREM 3.   We have uniformly for x > y > 2 and 1 < c < y,

(2.9) »(ex, y) = ?(*, y)ca^ (l + oß + ^V).

This improves on results of Hensley [11] and the first author [13], where estimates
of the same type, but with weaker error terms and only for a restricted range, had
been obtained.
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270 ADOLF HILDEBRAND AND GERALD TENENBAUM

The factor ca^x'y^ can be well approximated by a smooth function. For instance,
it follows from part (i) of Theorem 2 that the estimate

c«:,>=(1+jL.Y°°°),('°,",(l+ori°swi+»i
log x) V       V     i°g y

holds uniformly for x > y > 2 and 1 < c < 2. Substituting in Theorem 3 we derive
as an immediate consequence the following result.

COROLLARY 3.   Let x and y tend to infinity.
Then the relation *(2x, y) ~ ^(x, y) holds if and only ¿flog y < (l+o(l))loglog x.

Moreover, we have ty(2x,y) ~ 2vC(x, y) if and only if (log y)/(loglog x) —> oo.

The first of these asymptotic formulae is new; the second has been recently
proved by Hensley [11], using a completely different method. The corollary shows
once more how the behaviour of "^(x, y) changes at y ~ log x.

Theorem 3 can also be interpreted as a short interval estimate for *(x,j/). It
leads to an asymptotic formula for \I>(x + x/z,y) - ^(x,y) in terms of ^(x,y)
provided z is not too large. More precisely, z has to be smaller than u and y /log y.
Setting, for 0 < £ < 1,

Y(e) = exP{(log y)3/2~£},
we can in fact sharpen Theorem 3 for large values of z in the following way.

THEOREM 4.   We have uniformly for x > y > 2, z > 1, 0 < e < 1,

(210)   •(,+ï.,)-,h>).î!&»l,(„,(1+0(i + i + !5i)

+ 0£(V(x,y)R(x,y))
with

R(x,y) := 7(e)-1 +exp{-60«(log 2u)"2}(log y)
for some positive absolute constant bo-

The last error term in (2.10) can be omitted if we suppose a/z » R(x,y)1^2
and modify adequately &o and s. Using estimate (2.4) for a(x,y), we see that this
condition is certainly fulfilled in the range

f911x Jx>2, (loglogx)2/3+£<logi/< (logx)2/5,
1        ' \l<z< Y(£).

Thus, we can state the following corollary.

COROLLARY 4.   Let e, 0 < e < 1, be fixed.   Then we have uniformly in the
range (2.11)
(2.12)
t(,+f,,).^,).!a!L^t(„)(1+(il(i + !s^t!l)).

Under the Riemann Hypothesis, Theorem 4 is valid with Y(e) — exp{y1//2_£}.
Corollary 4 then holds as stated if Y(e) is replaced by R(x,y)~1 in (2.11).

Corollary 4 should be compared with Theorem 3 of [12], where the relation

,2,3) •(,+ ï.,).,(„,.î^(1 + ft(U§t!l))
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had been proved for the range (1.7) and 1 < z < y5/12. Since (1.5) holds in the
same range, the term xp(u) in (2.13) can be replaced by ty(x,y), and we get an
estimate of the same type as (2.12) with a slightly better error term. Hence, (2.12)
can be regarded as an extension of (2.13) to a much larger range.

To prove Theorems 1 and 4, we use a somewhat "naive" analytic approach,
relating y(x,y) to its Dirichlet series c(s,y) by a standard Perron-type formula;
viz.,

(2.14) V(x,y) =-¿-. f        c(s,y)—ds + Error        (k> 0).
2™ Jk-iT s

Such a method cannot reasonably succeed unless the free parameter k is chosen
optimally. We select k = a(x,y), which, by definition, is a saddle point for the
function ç(s,y)xs. The main contribution to the integral in (2.14) will then come
from a small neighbourhood of the real point s — k — a, and integration over this
range introduces the factor (2-K(¡>2(a,y))~í^2, which is characteristic in the saddle
point method.

The choice k — a seems to be an essential feature here. Formulae like (2.14)
have already been applied by several authors [3, 9, 18] but without using the saddle
point method in the process of estimating the complex integral. The results were
not very satisfactory.

The above method can be applied in very general circumstances. For example,
one can derive analogous estimates for the quantity Bi(k; x, y), defined as the num-
ber of positive integers < x which are free of prime factors > y and congruent to /
modulo k. This quantity already appears in the literature; see e.g. [15]. For fixed
k, I our method carries over smoothly; difficulties arise only when uniform estimates
are required.

Another way of generalizing the above results is to consider the quantity

*/(x,«)= J2 /(»)■
n<x

P{n)<y

where / is a multiplicative function of modulus at most 1, say. Of special interest
are the cases when / is the Moebius function or is of the form exp{ig(n)}, where g
is a real-valued additive function. In the latter situation, estimates for $f(x, y) can
be used to study the distribution of the additive function g over the set of integers
counted in ^(x,y). This topic will be dealt with in another paper.

3. Notations and lemmas. For the reader's convenience, we recall here the
main notations that will be used systematically in the sequel.

The letter p always denotes a prime number and, for any integer n, we write
P(n) for the largest prime factor of n. By convention, P(l) = 1.

The letter s stands for a complex variable, defining implicitly o and r by s —
a + it.

We put for o > 0, y > 2,

?(*,y) = n(1-p~3)-1'   4>is,y) = logcix,y),
p<y

and
dk

4>kis,y) = -K-j4>(s,y)      (k > 0).
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We write systematically for x > y > 2, 0 < e < 1,

Y(e) = exp((log y)3/2~£),

log x                ■    (   y       \      min(y, log x)
u = ;-,    u = min    ;-, u    =log 2/' Vlogy'   / log y

and let a = a(x, y) be defined by the equation

(3.1) (-4>x(a,y)=)Yd^A[=\ogx.
p<y

For « > 1 we define £ = £(«) as the nonzero solution of the equation

(3.2) e€ = l + «C
and put £(1) = 0.

Finally, we let crj,Ci, •. • denote positive absolute constants.

LEMMA 1.   We have u > 3,

¿(«Hlogtulog^ + ofi^i^V   log u
PROOF. By iteration of equation (3.2) we may write

f = log u + log(£ + 1/«) = log u + log(log u + log(£ + 1/«) + 1/«)
= log(u log «) + 0(log(£ + l/n)/log «).

This implies the conclusion since we have trivially 1 <C £ <C log u.

LEMMA 2.  For x>y>2, we have

(3.3) a(g'y)x«(logi/)2        (y^loSx)'

(3-4) a(x,y)> —- (y > log x),
6 log y

(3.5) (l-a(x,y))logy=au)+o(- + ]^^+e-^^~y) (y > log x).V«      y J
PROOF.  The first two estimations are easily proved. Indeed, we have for x >

y>2,

(3.6) uiogy = V^>-Ä>^Av      ' 6 y      ¿^ pa - I - ya - 1 - ya - 1
p<yy y y

where 6 is the usual Tchebycheff function, and

«iogy = V^<V±«^-.4^ P   - 1 ~        "       « log 2/p<y p<y
This last estimate gives the upper bound of (3.3). By (3.6), we may write

log(l + y/(5u log y))
a > -;-, logy

which implies the lower bounds of (3.3) and (3.4).
Formula (3.5) has been established in [13, Lemma 4] for y > 2 log x. The proof

is in fact valid in the case considered here.
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LEMMA 3.   We have uniformly for x > y > 2,

(3-7) (y1-* - 1)/((1 - o)log y) x «.

PROOF.  We may plainly suppose that y > yo, where yo is a sufficiently large
constant.

First, consider the case y < log x. From (3.3) we infer

ot(x,y) <ci/logy < 1/2.

This implies (3.7) since we also have « = y /log y.
If y > log x, we use (3.5) in the form

(l-o)log y = £(«) + 0(1).

This gives the conclusion if « < «o, say. If « > «o, we may suppose by Lemma 1
that £(«) is large, whence

y l-a _ i e£+0(l)

(1 - a)log y      £ + 0(1)      Í '
Now, by (3.2) and Lemma 1,

e«/e = «(1 + l/«í) = « exp{0(l/(« log «))},
and (3.7) follows.

LEMMA 4.   We have uniformly for x > y > 2 and 1 < k < 4,

(3.8) O < (-l)k<t>k(a,y) x (u log ^(fi)1"*.

PROOF. Differentiating <f)(s,y) yields

(3.9) (-!)%(«■») = E"°6'"^-_1g'08'>)

where Qfc_i is a polynomial of degree k — 1 with nonnegative coefficients.
If y < log x, we have a « 1/log y by (3.3), whence

p<î/
and the desired estimate follows from (3.3).

If y > log x, then a S> 1/log y by (3.4) and

(pa-l)*-!      <<WPJ VPa-l/

Therefore we have

« (log p)k~l ( 1 + -J— )       «(log»)*"1.
V       a log p/

(-l)fc0fc(a,y) « (log y)*"1 £ ^ = «(log y)fc,
püp<y
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which is the upper bound wanted. For the lower bound, we use a » 1/log y in the
form

Qfc_l(pQl0gp) fc_!
(pa-i)fc-i   »(log^) (y/v<p<y),

whence
(-l)fc0fc(a,y)»(logy)fc-1    £    ^.

'—'      pa

\/y<p<y

The p-sum is easily seen to be » (y1_Q - 1)/(1 - a) by Tchebycheff's estimates for
the ö-function. The result then follows by Lemma 3.

LEMMA 5.   We have uniformly for x > y > 2,

^¿EErwlogP<lTir^.
5 y v>2p»<y

PROOF. Plainly

logy f-% p2a     V 4/p<Vv

and

logy jr"   p2a   [logp]      \ Ap<\fy
In both cases the right-hand side is <C 1 + y}l2~a, by partial summation.

LEMMA 6.   Let y > 2, 0 < ß, £ < 1, r <E R, |r| < y(e), s = 1 - ß + ir.  Then
we have

(3.10) £ A(n)n"* = |^ + Oe (1(1 + /exp{-(log y)e/2})) .

This result may be proved by usual contour integration starting with Perron's
formula (see e.g. [16, Satz A.31]) and using Vinogradov's zero-free region for ç(s)
(see e.g. [8, Theorem 11.2]). We omit the details.

COROLLARY.   On the hypotheses of Lemma 6, put

6 — T log y — Arctan(r//3).

Then we have

y^ A(n)n/3_1(1 - cos(r log n))
n<y

y011-3 cos6 = j+0£Q(l + y^exP{-(logy)£/2}))." ß V     VP +
PROOF. It suffices to apply (3.10) with s - 1 - ß and s = 1 - ß + ir and to

take the real part of the difference.
The next lemma gathers a few simple inequalities that we shall need later and

the proof of which we leave to the reader.
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LEMMA 7.   We have

(3.11)

(3.12)

(3.13)

(3.14)

202/tt2 < 1 - cos 9 < e2/2       (\B\ < tt),

ev(l - e~v)2 > v2       (vGR),

(1 + i)-1 <exp{-i/(l + A)}       (0 < í < A),

(1 + Avt/(t - I)2)'1 < exp\-Av/t}       (0<v<l<t).

We can now prove the following result, which constitutes the main tool in the
process of majorizing the contribution of large r in the Perron integral for \[,(x, y).

LEMMA 8.   Let x > y > 2, T G R, s = a(x, y) + it.
(i) If \t\ < 1/log y, then

(3.15)
?(*.!/) < exp
t(a,y)

(ii) For fixed £ > 0, the estimate

?(«,«)

I  log y ° \     (2//i°g y) )]'

?(",y)

(y/log

«T2 1
<<£  eXPrC0(l-o)2+r2}(3.16)

/io/ds uniformly for
y > îto(e),    1/log y < |r| < Y(e),

where yo(e) ts a sufficiently large absolute constant.

PROOF. By an easy computation, we have

1-p-
(3.17) 1-p-

/       2(l-cos(rlogp))\-1/2
-^+ p«(i-p-)2 ;

We first consider the case |r| < 1/log y.   If y < log x, we have by (3.17) and
(3.11), for p<y,

1-p-
1-p-

(    1,     /       4r2(logp)2/7r2\l

:«-V")}-< exp \-2 l°g(l + r

Taking the product over p <y yields (3.15) since by (3.3) and (3.8),

yQ«l    and    q~2 x «2y-2(log y)4 x Éi^l.
y/log y

If y > log x, then a » 1/log y by (3.4), whence by (3.11) and (3.12),

2(1 - cos(r log p))      ( t log p
pa(l -p -a~)2        - a log p <ci,    say.

Next, we apply (3.13) with A = ci to the right-hand side of (3.17). We obtain

l-p"a

1-p- < exp {-rr^
cos(r log p)

+ \)pa(l-p'a)2
< exp < -c2pa

T log p
Pa - 1
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with C2 = 2/(7T2(l + A)). Multiplying this for p < y gives again (3.15), since in the
ranges considered

r202(a,y) «««y/logy.

We now turn our attention to the case |r| > 1/log y. It suffices to consider the
case u > «o(e), the result being trivial otherwise. We suppose that «o is so large
that

(3.18) y1_axölog«       (y>yo(e),u>u0(e)).

By Lemma 3, this is possible.
Now, by (3.17) and (3.14) with v = (1 - cos(r log p))/2, t = pa,

1-p-
< exp{-(l -cos(r log p))p a},1-p-

whence \ç(s,y)/ç(a,y)\ < e~w with

W := 5^(1 - cos(r log p))p~a.
p<y

Thus, we need a lower bound for W. We have trivially

r— V A(n)(l - cos(t log n))n-a <W + 2S,
logy 

n̂<y

where S is the quantity introduced in Lemma 5.   Applying the estimate of this
lemma and corollary to Lemma 6 with ß = 1 - q(x, y) yields, if y < log x,

» t1- (l - -7=^= + 0£(exp{-(log y)£l2))) - c^'2
log y V       VI + r2 /

W logy V
yr2

(logy)(l + r2)

and, if y > log x,

«Zl— ( i - , '-°   . +o,(- +.-"»« ">"') ) - w*-°
»»((TT^ + o.(;+«p{-('"")"2>))

From (3.18) we easily see that in the ranges considered

,2
T ■    I -   I     T     *    »        »        *-2 ^ n„„„A-2

2N

» min    1,- » (log u)     > (log y)   Z(l-a)2+T2   ~ V'Vl-«>

Thus if yo(¿) and uo(£) are suitably chosen, we deduce that

W»«r2/((l-a)2+r2)        (y>logx).

This completes the proof of (3.16).
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LEMMA 9.   We have uniformly for x > y > 2, 0 < e < 1, 1 < z < Y(e),

(3.19) *(x+.x/z,y)-tf(x,y)«£  xac(a,y){l/z + e"C5"}.

PROOF. The left-hand side of (3.19) is

(

O
n>l

\P(n)<y )

We express the exponential in terms of its bilateral Laplace transform using the
formula

-v2/2 ¡hCIexpß-vs)ds
/        exp < -~t-2 + ir(o - v) > dr       (o,v G R).e<r2/2-av

Selecting o — a(x,y)/z, we get

J_„ a2/2*2
2tt

n>l
P(n)<»

V^TT
a2/2*2   f+°° ¿icr/z-r'ß      V^      /^\2; \ ot-\-irz

dT
n>l

P(n)<y

«— /       e-r2/222|c(a + ir,y)|fir,
2   ./-oo

the inversion of summations being justified by the absolute convergence of the
Dirichlet series involved. In the last integral, we divide the range of integration into
three parts: |r| < 1, 1 < |r| < z2, and |r| > z2. The corresponding contributions
A; ^2i ^3 can be estimated as follows.

i-i
/i«c(o,y)/    e-r2/2z2dT<£ç(a,y),

fz2
I2<Z.    sup    [c(a + ir,y)[        e'^^dr

l<\r\<z2 Jl

«2    sup    \c(a + ir,y)| <„  zc(a,y)e~C5Ü
1<\t\<z2

/•oo
h « ç(a, y) /    e-T2/2z2dr <r f(a, y).

by Lemma 8, and

This provides the estimate wanted.
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4. Proof of Theorem 1. The analytic method sketched in §2 works well if « is
large, but complications arise when u is smaller than some fixed power of log log y.
We shall therefore use this method only for the range

(4.1) u > (log log 2yf
In the range 1 < u < (loglog 2y)2, de Bruijn's estimate (1.5) is available and implies
estimate (2.3) of Theorem 1 via formulae (2.6) and (2.7). Note that formula (2.7),
which we stated as a corollary to Theorems 1 and 2, actually depends only on
Theorem 2 and the special case u = \/Xög2y of Theorem 1, which is covered by
(4.1). Theorem 2 (and hence (2.6)) will be established in the last section without
using Theorem 1.

It remains therefore to prove Theorem 1 in the case when (4.1) is satisfied. This
is the really interesting and difficult case. We give the main steps of the proof in
the form of two lemmas.

(4.2)

LEMMA 10.   Let e, 0 < £ < 1, be fixed.  We have uniformly for x > y > 2,
Y       ra+i/\ogy xs

*(x'y)=277r /      , <is>y}-ds
¿t" Ja-i/logy °

+ 0£(xaç(a,y)(Y(£)-x + exp{-c6u(log 2«)"2})).

LEMMA 11.   We have uniformly for x > y > 2,

(4.3)
a-i/logyra-t/log

2i7T Ja-i/]0gy

xs xac(a,y)
ç(s,y)—ds= —

s ay27r02(a,y)
0

Moreover, the same estimate holds for
i       ra+i/logy

■¿7r Ja-i/logy

X
i(s,y) —

s \ds\.

The desired estimate (2.3) of Theorem 1 follows easily from these lemmas when
we assume (4.1). We take £ = 1/4 and combine formulae (4.2) and (4.3). The
right-hand side of (4.3) coincides with the estimate announced for ty(x,y) (since
l/«+(log y)/y x 1/«), so it only remains to check that the error in (4.2) is absorbed
by the error terms in (2.3). This is an immediate consequence of the bound

(4.4) a\J(¡)2(ct,y) « mintv/wlog y, \fy/log y)

(which follows from Lemmas 2, 4) under our hypothesis (4.1).
We now prove the two lemmas. In view of (4.4), the conclusions are trivial when

y < yo, so we assume y > yo henceforth.
PROOF OF LEMMA 10. We start with the formula

*(z,v)
<T-HT

ç(s,y)—ds
-iT

(4.5)
+ 0 *° E

n>l
V      P(n)<y

1 •   1     1
n"        V    r|log(x/n)|
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valid uniformly for o > 0 and T > 0 (we set here min(l, 1/0) = 1). This is a variant
of Perron's formula and follows from the estimate

Î"T Ja-
where

r°+iT zs / / ,
-ds = x(z) + O   z"min    1,

2vk .L_iT    s \ \    T\log z\

xW-{î     (0<*£1)'(* > 1),
which is easily proved by contour integration.

We select o = a(x,y), T — (Y"(e)-1 + exp(-C6«(log 2«)~2))-2. The error term
in (4.5) may be estimated by

/ \

(4.6) O xac(a,y)

Vf + x° E
v P(n)<y

llogix/n)!^-1/2 /

The first term is compatible with the size of the error in (4.2). The second is

x + ^,y)-*(x-^g,y x*c(a,y)j-^+e-c*öj

by Lemma 9. This is also acceptable.
It remains to estimate the contribution of the domain 1/log y < |t| < T.  By

Lemma 8, this is

<£r    X'

«e    X'

Jl
{/■maxu

/■/1/log»

■C0UT2/((l-a)2+T2)

1/log y
max(|l-a|,l/logy)

a + T

-coür2/2(l-a)2      dT
a + T

+ fT e-caü,2 JZiX
Jraa.v.{\l-a\,l/logy) a + T J

<e    Xaç(a, y) (e-^«/2((l-a)log2/)2log A + -J_-\  + g-coü/2,       T|
( V       a + 1/log y/ J

Now, we notice that Lemma 3 implies that

1log   1 + ,     (1 - a)log y -C log 2u.
a+ 1/log y,

Substituting in the last estimate, we see that the remainder term above is

<S£  xQc(a,y)exp(-c7«(log 2«)-2)log T
«£ xac(a,y)T-1l2,

if ce has been chosen sufficiently small.
This completes the proof.
PROOF OF LEMMA  11.  We divide the range of integration in (4.3) into the

parts |r| < To and 2q < |r| < 1/log y, where T0 = («)2/3/(«log y).
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The main contribution comes from the range |r| < To. Here we expand the func-
tion <f)(s, y) = log ç(s, y) in a Taylor series around r — 0. Putting ak = (fik(a, y) (k >
0), we get

T2 r3
(j)(s,y) = <t0 + irox - —o2 - i^°~3 + 0(t4o4),

where the error term estimate follows from the inequality

sup|04(a + tY,y)| < 04(a,y) = <r4,
tGR

which is an obvious consequence of the "explicit" formula (3.9) for (¡>k(s,y).
By the definition of To and Lemmas 2, 4, the quantities t3<T3, t4o4 and r/a are

uniformly bounded for |r| < To. Thus, we have in this range

(     r3 It3
exp | -¿3,^3 + 0(t4o4) f = 1 - ¿g, ^3 + 0(t6<t¡ + t4o4)

and
1 »'l-iltc'«*

a + í'r      a \        a V q2 ,
Bearing in mind that, by definition of a, <ti + log x = 0, we obtain the following
expression for the integrand in (4.3):

.     .x3      c(a,y)xa        (. , . t2 .r3 r.l 4    .1
c(s,y)— =-—:—exp <itlog x + ncx - — a2 - i^az + 0(t tr4) >

= AM£_f2J2/2 r _ .r _ .£   +    62 + r2a_2 + r4    \
a ^ a       3! J

We now integrate the last expression over the range |r| < To.   Omitting the
constant factor xac(a, y)/a gives for the contribution of the main terms

since the integrals involving ir/a and ¿t3<T3/3! vanish. The error terms contribute
at most

O (-^=(023023 + Oï1**-2 + (TÏ2CJ4)

By Lemmas 2, 4, we have

a »«/(«log«),    rjfcx(iilogy)fc(«)1-fc       (k = 2,3,4).

The factor 1/^[02 m the above expression is therefore 0(1/«). Moreover, from the
definition of To we also obtain

exp{-ÍT02(T2}«(T02íT2)-3x(ü)-1.

Collecting the above estimates yields

1    fT°    ,     .Xs,       xaç(a,y) /       „fl\\
tt^ /      Ç(s,y)—ds=—s.1      M l + O ( -    ) ,

which is the right-hand side of (4.3).
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It only remains to show that the contribution of the range To < |r| < 1/log y
can be absorbed by the error term. By Lemma 8(i), we have in this range

xs xa Í       T2oolozv\~Covßo*y
c(*,y)-«c(a,y)Ml + T

s a  \ y
Thus the corresponding contribution may be estimated as follows (omitting again
the constant factor ç(a,y)xa / a):

>v/^ V        y   )
-y/y/2logy

«-^=1 e-^l2dr
'To 7^2

r2l„„ „,\ -coy/logy

i   r°
V°2 Jto

M/°2   [Jj

Jjy/2logy V y        )' y/y/2logy

«^(To-V' + iogy«-1)«
IC2 VCT2 • «

This completes the proof of (4.3).
An inspection of the proof shows that we obtain the same estimate when the

integral is taken over the absolute value, as asserted in the lemma. We omit the
details.

5. Proof of Theorem 4. This is a simple modification of the argument leading
to Theorem 1. We again use Lemma 10 together with the following result, which
can be established in the same way as Lemma 11.

LEMMA 12.   We have uniformly for x > y > 2,
/a+î/log\,_ ..,_8J. _     x°ç(a,y)

2in̂
r'/to'W^= rAy\(i+ott)

l™ Ja-i/logy V/27T02(a,y)  V \U J

_L f°
27T Ja-

Moreover the same estimate holds for
r-a+i/logy

\t(s,y)xs\-\ds\.
Ia-i/logy

Putx' = x(l + l/;z), a' = a(x',y). Differentiating the equation 0i(a, y) = -log x
with respect to x yields

-( X  U ) = -
dx    ' x02(o,y)'

whence, by Lemma 4,

n        da .     , «
dx    ' x«2(logy)2

and
0<a-a'< "    to <

2«2(logy)2      «(log y)2 '
In particular, we have for all real r and ß, oí < ß < a,

(5.1) (x')/3|c(^ + îr,y)|xxû|c(a + îr,y)|.
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Using this for r = 0 and applying Lemma 10 to estimate ^(x',y), we obtain
i        r-a'+i/logy is

(5.2) ir(x',y) = — / ç(s,y)—ds + Oe(xac(a,y)R'(x,y))
¿lit J a' -i/logy s

with
R'(x,y) = Y(£)~x +exp{-c6«(log 2«)-2}.

Now (5.1) and the residue-theorem imply that the error involved in replacing a'
by a in the main term of (5.2) is

« M«+ffi™)l*V - «I « f(«,»)*■#(*,y),Q+ 1/log y

where the second estimate follows from Lemma 8(i) with a suitable modification of
the constant C6- Thus, we have

i        ra+i/logy is

*ix',y) = — / c(x,y)—ds + 0£(xac(a,y)R'(x,y)).
¿IK Ja-i/logy S

Subtracting (4.2), we obtain

t/       *    \     T,     ,       1    f+iflvv            sf(l + l/z)a-l\ ,tf (x + -,y)-V(x,y) = — / Ç(x,y)xs    ^-^-    ds
V Z     / ¿m Ja-i/logy V s J

+ 0£(xac(a,y)R'(x,y)).

By Theorem 1 and equation (4.4), we easily obtain that the remainder term is
Oe(V(x,y)R(x,y)).

Using the expansion

(1 + l/z)s = l + s/z + 0([s[/z2)       (z > 1, [s[ « 1),

we find that the main term equals

j ra+i/logy I  ^     ça+i/log y \
—- / c(s,y)xsds + 0 I -j / |c(s,y)xs|.|ds|    .
¿Í7TZ Ja-i/logy yz    Ja —i/logy J

By Lemma 12, this is

xaiia,y)     f1 + 0(l+l
Zy/2TT4>2Í<X,y)  V V«        2,

and, by Theorem 1, this last expression may also be written as

a*(x,y) /1 + 0/l + l
z

This completes the proof of Theorem 4.

6. Proof of Theorem 3. Theorem 3 could be proved directly in the same
manner as Theorem 4, but it is easier to deduce it from estimate (2.3) of Theorem
1.

We first dispose of the cases 2 < y < yo and 1 < « < «o, where yo and «o are
arbitrary but fixed constants. All we have to show then is the upper bound

(6.1) *(cx,y)/*(x,y)<ca(l'y)        (1 < c < y).
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When 2 < y < yo, this follows from (1.9). In the case y > yo, 1 < « < «o, with
yo sufficiently large, (6.1) can be deduced from (1.5) and the estimate a(x,y) =
1 + 0(l/log y) (y < x < y"°), which follows easily from the equation defining a.

We may therefore suppose

(6.2) y > yo,    « > «o
with sufficiently large constants yo, «o-

Let y > yo be fixed and put for « > 1,

au = a(yu,y)

and

\auy/2n<f>2(au,y) J
= uajog y + <p(au,y) - log au - ilog(27T02(a„,y)).

Thus, exp f(u) is the approximation of Theorem 1 for ^(y", y) and, under hypoth-
esis (6.2), estimate (2.3) of Theorem 1 can be restated as

*(y",y)=exp{/(«)+0(l/«)}.

Estimate (2.9) of Theorem 3 is therefore, in the range (6.2), equivalent to the
formula

(6.3) /(« + t) -/(«) = tau log y + 0(1/«)       (« > «o,0 < t < 1).

Now,

/(« + i) = /(«) + tf'(u) + O ( sup  [/"(« + t)\)
\0<t<l /

uniformly for u > 1, 0 < t < 1. Hence (6.3) is a consequence of the two estimates

(6.4) /'(«) = aulogy + 0(l/«)       (« > u0)

and

(6.5) /"(«) = 0(1/«)       (« > «o),
which we are going to prove.

We first derive estimates for the derivatives a^, a'¿ of au = a(yu,y), considered
as a function of u. Differentiating the equation

«log y + 0i(o„,y) =0

yields

a'u = -(log y)/02(au,y)    and   a" = -03(a„,y)(a'u)2/<j>2(au,y).

An application of Lemmas 2, 4 then gives

(6.6) K|xö/(«2logy),

(6-7) |Q^|xù/(«3logy),
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Differentiating the expression defining /(«), we find

ua'ulog y + (j>x(au

<     03 (<*„,«)<

/'(«) = aulogy + ua'ulogy + 4>x(au,y)a'u - < - ^"'^
au       2<p2(au,y)

= olu log y
au       2<j>2(au,y)

and

r(«)=<iogy-au<~K)2

_ 02(Qtt,y)(04(Qu,yX2 + 03(Qu,y)Q-03(Q«,y)02(Q«,y)
202(o;u,y)

Inserting (6.6), (6.7), and the estimates

Qu>«/(«logy),    |0fc(au,y)|x(nlogy)fc(«)1-fc       (k = 2,3,4),

of Lemmas 2, 4, we obtain (6.4) and (6.5), and hence the assertion of Theorem 3
in the form (6.3).

7. Proof of Theorem 2. The proof is somewhat lengthy but not difficult. We
start with a lemma giving relatively sharp estimates for 0i(er, y) and 02 (c, y).

LEMMA 13.   We have uniformly for y > 2 and a > 0,

p.»     -^>=(i+o(¿))t4^í?+0(1)
and

(7.2) ,2fcri=(1 + o(¿))ÍT^/,^t + 0(l).

Moreover, for any fixed positive constants £ and oo, the error terms 0(l/log y) can
be replaced by O£i(T0(exp{ — (log y)3^5_£}) in the case a > oo-

PROOF. The case 2 < y < 3 being trivial, let y > 3 be fixed and put

R:= 1/log y,        R£ := exp{-(log y)3/5"£}    (0 < £ < 1/2).

By partial summation and a strong form of the prime number theorem, we readily
get

-^M = E^Hl + Oe(iy)f T^+0(1)
p<y

uniformly for a > 0 and any fixed £ > 0.  Thus to obtain the asserted estimates
concerning 0i(cr, y), it suffices to show

and, when a > Co*
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Since ^      ^ 1

t°-i   t° + t2°(i-t-°y

we obtain
fy    dt fydt _1_    [v dt\

J2 tr-i- jx t°+u\i-2-° Jx t2°)\
The error term is bounded if a > 2/3 and is smaller than the main term by a factor

0(((log y)fa)y-^^f^)
if 0 < a < 2/3. This is 0£(RE) if a > <r0 and O(R) if a > 3(loglog 2y)/log y. Thus,
it only remains to prove (7.3) in the case a < min(2/3,3(loglog 2y)/log y).

In this range we have
rv dt     y1'" - 1      y1'"

V I-a        l-o
-y dt

t"

(1 + Oiy-1/3))
/

= (l + 0(y-1/6))T

fy   dt        fy    dt       _/    1      h
J2^ = L^ + 0{T^JX

= (l + 0(y-^logy)) f JL-.

and
*^ dt\

V I

ly/V

To obtain (7.3), it therefore suffices to show

(7.5)        r±(-^__jL_\di<j^LÄ.
V    ' J^t°\l-t-°     l-y-°) l-y~"
The left-hand side equals

l      fv l-jy/t)-° ,.
l-ír'/^vl-í-*)

¡y log(y/t)
-(l-y-'Kl-»-/»)/^    í2"

« ^y1"2" << y1"" R(l-y-<r)min(l,<rlogy)       1 - y~°

This establishes the estimates of the lemma for 0i(q, y). The results concerning
<¡>2(a,y) are proved similarly.

PROOF OF THEOREM 2. When y is bounded, the result follows by trivial
arguments. Hence, we may suppose y > yo, where yo is a sufficiently large absolute
constant.

Let xo = eyo and £ be any positive constant. We are going to prove

(7.6) o(x,y) = l0g(11+y/l0gz)fl + 0^   *
logy V \logy

for

(7.7) y0 < y < (log x)2
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and

(7.8) a(Xyy) = i-M?±+oe(Re +log y V        "(log y)2
for

(7.9) x > xo,        (log x)1+£ < y < x.

Here, as in the previous section, we set

fi£=exp{-(logy)3/5-£}.

We first check that (7.6) and (7.8) together imply estimate (2.4) of Theorem
2. Since the right-hand side of (7.6) is identical with the right-hand side of (2.4)
except for the sharper remainder, we only have to consider the range (7.9). By
Lemma 1, we have in this region

£(«) = log « + 0(loglog(« + 2))
= log log x + 0(loglog(y + 1)),

whence from (7.8)

q(x,y) = log(f/logx)+ofloglog(y + 1]
log y v    log y

log(l + y/log x) fl0   /^loglog(y + 1)
log y       V        V     log y

as wanted.
To prove (7.6) and (7.8), we introduce as before, for fixed y > yo, the functions

au = a(yu,y),    a'u = dau/du

and, given u = (log x)/(log y), define v and w by the equations

log(l + y/(log x)) £(«)
av =-:-,    aw — 1log y log y '

Thus we have to prove that

(7.6') \au - av\ « av/log y

and

(7.8') |ou - oj « fie + l/«(log y)2

hold respectively in the ranges (7.7) and (7.9).
By Lemma 13 we have for any positive z,

(7.10) -My,az) = zlogy=jJ:\-if{;2z) (l + O (¿)) + 0(1),
where the error term 0(l/log y) may be replaced by 0£(Re) if az »e   1. From the
definitions of av and aw, we have

(7.11) a"   , =«logy,    —.-=«logy.ya" - 1 1 - aw
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Moreover, we have in the range (7.7),

log(l + u1/2)      3
(7.12) 0<av<iOg[: + y     ' <-A,    say,logy 4
and in the range (7.9),

(7.13) 1 «C£  aw< 1.

Substituting z = v and z — win (7.10) and taking (7.12) and (7.13) into account,
we obtain, in the respective ranges,

•*»- r^H(¿))+o<i)
and

«.log y - «log y(l + 0£(R£)) + 0(1).
This implies, in turn,

(7.14) v x u,    \v - «| <§; u(av + 1/log y)

and

(7.15) «i x u,     |M - u| <£  «(Äe + l/(ti log y)).

The desired estimates (7.6)' and (7.8)' follow from these, noticing that by (6.6)
we have

(7.16) a'z x u/(«2 log y)

for any z in the intervals with endpoints « and v or « and w. (Actually, this
follows directly from (6.6) only if z > 1, but we have by the above estimates that
z > 1 + 0(l/log y), and it is easily seen that this does not affect the estimate of
a'z.) We indeed deduce from the last three formulae that

i «      / 1    \ a„
\au - av\ < —.-    av +-    «ulog y V log yj   *   log y

(since av ^> ü/(ulog y)) and

(*w\ <e   —r— ( #£ -f -r1     ) < ß£ H«logyV  '     «logy/ «(logy)2'
This completes the proof of (2.4).

Next, we establish estimate (2.5) of Theorem 2. By (7.2) we have

(7,7)       «„,„) = (i + o^p-l-^iaia+offl.
Estimating the integral by partial summation yields

f^d^logyf^-f^ld*7i     ia A   ¿Q     7i   i(l-a)
fy dt /    _ /      1

(1 - a)log y
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Now, if « < ^/y, we have, by (7.8),

l-a = l-M + 0f      *      Ul0g^ + 2)
log y      V (log y)2 /        log y

and, if « > y/y, 1 - a » 1 by (7.6). Thus
1 1 1

<C :--,-rr + :- = E,      Say,(l-o)logy       log(« + 2)     logy
and into (7.17) we obtain

M«,y) = (i + 0(E)){ihgylJa)2 ¡*£ + 0(i),

whence by (7.1)

02(a,y) = (1 + 0(E)) ̂ffî°" +0(1)
= (1 + 0(E))^^.

To complete the proof of (2.5), it will therefore be sufficient to show that

(7.18) (1 - y~a) = ( 1 + l^)   l ll + o(
y   )     \ \log y,

This is clear if y > log x • log y, since (2.4) implies in this circumstance

Q> loglog(l + y)  | 0(   1
logy \logyj'

If y < log x • log y, then hypothesis (7.7) is satisfied. By (7.6) we therefore infer

y-^U+yyu+ol1^^^)),V     logxy     V        V       logy       ))
whence

ra = {  + l^Ui\   +o^ log^ + ^log^
y   J \(logy)(l +y/log x)

4. i°i£ V1 A + o ^X + (log x)/y)los(1 + y/los*)
y    J       \ V (logy)(l + y/log x)

The remainder expression equals

(log x)log(l + y/log x) _      1       log(l + y/log x) 1
y log y logy y/log x logy'

This completes the proof of (7.18) and hence of (2.5)
Let us now turn to part (ii) of Theorem 2. We first establish the estimate

(7.19) 02(a)«)=(l + Oe(i^))(logy)2í'(«)-1

for the range (7.9). By (7.13) we have a »£   1, whence by (7.2),
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Moreover, (7.8) shows that replacing a in the integral by aw = 1 - £(«)/log y
introduces at most an error factor of 1 + 0£(l/log y). The modified integral can
be easily evaluated. We have

r^iidt- \—fv—]     d (yi~aw~x\ ( ^v1
Jx      ía» [do Jx    Ha=a„  ~ du V     l-CXw     )      \       du

d  /e«")-l   .       A logy     ,.       ,2HI ,_!
log y   7777T = (!°g y) ? »    •d« V  £(«) / e(«)

This yields (7.19).
The proof of (2.6) now follows in a rather simple way. From (7.8) and (7.19) we

readily get

(QVM-^^ta>MM)}.
Moreover, we also have by (7.8) that

xexp < -«£(«) + 0£ I «ñg + log
Finally, we may write

gy) j

?(a,y) = c(l,y)exp|- /   <¡>x(o,y)do-\

where, by Mertens' Theorem

c(l,y) = e^logy(l + 0(l/logy)),
and, by Lemma 13,

- J 4>1(°,v)d* = (l + Oe(Re))J   (^\°_al^dcr + 0(l-a)
/•(l-a)logj/    s _ i

= (1 + 0£(R£))-^ds + 0(l-a)
Jo s

with an obvious interpretation in the case a > I. Using (7.8), the last expression
becomes

/■€(«) e«-l /log(«+l)
/        -ds + 0£( -^-i + «Ä£7o « V    logy

The desired formula (2.6) now follows on collecting these estimates.
This completes the proof of Theorem 2.
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