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ON INTEGERS NOT OF THE FORM ±pa ± qb

ZHI-WEI SUN

(Communicated by David E. Rohrlich)

Abstract. In 1975 F. Cohen and J.L. Selfridge found a 94-digit positive in-
teger which cannot be written as the sum or difference of two prime powers.
Following their basic construction and introducing a new method to avoid a
bunch of extra congruences, we are able to prove that if

x ≡ 47867742232066880047611079 (mod 66483034025018711639862527490),

then x is not of the form±pa±qb where p, q are primes and a, b are nonnegative
integers.

1. Introduction

In 1849 A. de Polignac [P] asked whether any positive odd integer can be ex-
pressed in the form 2n+p where n is a nonnegative integer and p is 1 or a (positive)
prime; actually Euler had already noted the counterexample 959. Using the Brun
sieve N.P. Romanoff [Ro] proved that a positive proportion of the odd integers may
be written in this way. On the other hand, van der Corput [Co] showed that the set
of positive odd integers not representable in the form has a positive density, and
by means of cover of the ring Z of the integers P. Erdös [E] constructed a residue
class of odd numbers which contains no integers of the desired form.

Let N = {0, 1, 2, · · · } and Z+ = N \ {0}. For a ∈ Z and n ∈ Z+ we call

a(n) = a+ nZ = {x ∈ Z : x ≡ a (modn)}
a residue class with modulus n. A finite system

A = {as(ns)}ks=1(1)

of such sets is said to be a cover (of Z) if every integer belongs to some residue classes
in A. Notice that the characteristic function of the set

⋃k
s=1 as(ns) is periodic mod

N where N denotes the least common multiple of n1, · · · , nk.
Inspired by the work of Erdös, in 1975 F. Cohen and J.L. Selfridge [CS] observed

that the 26-digit number

M = 47867742232066880047611079(2)

plus or minus a power of 2 can never be a prime, but they gave no reasons why
additional congruences (similar to x ≡ 3 (mod 31) in the proof of Erdös presented in
[Si]) can be avoided there. (See their Theorem 1 and its proof.) They then deduced
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(in their Theorem 2) that there exist odd numbers not of the form ±2a±pb where p
is a prime, a, b ∈ N and any choice of signs may be made. To find the least positive
odd integer having the property is an interesting open problem. (Cf. section A19
of R.K. Guy [Gu].) Through a computer search Cohen and Selfridge noted that
the number is greater than 218 = 262144, and in [CS] they showed that the 94-digit
number

61206699060672767780921156017566254819576161631
-92298173436854933451240674174209468558999326569

is indeed not of the form ±2a ± pb.
In view of Goldbach’s conjecture, we should seek integers not representable by

the sum or difference of two prime powers only among odd numbers not of the
above form. In this paper we adopt the construction in Theorem 1 of Cohen and
Selfridge [CS] and show that we can deduce their Theorem 2 without using a lot of
extra congruences. Thus we have

Theorem. Let x be any integer congruent to M modulo

66483034025018711639862527490

where M is as in (2). Then x cannot be written in the form ±pa ± qb where p, q
are primes, a, b ∈ N and any choice of signs may be made.

Since M is prime to the 29-digit modulus in the above theorem, with the help of
Dirichlet’s theorem there are infinitely many primes p such that p+ 2n and |p− 2n|
are both composite for all n = 0, 1, 2, · · · . This gives an affirmative answer to the
question raised by M.V. Vassilev-Missana [VM].

For other related topics, the reader is referred to [Cr], [Ga], [Gu], [GS] and [Su].

2. Proof of the Theorem

For n ∈ Z+ by a primitive divisor of 2n − 1 we mean a factor of 2n − 1 not
dividing 2m − 1 for any 0 < m < n. It is known that 2n − 1 has a primitive prime
divisor if n 6= 1, 6. (Such results were first given by K. Zsigmondy [Z] and then
rediscovered by G.D. Birkhoff and H.S. Vandiver [BV]; they were clearly stated and
applied by D. Richard [Ri].)

Lemma 1. Let (1) be a cover of Z with 0 6 as < ns for s = 1, · · · , k, and let
distinct primes p1, · · · , pk be divisors of 2n1 − 1, · · · , 2nk − 1 respectively. Let P (x)
be any polynomial with integer coefficients. Let n ∈ N and x ∈

⋂k
s=1 P (2as)(ps). If

|x − P (2n)| is a prime power, then there exists a unique s ∈ {1, · · · , k} for which
n = as + ans and |x− P (2n)| = pbs for some a, b ∈ N.

Proof. By the Chinese Remainder Theorem, S =
⋂k
s=1 P (2as)(ps) is a residue class.

Suppose that |x − P (2n)| = pb where p is a prime and b is a nonnegative integer.
Let I = {1 6 s 6 k : n ∈ as(ns)}. For s ∈ I clearly

x− P (2n) ≡ x− P (2as) ≡ 0 (mod ps)

and hence ps = p. So I has a single element. The lemma is proved.

Lemma 2. The systems

A = {1(2), 0(4), 6(8), 10(12), 10(16), 18(24), 2(48)}
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and

B = {0(2), 0(3), 2(5), 5(9), 3(10), 4(15),

11(18), 1(20), 25(30), 17(36), 35(36), 31(60)}
form covers of Z.

Proof. Apparently 2(16) ⊆ 2(48)∪18(24)∪10(12); from this it is easy to see that A
forms a cover of Z. As for system B, evidently 5(6) ⊆ 5(9)∪11(18)∪17(36)∪35(36)
and

1(6) ⊆ 2(5) ∪ 3(10) ∪ 4(15) ∪ 1(20) ∪ 25(30) ∪ 31(60),

so B is also a cover.

Remark. The two covers in Lemma 2 were first used by Cohen and Selfridge [CS].

For convenience we adopt the following notation for a ∈ Z and m ∈ Z+:

Rm(a) = {r ∈ Z : −m/2 < r 6 m/2 and an ∈ r(m) for some n ∈ N}.(3)

Proof of the Theorem. Let systems A and B be as in Lemma 2. For those moduli
n in cover A, we can assign to 2n−1 primitive prime divisors 3, 5, 17, 13, 257, 241,
97 respectively. For those moduli m in cover B, we may assign to 2m− 1 primitive
prime divisors

3, 7, 31, 73, 11, 151, 19, 41, 331, 109, 37, 61

respectively. In order to apply Lemma 1, we let S denote the residue class

−2(3) ∩−20(5) ∩ −26(17) ∩ −210(13) ∩ −210(257) ∩ −218(241) ∩ −22(97)

= 1(3) ∩ −1(5) ∩ 4(17) ∩ 3(13) ∩ 4(257) ∩ 64(241)∩ −4(97)

= −2887734236(19916152035)

and we let T stand for

20(3) ∩ 20(7) ∩ 22(31) ∩ 25(73) ∩ 23(11) ∩ 24(151)

∩ 211(19) ∩ 21(41) ∩ 225(331) ∩ 217(109) ∩ 235(37) ∩ 231(61)

=1(3) ∩ 1(7) ∩ 4(31) ∩ 32(73) ∩ −3(11) ∩ 16(151)

∩−4(19) ∩ 2(41) ∩ −31(331)∩ 54(109)∩ 19(37) ∩ −2(61)

=1059133928568910972(5007223647777439011).

Let x be any integer in the residue class

1(2) ∩ S ∩ T = M(66483034025018711639862527490).

As an odd integer x is not of the form ε1p
α1
1 + ε2p

α2
2 where p1, p2 are odd primes,

α1, α2 ∈ N+ and ε1, ε2 ∈ {1,−1}. We need only show that neither |x + 2n| nor
|x − 2n| can be a prime power. By Lemma 1 it suffices to deduce a contradiction
in each of the following cases where a, b ∈ N and ε ∈ {1,−1}.

Case A1. x = −21+2a + ε3b.
Since R13(3) = {1, 3,−4} and R13(4) = {±1,±3,±4}, by the congruence x ≡

3 (mod 13) we must have

3b ∈ 1(13) (i.e. 3 | b), ε = 1 & 4a ∈ −1(13) (i.e. 6 | a− 3),
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or

3b ∈ 3(13) (i.e. 3 | b− 1), ε = −1 & 4a ∈ −3(13) (i.e. 6 | a+ 1),

or

3b ∈ −4(13) (i.e. 3 | b− 2), ε = 1 & 4a ∈ 3(13) (i.e. 6 | a− 2).

So, for some c, d ∈ Z the integer x has one of the following three forms:

−21+2(6c+3) + 33d, −21+2(6c−1) − 33d+1, −21+2(6c+2) + 33d+2.

As x ∈ 1(7), x must be of the last form and d must be odd. Thus

x = −212c+5 + 33d+2 ≡ −2− 2d 6≡ −1 (mod 5).

Case A2. x = −20+4a + ε5b.
Since x ≡ −1+ε(−1)b ≡ 1 (mod 3), we have ε = (−1)b−1. Clearly 23 ≡ 1 (mod 7)

and x = −24a − (−5)b ≡ −2a − 2b ≡ 1 (mod 7). Therefore

2a ∈ 2(7) & 2b ∈ 22(7), or 2a ∈ 22(7) & 2b ∈ 2(7),

i.e. x = −24(1+3c) − (−5)2+3d or − 24(2+3c) − (−5)1+3d for some c, d ∈ Z. If x is of
the former form, then x ≡ −3 + 5d 6≡ 3 (mod 13). Thus x = −28+12c − (−5)1+3d ≡
4 + 5d+1 (mod 13). As x ∈ 3(13) we find that d = 1 + 4e for some e ∈ Z. Now

x = −28+12c − (−5)1+3(1+4e) = −(24)2+3c − (54)1+3e

≡ −(−1)2+3c − (−4)1+3e ≡ (−1)c−1 + 4e+1 6≡ 4 (mod 17).

Case A3. x = −26+8a + ε17b.
As R13(−4) = {1,−4, 3} and R13(4) = {±1,±3,±4}, we find that x ≡ (−4)a +

ε4b 6≡ 3 (mod 13).
Case A4. x = −210+12a + ε13b.
In this case, x ≡ −2 + ε(−1)b 6≡ 1 (mod 7).
Case A5. x = −210+16a + ε257b.
Since x ≡ −1 + ε(−1)b ≡ 1 (mod 3), we have ε = (−1)b−1. Note that x =

−210+16a− (−257)b ≡ −4− (−2)b ≡ 4 (mod 17). So b = 3 + 8d for some d ∈ Z. As
R13(3) = {1, 3,−4},

x = −210+16a − (−257)3+8d

≡24+4a − 33+8d ≡ 3a+1 − 32d 6≡ 3 (mod 13).

Case A6. x = −218+24a + ε241b.
Apparently x ≡ −22 + ε 6≡ −1 (mod 5).
Case A7. x = −22+48a + ε97b.
In this case x ≡ −4 + ε(−1)b 6≡ 1 (mod 7).
Case B1. x = 20+2a + ε3b.
Observe that x ≡ 4a + ε(−1)b4b ≡ 1 (mod 7). As R7(4) = {1, 4, 2}, either

4a ≡ ε(−1)b4b ≡ 4 (mod 7), or 4a ≡ 2 (mod 7) and ε(−1)b4b ≡ −1 (mod 7). In
the former case, ε = (−1)b and a, b ≡ 1 (mod 3); in the latter case, ε = (−1)b−1,
3 | a− 2 and 3 | b. So, for some integers c and d, either

x = 22(1+3c) + (−1)b3b = 22+6c + (−3)1+3d ≡ 4(−1)c − 3(−1)d 6≡ 3 (mod 13)

or

x = 22(2+3c) − (−1)b3b = 24+6c − (−3)3d ≡ 3(−1)c − (−1)d 6≡ 3 (mod 13).
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Case B2. x = 20+3a + ε7b.
As x ≡ (−1)a + ε ≡ 1 (mod 3), ε = −1 and a = 1 + 2c for some c ∈ Z. Notice

that

x = 23(1+2c) − 7b ≡ 8(−1)c − 7b (mod 5× 13).

When 2 | c, 7b ≡ 5 (mod 13) since x ∈ 3(13); thus 12 | b− 3 and hence x ≡ 8− 7b ≡
−2− 23 6≡ −1 (mod 5). So 2 - c and hence 7b ∈ 2(13) (i.e. 12 | b+ 1). Therefore for
some d, e ∈ Z we have

x = 23+6(1+2e) − 712d−1 ≡ −(−23)e + 8(73)4d ≡ −(−8)e + 8 6≡ −4 (mod 19),

since R19(−8) = {1,−8, 7}.
Case B3. x = 22+5a + ε31b.
In view of the congruence x ≡ 1 (mod 3), ε = −1 and a = 1 + 2c for some c ∈ Z.

Thus x = 27+10c − 31b ≡ −2(−1)c − 1 6≡ −1 (mod 5).
Case B4. x = 25+9a + ε73b.
As x ≡ −(−1)a + ε ≡ 1 (mod 3), ε = −1 and a = 2c for some c ∈ Z. So

x = 25+18c − 73b ≡ −5(−1)c − (−1)b 6≡ 19 (mod 37).
Case B5. x = 23+10a + ε11b.
Since x ≡ −1 + ε(−1)b ≡ 1 (mod 3), we have ε = (−1)b−1. Observe that

x = 23+10a − (−11)b ≡ −2(−1)a − (−1)b ≡ −1 (mod 5).

So a = 2c and b = 1 + 2d for some c, d ∈ Z. Now

x = 23+20c − (−11)1+2d ≡ 8(−1)c + 28× 2d ≡ 4 (mod 17).

Therefore 7 × 2d ≡ 1 − 2(−1)c (mod 17). As R17(2) = {±1,±2,±4,±8}, we must
have 2 - c and 8 | d− 5. Write c = 1 + 2e and d = 5 + 8f where e, f ∈ Z. Then

x = 23+20(1+2e) + 111+2(5+8f) = 223+40e + 11× 1215+8f

≡ −23 + 11(−2)5+8f ≡ −8 + 99× 256f ≡ −8 + 17× 10f ≡ 2 (mod 41).

It follows that 10f−1 ≡ −12 (mod 41). But R41(10) = {1, 10, 18, 16,−4}, so we
have a contradiction.

Case B6. x = 24+15a + ε151b.
Note that x ≡ 8a + ε (mod 15). So x 6∈ ε(3) ∪ ε(5). But ε ∈ {1,−1} and

x ∈ 1(3) ∩−1(5), so we have a contradiction.
Case B7. x = 211+18a + ε19b.
Using the fact x ∈ 1(3) we obtain that ε = −1. As

x = 211+18a − 19b ≡ 23+2a − (−1)b ≡ −2(−1)a − (−1)b ≡ −1 (mod 5),

a = 2c and b = 1 + 2d for some c, d ∈ Z. Now

x = 211+36c − 191+2d ≡ 8(−1)9c − 21+2d ≡ 4 (mod 17).

Thus 4d ≡ 2 or −6 (mod 17), which is impossible.
Case B8. x = 21+20a + ε41b.
Observe that x ≡ 2 + ε 6≡ −1 (mod 5).
Case B9. x = 225+30a + ε331b.
Since x ∈ 1(3), we have ε = −1. Note that x ≡ 21+2a − 1b 6≡ −1 (mod 5).
Case B10. x = 217+36a + ε109b.
Clearly ε = −1 since x ∈ 1(3). Now x ≡ 2− (−1)b 6≡ −1 (mod 5).
Case B11. x = 235+36a + ε37b.
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Evidently x ≡ 10 + ε(−1)b 6≡ −4 (mod 19).
Case B12. x = 231+60a + ε61b.
Notice that x ≡ 8 + ε (mod 15). This contradicts the fact x ∈ 1(3) ∩ −1(5) =

4(15).
The proof of the Theorem is now complete.

Added in proof. By means of the software MAPLE, the author and Mr. Yun-Zhi
Zou (at Sichuan University) have shown that any positive integer not more than
225 can be written as the sum or difference of two prime powers.
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