
On Integrability of Hirota–Kimura-Type

Discretizations: Experimental Study of the

Discrete Clebsch System

Matteo Petrera, Andreas Pfadler, and Yuri B. Suris

CONTENTS

1. Introduction

2. Kahan’s Discretization of the Lotka–Volterra System

3. Hirota–Kimura Bases and Integrals

4. Finding Hirota–Kimura Bases

5. Hirota–Kimura Discretization of the Euler Top

6. Hirota–Kimura-type Discretization of the Clebsch System

7. Conclusions

Acknowledgments

References

2000 AMS Subject Classification: Primary 14E05, 14H70;
Secondary 37J35, 37M15, 39A12, 70E40

Keywords: Integrable discretization, computer-assisted proof,
birational dynamics, Clebsch system, integrable tops

R. Hirota and K. Kimura discovered integrable discretizations of

the Euler and the Lagrange tops, given by birational maps. Their

method is a specialization to the integrable context of a general

discretization scheme introduced by W. Kahan and applicable

to any vector field with a quadratic dependence on phase vari-

ables. According to a proposal by T. Ratiu, discretizations of

Hirota–Kimura type can be considered for numerous integrable

systems of classical mechanics. Due to a remarkable and not

well understood mechanism, such discretizations seem to in-

herit the integrability for all algebraically completely integrable

systems. We introduce an experimental method for a rigorous

study of integrability of such discretizations.

Application of this method to the Hirota–Kimura-type discretiza-

tion of the Clebsch system leads to the discovery of four func-

tionally independent integrals of motion of this discrete-time sys-

tem, which turn out to be much more complicated than the in-

tegrals of the continuous-time system. Further, we prove that ev-

ery orbit of the discrete-time Clebsch system lies in an intersec-

tion of four quadrics in the six-dimensional phase space. Anal-

ogous results hold for the Hirota–Kimura-type discretizations for

all commuting flows of the Clebsch system, as well as for the

so(4) Euler top.

1. INTRODUCTION

The discretization method studied in this paper seems

to have been introduced into the geometric integration

literature by W. Kahan in the unpublished notes [Kahan

93]. It is applicable to any system of ordinary differential

equations for x : R → Rn with a quadratic vector field

ẋ = Q(x) + Bx + c,

where each component of Q : Rn → Rn is a quadratic

form, while B ∈ Matn×n and c ∈ Rn. Kahan’s dis-
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cretization reads as

x̃ − x

2ǫ
= Q(x, x̃) +

1

2
B(x + x̃) + c, (1–1)

where

Q(x, x̃) =
1

2

(
Q(x + x̃) − Q(x) − Q(x̃)

)

is the symmetric bilinear form corresponding to the

quadratic form Q. Here and below we use the follow-

ing notational convention, which will allow us to omit

a great many indices: for a sequence x : Z → R we

write x for xk and x̃ for xk+1. Equation (1–1) is linear

with respect to x̃ and therefore defines a rational map

x̃ = f(x, ǫ). Clearly, this map approximates the time-

(2ǫ)-shift along the solutions of the original differential

system, so that xk ≈ x(2kǫ). (We have chosen a slightly

unusual notation 2ǫ for the time step, in order to avoid

the appearance of various powers of 2 in numerous for-

mulas; a more standard choice would lead to changing

ǫ to ǫ/2 everywhere.) Since (1–1) remains invariant un-

der the interchange x ↔ x̃ with the simultaneous sign

inversion ǫ �→ −ǫ, one has the reversibility property

f−1(x, ǫ) = f(x,−ǫ).

In particular, the map f is birational.

W. Kahan applied this discretization scheme to the

famous Lotka–Volterra system and showed that in this

case it possesses a very remarkable nonspiraling prop-

erty. We will briefly discuss this example in Section 2.

Some further applications of this discretization have been

explored in [Kahan and Li 97].

The next, even more intriguing, appearance of this dis-

cretization can be found in two papers by R. Hirota and

K. Kimura, who (being apparently unaware of Kahan’s

work) applied it to two famous integrable systems of clas-

sical mechanics: the Euler top and the Lagrange top [Hi-

rota and Kimura 00, Kimura and Hirota 00]. For the

purposes of the present text, integrability of a dynamical

system is synonymous with the existence of a sufficient

number of functionally independent conserved quantities,

or integrals of motion, that is, functions constant along

the orbits. We leave aside other aspects of the multi-

faceted notion of integrability, such as Hamiltonian or ex-

plicit solution. Surprisingly, the Kahan–Hirota–Kimura

discretization scheme produced integrable maps in both

the Euler and the Lagrange cases of rigid-body motion.

Even more surprisingly, the mechanism that ensures in-

tegrability in these two cases seems to be rather different

from the majority of examples known in the area of in-

tegrable discretizations, and, more generally, integrable

maps; cf. [Suris 03].

The case of the discrete-time Euler top is relatively

simple, and the proof of its integrability given in [Hirota

and Kimura 00] is rather straightforward and easy to

verify by hand. As often happens, no explanation was

given in [Hirota and Kimura 00] as to how this result

was discovered. The “derivation” of integrals of motion

for the discrete-time Lagrange top in [Kimura and Hirota

00] is rather cryptic and almost incomprehensible.

The present paper aims at clarifying the Hirota–

Kimura integrability mechanism and its application to

further integrable systems. We use the term Hirota–

Kimura-type discretization for Kahan’s discretization in

the context of integrable systems. In Section 3 we pro-

pose a formalization of the Hirota–Kimura mechanism

from [Kimura and Hirota 00], which will, we hope, reveal

its main idea and contribute to a demystification of at

least some of its aspects.

We introduce a notion of a Hirota–Kimura basis for

a given map f . Such a basis Φ is a set of simple (often

monomial) functions Φ = (ϕl, . . . , ϕl) such that for every

orbit {f i(x)} of the map f there is a certain linear com-

bination c1ϕ1 + · · · + clϕl of functions from Φ vanishing

on this orbit. As explained in Section 3, this is a new

mathematical notion, not reducible to that of integrals

of motion, although closely related to it. In Section 4

we establish a theoretical foundation for the search for

Hirota–Kimura bases for a given discrete-time system,

and give a number of practical recipes and tricks for do-

ing this.

We dare to claim that the results of [Hirota and

Kimura 00] concerning the discrete-time Euler top were

originally discovered using the mechanism of Hirota–

Kimura bases, and we present in Section 5 an attempt

to reconstruct the way in which this discovery was made.

Section 6 contains the main results of this paper, namely

the proof of integrability of the Hirota–Kimura-type dis-

cretization for a further famous integrable system of clas-

sical mechanics, namely for the Clebsch case of the mo-

tion of a rigid body in an ideal fluid.

Our investigations are based mainly on computer ex-

periments, which are used for both the discovery of new

results and their rigorous proof. A search for Hirota–

Kimura bases can be accomplished with the help of nu-

merical experiments based on the recipe N formulated in

Section 4, which has a theoretical justification in Theo-

rem 4.1.

If the search has been successful and a certain set of

functions Φ has been identified as a Hirota–Kimura ba-

sis for a given map f , then numerical experiments can

provide very convincing evidence in favor of such a state-
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FIGURE 1. Left: a spiraling orbit of the explicit Euler method with time step ǫ = 0.01 applied to the Lotka–Volterra
system. Right: three orbits of Kahan’s discretization with ǫ = 0.1.

ment. A rigorous proof of such a statement turns out to

be much more demanding. At present, we are not in pos-

session of any theoretical proof strategies and are forced

to verify the corresponding statements by means of sym-

bolic computations. However, direct and simple-minded

symbolic computations turn out to be infeasible, due to

complexity issues.

As detailed in Section 6, the sheer size of the explicit

expressions for the second iterate f2 of the discrete-time

Clebsch system precludes symbolic manipulations, such

as solution of linear systems, as soon as these involve f2.

Therefore, our main effort has been devoted to finding a

strategy for a complete and rigorous symbolic proof that

would avoid using f2 and would stay within the memory

and performance restrictions of the available software and

hardware. The resulting proofs are computer assisted

and are based on symbolic computation with Maple, Sin-

gular, and Form.1

Our work was stimulated by a talk presented by T.

Ratiu at the Oberwolfach workshop “Geometric Inte-

gration” [Ratiu 06], where an extension of the Hirota–

Kimura approach to the Clebsch system and to the Ko-

valevski top was proposed. However, no valid derivation

of integrals was presented in T. Ratiu’s talk, so that the

question of the integrability of these discretizations re-

mained open. Our work answers this question in the

affirmative for the Clebsch system (indeed, for a whole

family of Hamiltonian flows generated by commuting in-

tegrals of the Clebsch system). In the concluding Section

7, we discuss further perspectives of this approach and

1Singular is available online at http://www.singular.uni-kl.de/;
Form can be found at http://www.nikhef.nl/∼form/.

formulate a general conjecture about the integrability of

the Hirota–Kimura-type discretizations.

2. KAHAN’S DISCRETIZATION OF THE
LOTKA–VOLTERRA SYSTEM

As already mentioned in Section 1, W. Kahan applied

his general discretization scheme to the famous Lotka–

Volterra system modeling the interaction of predator and

prey populations:

ẋ = x(1 − y), ẏ = y(x − 1). (2–1)

Solutions of this system lie on closed curves in (the first

quadrant of) the phase plane R2, because of the presence

of the integral (conserved quantity)

H(x, y) = x + y − log(xy).

In fact, system (2–1) is Hamiltonian with respect to the

Poisson bracket

{x, y} = xy, (2–2)

with the Hamilton function H :

ẋ = −xy
∂H

∂y
, ẏ = xy

∂H

∂x
.

When applied to (2–1), the majority of conventional dis-

cretization schemes produce spiraling solutions. Com-

pared with solutions of the original system, this is a qual-

itatively different behavior; see Figure 1 (left).

The discretization proposed by Kahan reads

(x̃ − x)/ǫ = (x̃ + x) − (x̃y + xỹ), (2–3)

(ỹ − y)/ǫ = (x̃y + xỹ) − (ỹ + y).
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Equations (2–3) can be written as a linear system for

(x̃, ỹ),

(
1 − ǫ + ǫy ǫx

−ǫy 1 + ǫ − ǫx

) (
x̃
ỹ

)
=

(
(1 + ǫ)x
(1 − ǫ)y

)
,

which can be immediately solved, thus yielding an ex-

plicit map (x̃, ỹ) = f(x, y, ǫ):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x̃ = x
(1 + ǫ)2 − ǫ(1 + ǫ)x − ǫ(1 − ǫ)y

1 − ǫ2 − ǫ(1 − ǫ)x + ǫ(1 + ǫ)y
,

ỹ = y
(1 − ǫ)2 + ǫ(1 + ǫ)x + ǫ(1 − ǫ)y

1 − ǫ2 − ǫ(1 − ǫ)x + ǫ(1 + ǫ)y
.

(2–4)

A remarkable property of Kahan’s discretization is

that it apparently does not suffer from spiraling; solu-

tions seem to fill out closed curves in the phase plane;

see Figure 1 (right). A (partial) explanation of this be-

havior was given in [Sanz-Serna 94], where it was shown

that the map f is Poisson with respect to the invariant

Poisson bracket (2–2) of the system (2–1). It is unknown

whether the map (2–4) possesses an integral of motion,

thus forcing all orbits to lie on smooth closed curves, as

suggested by Figure 1 (right). Some numerical experi-

ments, via a deep zoom-in into certain domains of the

phase plane, indicate that the map might be noninte-

grable, but a rigorous proof of a nonexistence statement

seems to be rather difficult. It might be possible with the

use of technology described in [Gelfreich and Lazutkin

01].

3. HIROTA–KIMURA BASES AND INTEGRALS

In this section a general formulation of a remarkable

mechanism will be given that seems to be responsi-

ble for the integrability of the Hirota–Kimura-type (or

Kahan-type) discretizations of algebraically completely

integrable systems. This mechanism is thus far not well

understood. In fact, at the moment we do not know what

mathematical structures make it actually work.

Throughout this section, f : Rn → Rn is a birational

map, while hi, ϕi : Rn → R stand for rational, usually

polynomial, functions on the phase space. We start by

recalling a well-known definition.

Definition 3.1. A function h : Rn → R is called an in-

tegral, or a conserved quantity, of the map f if for every

x ∈ Rn,

h(f(x)) = h(x),

so that

h ◦ f i(x) = h(x) ∀i ∈ Z.

Convention 3.2. In the last formula and everywhere in

the sequel, we use the expression h◦f i(x) for the evalua-

tion of the function h◦f i at the point x. This is equivalent

to h(f i(x)) and is used to spare some parentheses.

Thus, each orbit of the map f lies on a certain level

set of its integral h. As a consequence, if one knows d

functionally independent integrals h1, . . . , hd of f , one

can claim that each orbit of f is confined to an (n − d)-

dimensional invariant set, which is a common level set of

the functions h1, . . . , hd.

Definition 3.3. A set of functions Φ = (ϕ1, . . . , ϕl), lin-

early independent over R, is called a Hirota–Kimura basis

(or HK basis for short) if for every x0 ∈ Rn there exists

a vector c = (c1, . . . , cl) 	= 0 such that

(c1ϕ1 + · · · + clϕl) ◦ f i(x) = 0 ∀i ∈ Z. (3–1)

For a given x ∈ Rn, the set of all vectors c ∈ Rl with this

property will be denoted by KΦ(x) and called the null

space of the basis Φ (at the point x). This set clearly is

a vector space.

Thus, for an HK basis Φ and for c ∈ KΦ(x) the

function h = c1ϕ1 + · · · + clϕl vanishes along the f -

orbit of x. Let us stress that we cannot claim that

h = c1ϕ1 + · · · + clϕl is an integral of motion, since vec-

tors c ∈ KΦ(x) do not have to belong to KΦ(y) for initial

points y not lying on the orbit of x. However, for any

x the orbit {f i(x)} is confined to the common zero level

set of d functions

hj = c
(j)
1 ϕ1 + · · · + c

(j)
l ϕl = 0, j = 1, . . . , d,

where the vectors c(j) =
(
c
(j)
1 , . . . , c

(j)
l

)
∈ Rl form a basis

of KΦ(x). Thus, knowledge of an HK basis with the

null space of dimension d leads to a similar conclusion

as knowledge of d independent integrals of f , namely to

the conclusion that the orbits lie on (n − d)-dimensional

invariant sets. Note, however, that an HK basis gives

no immediate information on how these invariant sets

foliate the phase space Rn, since the vectors c(j), and

therefore the functions hj , change from one initial point

x to another.

Although the notions of integrals and HK bases cannot

be immediately translated into one another, they turn

out to be closely related.

The simplest situation for an HK basis corresponds

to l = 2, dimKΦ(x) = d = 1. In this case we imme-

diately see that h = ϕ1/ϕ2 is an integral of motion of
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the map f . Conversely, for any rational integral of mo-

tion h = ϕ1/ϕ2, its numerator and denominator ϕ1, ϕ2

satisfy

(c1ϕ1 + c2ϕ2) ◦ f i(x) = 0, i ∈ Z,

with c1 = 1, c2 = −h(x), and thus build an HK basis

with l = 2. Thus, the notion of an HK basis generalizes

(for l ≥ 3) the notion of integrals of motion.

On the other hand, knowing an HK basis Φ with

dimKΦ(x) = d ≥ 1 allows one to find integrals of motion

for the map f . Indeed, from Definition 3.3 there follows

immediately the following result:

Proposition 3.4. If Φ is an HK basis for a map f , then

KΦ(f(x)) = KΦ(x).

Thus, the d-dimensional null space KΦ(x) ∈ Gr(d, l),

regarded as a function of the initial point x ∈ Rn, is con-

stant along trajectories of the map f , i.e., it is a Gr(d, l)-

valued integral. One can extract from this fact a number

of scalar integrals.

Corollary 3.5. Let Φ be an HK basis for f with

dimKΦ(x) = d for all x ∈ Rn. Take a basis of KΦ(x)

consisting of d vectors c(i) ∈ Rl and put them into the

columns of an l × d matrix C(x). For any d-index

α = (α1, . . . , αd) ⊂ {1, 2, . . . , n} let Cα = Cα1,...,αd
de-

note the d× d minor of the matrix C built from the rows

α1, . . . , αd. Then for any two d-indices α, β, the function

Cα/Cβ is an integral of f .

Proof: The functions Cα are nothing other than the

Grassmann–Plücker coordinates of the d-space KΦ(x) in

the Grassmannian Gr(d, l), which are defined up to a

common factor. More precisely, any basis of KΦ(f(x))

is obtained from the given basis of KΦ(x) via a right

multiplication of C by a nondegenerate d × d matrix D.

This yields a simultaneous multiplication of all Cα by the

common factor detD. This operation does not change

the quotients Cα/Cβ.

Especially simple is the situation in which the null

space of an HK basis has dimension d = 1.

Corollary 3.6. Let Φ be an HK basis for f with

dimKΦ(x) = 1 for all x ∈ Rn. Let KΦ(x) = [c1(x) :

· · · : cl(x)] ∈ RPl−1. Then the functions cj/ck are inte-

grals of motion for f .

An interesting (and difficult) question is the number of

functionally independent integrals obtained from a given

HK basis according to Corollaries 3.5 and 3.6. We will

see later that it is possible for an HK basis with a one-

dimensional null space to produce more than one inde-

pendent integral (see Theorem 6.5).

The first examples of this mechanism (with d = 1)

were given in [Kimura and Hirota 00] and (somewhat

implicitly) in [Hirota and Kimura 00].

4. FINDING HIROTA–KIMURA BASES

At present, we cannot give any theoretically sufficient

conditions for the existence of a Hirota–Kimura basis Φ

for a given map f , and the only way to find such a basis

remains the experimental one. Definition 3.3 requires the

verification of condition (3–1) for all i ∈ Z, which is, of

course, impractical. We now show that it is enough to

check this condition for a finite number of iterates f i.

For a given set of functions Φ = (ϕ1, . . . , ϕl) and for

any interval [j, k] ⊂ Z, we define

X[j,k](x) =

⎛
⎜⎜⎝

ϕ1(f
j(x)) · · · ϕl(f

j(x))
ϕ1(f

j+1(x)) · · · ϕl(f
j+1(x))

· · · · · ·
ϕ1(f

k(x)) · · · ϕl(f
k(x))

⎞
⎟⎟⎠ .

(4–1)

In particular, X(−∞,∞)(x) will denote the doubly infinite

matrix of type (4–1). Obviously,

kerX(−∞,∞)(x) = KΦ(x).

Thus, Definition 3.3 requires dim kerX(−∞,∞)(x) ≥ 1.

Our algorithm for detecting this situation is based on

the following observation.

Theorem 4.1. Let

dim kerX[0,s−1](x) =

{
l − s for 1 ≤ s ≤ l − d,

d for s = l − d + 1,
(4–2)

hold with some d for all x ∈ Rn. Then for any x ∈ Rn,

kerX(−∞,∞)(x) = kerX[0,l−d−1](x),

and in particular,

dim kerX(−∞,∞)(x) = d.

Proof: By definition, X[j,k](x) = X[0,k−j](f
j(x)). There-

fore, applying condition (4–2) to iterates f j(x) instead

of x itself, we see that the kernel of any submatrix of
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X(−∞,∞)(x) with l − d rows, as well as the kernel of any

submatrix with l − d + 1 rows, is d-dimensional:

dim kerX[j,j+l−d−1](x) = dim kerX[j,j+l−d](x)

= dim kerX[j+1,j+l−d](x).

Since, obviously,

kerX[j,j+l−d−1](x) ⊃ kerX[j,j+l−d](x)

⊂ kerX[j+1,j+l−d](x),

we find that all three kernels coincide; in particular,

kerX[j,j+l−d−1](x) = kerX[j+1,j+l−d](x).

By induction, all kerX[j,j+l−d−1](x), j ∈ Z, coincide, and

therefore they coincide with kerX(−∞,∞)(x) as well.

These results lead us to formulate the following nu-

merical algorithm for the estimation of dimKΦ(x) for a

hypothetical HK basis Φ = (ϕ1, . . . , ϕl):

N : For several randomly chosen initial points x ∈ Rn,

compute dim kerX[0,s−1](x) for 1 ≤ s ≤ l. If for

every x condition (4–2) is satisfied with one and the

same d ≥ 1, then Φ is likely to be an HK basis for

f , with dim KΦ(x) = d.

We stress once again that generally (for general maps f

and general monomial sets Φ) one will find that the l× l

matrix X[0,l−1](x) is nondegenerate for a typical x, so

that dimKΦ(x) = 0. Finding (a candidate for) an HK

basis Φ is a highly nontrivial task.

Having found an HK basis Φ with dim KΦ(x) = d

numerically, one faces the next problem: to prove this

fact, that is, to prove that the system of equations (3–1)

with i = i0, i0+1, . . . , i0+l−d admits (for some, and then

for all, i0 ∈ Z) a d-dimensional space of solutions. For

the sake of clarity, we restrict our following discussion to

the most important case d = 1. Thus, one has to prove

that the homogeneous system

(c1ϕ1 + · · · + clϕl) ◦ f i(x) = 0,

i = i0, i0 + 1, . . . , i0 + l − 1,
(4–3)

admits for every x ∈ Rn a one-dimensional vector space

of nontrivial solutions.

The main obstruction to a symbolic solution of the sys-

tem (4–3) is the growing complexity of the iterates f i(x).

While the expression for f(x) is typically of moderate

size, already the second iterate f2(x) becomes typically

prohibitively big. In such a situation a symbolic solution

of the linear system (4–3) should be considered impossi-

ble as soon as f2(x) is involved, for instance, if l ≥ 3 and

one considers the linear system with i = 0, 1, . . . , l − 1.

Therefore it becomes crucial to reduce the number of

iterates involved in (4–3) as far as possible. A reduction

of this number by 1 becomes in many cases crucial! One

can imagine several ways to accomplish this.

A: Take into account that because of the reversibility

f−1(x, ǫ) = f(x,−ǫ), the negative iterates f−i are

of the same complexity as f i. Therefore, one can

reduce the complexity of the functions involved in

(4–3) by choosing i0 = − [l/2] instead of the naive

choice i0 = 0.

For instance, in the case l = 3 one should consider the

system (4–3) with i = −1, 0, 1, and not with i = 0, 1, 2.

However, already in the case l = 4 this simple recipe

does not allow us to avoid considering f2. In this case,

the following way of dealing with the system (4–3) be-

comes useful.

B: Set cl = −1 and consider instead of the homogeneous

system (4–3) of l equations the inhomogeneous sys-

tem

(c1ϕ1 + · · · + cl−1ϕl−1) ◦ f i(x) = ϕl ◦ f i(x),

i = i0, i0 + 1, . . . , i0 + l − 2,
(4–4)

of l − 1 equations. Having found the (unique) solu-

tion
(
c1(x), . . . , cl−1(x)

)
, prove that these functions

are integrals of motion, that is,

c1(f(x)) = c1(x), . . . , cl−1(f(x)) = cl−1(x).

(4–5)

Thus, for instance, in the case l = 4 one has to deal with

the inhomogeneous system of equations (4–4) with i =

−1, 0, 1. Unfortunately, even if one is able to solve this

system symbolically, the task of a symbolic verification

of (4–5) might become very hard due to the complexity

of the solutions
(
c1(x), . . . , cl−1(x)

)
.

This is the way taken, for instance, in [Kimura and

Hirota 00]. In that paper, the task of verifying equa-

tions of type (4–5) for the discrete-time Lagrange top is

performed with the following method.

G: In order to verify that a rational function c(x) =

p(x)/q(x) is an integral of motion of the map x̃ =

f(x) coming from a system (1–1):

(i) find a Gröbner basis G of the ideal I generated

by the components of (1–1), considered as mul-

tilinear polynomials of 2n variables x, x̃ of total

degree 2;
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(ii) check, via polynomial division through ele-

ments of G, whether the polynomial δ(x, x̃) =

p(x̃)q(x) − p(x)q(x̃) belongs to the ideal I.

An advantage of this method is that neither of its two

steps needs the complicated explicit expressions for the

map f . Nevertheless, both steps might be very demand-

ing, especially the second step in the case of a compli-

cated integral c(x).

Sometimes, the task of verifying equations (4–5) can

be circumvented by means of the following tricks.

C: Solve system (4–4) for two different but overlapping

ranges i ∈ [i0, i0 + l−2] and i ∈ [i1, i1 + l−2]. If the

solutions coincide, then (4–5) holds automatically.

Indeed, in this situation the functions
(
c1(x), . . . , cl−1(x)

)

solve the system with

i ∈ [i0, i0 + l − 2] ∪ [i1, i1 + l − 2]

consisting of more than l − 1 equations.

A clever modification of this idea, which allows one to

avoid solving the second system, is as follows:

D: Suppose that the index range i ∈ [i0, i0+l−2] in (4–4)

contains 0 but is asymmetric. If the solution of this

system
(
c1(x, ǫ), . . . , cl−1(x, ǫ)

)
is even with respect

to ǫ, then equations (4–5) hold automatically.

Indeed, the reversibility of the map f−1(x, ǫ) = f(x,−ǫ)

yields in this case that equations of the system (4–4)

are satisfied for i ∈ [−(i0 + l − 2),−i0] as well, and the

intervals [i0, i0 + l−2] and [−(i0 + l−2),−i0] overlap but

do not coincide.

Finally, the most powerful method of reducing the

number of iterations to be considered is as follows:

E: Often, the solutions
(
c1(x), . . . , cl−1(x)

)
satisfy some

linear relations with constant coefficients. Find (ob-

serve) such relations numerically. Each such (still

hypothetical) relation can be used to replace one

equation in the system (4–4). Solve the resulting

system symbolically, and proceed as in recipe C or

D in order to verify (4–5).

In some (rare) cases the integrals found by this ap-

proach are nice and simple enough to enable one to ver-

ify (4–5) directly. Of course, it would be highly desirable

to find some structures, like a Lax representation or bi-

Hamiltonian structure, that would allow one to check the

conservation of integrals in a cleverer way, but up to now

no such structures have been found for any of the Hirota–

Kimura-type discretizations.

5. HIROTA–KIMURA DISCRETIZATION OF THE
EULER TOP

We now illustrate the Hirota–Kimura mechanism by its

application to the Euler top. This three-dimensional sys-

tem is simple enough to enable one to perform all nec-

essary computations symbolically, even by hand. At the

same time, it provides a perfect illustration for many of

the issues mentioned in the previous section.

5.1 Euler Top

The differential equations of motion of the Euler top read

ẋ1 = α1x2x3, ẋ2 = α2x3x1, ẋ3 = α3x1x2, (5–1)

with αi being real parameters of the system. This is one

of the most famous integrable systems of classical me-

chanics, with an extensive literature devoted to it. We

mention only that this system can be explicitly integrated

in terms of elliptic functions, and it admits two function-

ally independent integrals of motion. Indeed, a quadratic

function H(x) = γ1x
2
1+γ2x

2
2+γ3x

2
3 is an integral for (5–1)

if 〈γ, α〉 = γ1α1 + γ2α2 + γ2α2 = 0. In particular, the

following three functions are integrals of motion:

H1 = α3x
2
2 − α2x

2
3,

H2 = α1x
2
3 − α3x

2
1,

H3 = α2x
2
1 − α1x

2
2.

Clearly, only two of these are functionally independent

because of α1H1 + α2H2 + α3H3 = 0.

5.2 Discrete Equations of Motion

The Hirota–Kimura discretization of the Euler top intro-

duced in [Hirota and Kimura 00] reads as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x̃1 − x1 = ǫα1(x̃2x3 + x2x̃3),

x̃2 − x2 = ǫα2(x̃3x1 + x3x̃1),

x̃3 − x3 = ǫα3(x̃1x2 + x1x̃2).

(5–2)

Thus, the map f : x �→ x̃ obtained by solving (5–2) for

x̃, is given by

x̃ = f(x, ǫ) = A−1(x, ǫ)x, (5–3)

A(x, ǫ) =

⎛
⎝

1 −ǫα1x3 −ǫα1x2

−ǫα2x3 1 −ǫα2x1

−ǫα3x2 −ǫα3x1 1

⎞
⎠ .
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It might be instructive to have a look at the explicit for-

mulas for this map:

x̃1 =
1

∆(x, ǫ)

[
x1 + 2ǫα1x2x3

+ ǫ2x1(−α2α3x
2
1 + α3α1x

2
2 + α1α2x

2
3)

]
,

x̃2 =
1

∆(x, ǫ)

[
x2 + 2ǫα2x3x1 (5–4)

+ ǫ2x2(α2α3x
2
1 − α3α1x

2
2 + α1α2x

2
3)

]

x̃3 =
1

∆(x, ǫ)

[
x3 + 2ǫα3x1x2

+ ǫ2x3(α2α3x
2
1 + α3α1x

2
2 − α1α2x

2
3)

]
,

where

∆(x, ǫ) = det A(x, ǫ)

= 1 − ǫ2(α2α3x
2
1 + α3α1x

2
2 + α1α2x

2
3)

− 2ǫ3α1α2α3x1x2x3.

As always with HK-type discretizations, this map is bi-

rational, and one has the reversibility property

f−1(x, ǫ) = f(x,−ǫ).

Apart from the Lax representation that is still missing,

the discretization (5–3) exhibits all the usual features

of an integrable map: an invariant volume form, a bi-

Hamiltonian structure (that is, two compatible invariant

Poisson structures), two functionally independent con-

served quantities in involution, and solutions in terms

of elliptic functions. The difference between its quali-

tative behavior and that of nonintegrable discretizations

is striking; see Figure 2. For further details about the

properties of this discretization we refer to [Hirota and

Kimura 00] and [Petrera and Suris 07].

The integrals were first found in [Hirota and Kimura

00], apparently with the help of the approach discussed in

the present work. However, since the resulting integrals

are sufficiently simple and nice, their conservation can be

easily verified by hand. Therefore, the paper [Hirota and

Kimura 00] presents them in an ad hoc form, without

explaining how they were discovered. We now try to

reconstruct the way the results of [Hirota and Kimura

00] were originally found. To this end, we apply to the

map (5–3) the method described in Section 3.

5.3 Hirota–Kimura Bases

Since all integrals of the Euler top are linear combinations

of the functions x2
k, it is natural to try the set

Φ = (x2
1, x

2
2, x

2
3, 1) (5–5)

as an HK basis for the discrete-time Euler top. An ap-

plication of the numerical algorithm N suggests that the

following statement holds:

Theorem 5.1. The set (5–5) is an HK basis for the map

(5–3) with dim KΦ(x) = 2. Therefore, any orbit of this

map lies on the intersection of two quadrics in R3.

We will prove this theorem by finding two smaller HK

bases with d = 1. Namely, application of the numerical

algorithm N suggests that omitting any one of the four

functions 1, x2
k from the basis Φ leads to an HK basis

with d = 1. In other words, for every x ∈ R3 there exists

a one-dimensional space of vectors (c1, c2, c3) such that

(c1x
2
1 + c2x

2
2 + c3x

2
3) ◦ f i(x) = 0, i ∈ Z,

as well as a one-dimensional space of vectors (d1, d2, d4)

such that

(d1x
2
1 + d2x

2
2 + d4) ◦ f i(x) = 0, i ∈ Z.

These numerical results can be now proven analytically.

Proposition 5.2. The set

Φ0 = (x2
1, x

2
2, x

2
3)

is an HK basis for the map (5–3) with dimKΦ0
(x) = 1.

At each point x ∈ R3,

KΦ0
(x) = [c1 : c2 : c3]

=
[
α3x

2
2 − α2x

2
3 : α1x

2
3 − α3x

2
1 : α2x

2
1 − α1x

2
2

]
.

With c3 = −1, the functions

c1(x) =
α3x

2
2 − α2x

2
3

α1x2
2 − α2x2

1

, c2(x) =
α1x

2
3 − α3x

2
1

α1x2
2 − α2x2

1

(5–6)

are integrals of motion of the map (5–3).

Proof: We proceed according to recipe B. Set c3 = −1,

and solve symbolically the system

(c1x
2
1 + c2x

2
2) ◦ f i(x) = x2

3 ◦ f i(x), i = 0, 1, (5–7)

which involves two inhomogeneous equations in two un-

knowns. System (5–7) can be written as

{
c1x

2
1 + c2x

2
2 = x2

3,

c1x̃
2
1 + c2x̃

2
2 = x̃2

3,
(5–8)

where, of course, explicit formulas (5–4) have to be used

for x̃k. The solution of this system is given by formulas
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FIGURE 2. Left: a spiraling orbit of the explicit Euler method with time step ǫ = 0.3 applied to the Euler top. Right:
a single orbit of the Hirota–Kimura discretization with the same time step, lying on an invariant spatial elliptic curve
(intersection of two quadrics).

(5–6). The components of the solution do not depend

on ǫ. Therefore, according to recipe D, we conclude that

functions (5–6) are integrals of motion of the map (5–3).

It should be mentioned that the independence of the

solution (c1, c2) from ǫ, or more generally, the dependence

through even powers of ǫ only, which will be mentioned

on many occasions below, starting with Proposition 5.3,

is not given by any well-understood mechanism. Rather,

it is just an instance of some very remarkable and mirac-

ulous cancellation of noneven polynomials. We illustrate

this phenomenon by providing additional details to the

previous proof. The solution of (5–8) by Cramer’s rule

is given by ratios of determinants of type

∣∣∣∣∣
x2

i x2
j

x̃2
i x̃2

j

∣∣∣∣∣ =
1

∆2(x, ǫ)

[
4ǫ(αjx

2
i − αix

2
j)(x1 + ǫα1x2x3)

× (x2 + ǫα2x3x1)(x3 + ǫα3x1x2)
]
.

(5–9)

In the ratios of such determinants everything cancels out,

except for the factors αjx
2
i − αix

2
j . The cancellation of

the denominators ∆2(x, ǫ) is, of course, no wonder, but

the cancellation of the noneven factors in the numerators

is rather miraculous.

One more typical phenomenon occurs in Proposition

5.2: although we have found apparently two integrals of

motion (5–6), they turn out to be functionally dependent.

Indeed, we have the identity

α1c1(x) + α2c2(x) = α3,

so that for each x ∈ R3 the space KΦ0
(x) is orthogonal to

the constant vector (α1, α2, α3). If one had guessed this

relation numerically, one could have simplified the com-

putation of the integrals c1, c2 by considering the system
{

c1x
2
1 + c2x

2
2 = x2

3,
c1α1 + c2α2 = α3,

(5–10)

instead of (5–8).

Observe that existence of a linear relation allows one

to reduce the number of iterates of f involved in the lin-

ear system. (In the present situation, the system (5–10)

contains no iterates of f at all!) The latter system would

lead to the same formulas (5–6); however, in this case

one could not argue as in D and would be forced to prove

that the functions (5–6) are integrals of motion directly,

by verifying for them equations (4–5).

Anyhow, the existence of the HK basis Φ0 yields the

existence of only one independent integral of the map f ,

which is not enough to ensure the integrability of f .

Proposition 5.3. The set

Φ1 = (x2
1, x

2
2, 1)

is an HK basis for the map (5–3) with dim KΦ1
(x) = 1.

At each point x ∈ R3 one has

KΦ1
(x) = [d1 : d2 : −1],

where

d1(x) =
α2(1 − ǫ2α3α1x

2
2)

α2x2
1 − α1x2

2

, d2(x) =
α1(1 − ǫ2α2α3x

2
1)

α1x2
2 − α2x2

1

.

(5–11)

These functions are integrals of motion of the map (5–3).
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Proof: Following again prescription B, we set d4 = −1,

and solve symbolically the inhomogeneous system

(d1x
2
1 + d2x

2
2) ◦ f i(x) = 1, i = 0, 1,

or {
d1x

2
1 + d2x

2
2 = 1,

d1x̃
2
1 + d2x̃

2
2 = 1.

The solution is given by (5–11), due to (5–9) and

∣∣∣∣∣
1 x2

i

1 x̃2
i

∣∣∣∣∣ =
1

∆2(x, ǫ)

[
4ǫαi(1 − ǫ2αjαkx2

i )(x1 + ǫα1x2x3)

× (x2 + ǫα2x3x1)(x3 + ǫα3x1x2)
]
.

This time its components do depend on ǫ, but are man-

ifestly even functions of ǫ. Everything noneven luckily

cancels, again. Therefore, the argument D is still appli-

cable, so that the functions (5–11) are integrals of motion

of the map f .

Functions (5–11) are again functionally dependent, be-

cause of

α1d1(x) + α2d2(x) = ǫ2α1α2α3.

However, they are, clearly, functionally independent on

the previously found functions (5–6), because c1, c2 de-

pend on x3, while d1, d2 do not.

Of course, the permutational symmetry yields that

each of the sets of monomials Φ2 = (x2
2, x

2
3, 1) and Φ3 =

(x2
1, x

2
3, 1) is an HK basis as well, with dim KΦ2

(x) =

dimKΦ3
(x) = 1. Any two of the four one-dimensional

null spaces found span the full null space KΦ(x). In par-

ticular, KΦ0
(x) lies in KΦ1

(x) ⊕ KΦ2
(x).

Summarizing, we have found an HK basis with a two-

dimensional null space, as well as two functionally inde-

pendent conserved quantities for the HK-discretization

of the Euler top. Both results yield integrability of this

discretization, in the sense that its orbits are confined to

closed curves in R3. Moreover, each such curve is an in-

tersection of two quadrics, which in the general-position

case is an elliptic curve.

6. HIROTA–KIMURA-TYPE DISCRETIZATION OF THE
CLEBSCH SYSTEM

6.1 The Clebsch System

The motion of a rigid body in an ideal fluid can

be described by the so-called Kirchhoff equations

[Kirchhoff 70]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṁ = m ×
∂H

∂m
+ p ×

∂H

∂p
,

ṗ = p ×
∂H

∂m
,

(6–1)

with H being a quadratic form in m = (m1, m2, m3) ∈ R3

and p = (p1, p2, p3) ∈ R3; here × denotes the vector

product in R3. The physical meaning of m is the total

angular momentum, whereas p represents the total linear

momentum of the system. System (6–1) is Hamiltonian

with the Hamilton function H(m, p), with respect to the

Poisson bracket

{mi, mj} = mk, {mi, pj} = pk, (6–2)

where (i, j, k) is a cyclic permutation of (1, 2, 3) (all other

pairwise Poisson brackets of the coordinate functions are

obtained from these by skew-symmetry, or otherwise van-

ish). A detailed introduction to the general context of

rigid-body dynamics and its mathematical foundations

can be found in [Marsden and Ratiu 99].

A famous integrable case of the Kirchhoff equations

was presented in [Clebsch 70] and is characterized by the

Hamilton function H = 1
2

∑3
i=1(m

2
i + ωip

2
i ). The corre-

sponding equations of motion read
{

ṁ = p × Ωp,
ṗ = p × m,

where Ω = diag(ω1, ω2, ω3) is the matrix of parameters,

or in components,

ṁ1 = (ω3 − ω2)p2p3,

ṁ2 = (ω1 − ω3)p3p1,

ṁ3 = (ω2 − ω1)p1p2,

ṗ1 = m3p2 − m2p3,

ṗ2 = m1p3 − m3p1,

ṗ3 = m2p1 − m1p2.

This is the system that will be called the Clebsch system

hereinafter. For an embedding of this system into the

modern theory of integrable systems see [Perelomov 90,

Reyman and Semenov-Tian-Shansky 94]. The Clebsch

system possesses four independent quadratic integrals:

H1 = m2
1 + m2

2 + m2
3 + ω1p

2
1 + ω2p

2
2 + ω3p

2
3, (6–3)

H2 = ω1m
2
1 + ω2m

2
2 + ω3m

2
3 − ω2ω3p

2
1 − ω3ω1p

2
2

− ω1ω2p
2
3, (6–4)

H3 = p2
1 + p2

2 + p2
3, (6–5)

H4 = m1p1 + m2p2 + m3p3. (6–6)
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deg deg
p1

deg
p2

deg
p3

deg
m1

deg
m2

deg
m3

Common denominator of f2 27 24 24 24 12 12 12

Numerator of p1-component of f2 27 25 24 24 12 12 12

Numerator of p2-component of f2 27 24 25 24 12 12 12

Numerator of p3-component of f2 27 24 24 25 12 12 12

Numerator of m1-component of f2 33 28 28 28 15 14 14

Numerator of m2-component of f2 33 28 28 28 14 15 14

Numerator of m3-component of f2 33 28 28 28 14 14 15

TABLE 1. Degrees of the numerators and the denominator of the second iterate f2(m, p).

These integrals are in involution with respect to the

bracket (6–2). Moreover, H3, H4 are its Casimir func-

tions (are in involution with any function on the phase

space). However, the Hamiltonian structure will not play

any role in the present paper. The set of linear combina-

tions of the quadratic Hamiltonians H1, H2, H3 coincides

with the set of linear combinations of the functions

I1 = p2
1 +

m2
2

ω1 − ω3
+

m2
3

ω1 − ω2
,

I2 = p2
2 +

m2
1

ω2 − ω3
+

m2
3

ω2 − ω1
, (6–7)

I3 = p2
3 +

m2
1

ω3 − ω2
+

m2
2

ω3 − ω1
.

For instance,

H1 = ω1I1 + ω2I2 + ω3I3,

H2 = −ω2ω3I1 − ω3ω1I2 − ω1ω2I3,

H3 = I1 + I2 + I3.

6.2 Discrete Equations of Motion

Applying the Hirota–Kimura (or Kahan) approach to the

Clebsch system, we arrive at the following discretization,

proposed in [Ratiu 06]:

m̃1 − m1 = ǫ(ω3 − ω2)(p̃2p3 + p2p̃3), (6–8)

m̃2 − m2 = ǫ(ω1 − ω3)(p̃3p1 + p3p̃1),

m̃3 − m3 = ǫ(ω2 − ω1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ǫ(m̃3p2 + m3p̃2) − ǫ(m̃2p3 + m2p̃3),

p̃2 − p2 = ǫ(m̃1p3 + m1p̃3) − ǫ(m̃3p1 + m3p̃1),

p̃3 − p3 = ǫ(m̃2p1 + m2p̃1) − ǫ(m̃1p2 + m1p̃2).

In matrix form this can be written as

M(m, p, ǫ)

(
m̃
p̃

)
=

(
m
p

)
,

where

M(m, p, ǫ)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 ǫω23p3 ǫω23p2

0 1 0 ǫω31p3 0 ǫω31p1

0 0 1 ǫω12p2 ǫω12p1 0
0 ǫp3 −ǫp2 1 −ǫm3 ǫm2

−ǫp3 0 ǫp1 ǫm3 1 −ǫm1

ǫp2 −ǫp1 0 −ǫm2 ǫm1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the abbreviation ωij = ωi −ωj is used. The solution

of this 6 × 6 linear system yields the birational map f :

R6 → R6,
(

m̃
p̃

)
= f(m, p, ǫ) = M−1(m, p, ǫ)

(
m
p

)
, (6–9)

called hereinafter the discrete Clebsch system. As usual,

the reversibility property holds:

f−1(m, p, ǫ) = f(m, p,−ǫ). (6–10)

A remark on the complexity of the iterates of f is in

order here. Each component of (m̃, p̃) = f(m, p) is a

rational function whose numerator and denominator are

polynomials in mk, pk of total degree 6. The numerators

of p̃k consist of 31 monomials; the numerators of m̃k con-

sist of 41 monomials; the common denominator consists

of 28 monomials. It should be taken into account that

the coefficients of all these polynomials depend, in turn,

polynomially on ǫ and ωk, which additionally increases

their complexity for a symbolic manipulator.

Expressions for the second iterate swell to astro-

nomical length, prohibiting naive attempts to com-

pute them symbolically. However, using Maple’s

LargeExpressions package [Carette et al. 06] and an ap-

propriate veiling strategy, it is possible to obtain f2(m, p)

with a reasonable amount of memory. Some impression

of the complexity can be obtained from Table 1. The re-

sulting expressions are too big to be used in further sym-

bolic computations. Consider, for instance, the numer-

ator of the p1-component of f2(m, p). As a polynomial
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of mk, pk, it contains 64,056 monomials; their coefficients

are, in turn, polynomials in ǫ and ωk, and considered as

a polynomial of the phase variables and the parameters,

this expression contains 1,647,595 terms.

6.3 Phase Portrait and Integrability

We now address the problem whether the discrete Cleb-

sch system is integrable. Figures 3 and 4 show plots of

the discrete Clebsch system (6–9), produced with Mat-

lab, for two different sets of parameter values. These

plots indicate a quite regular behavior of the orbits of

the discrete Clebsch system. Each orbit seems to fill

out a two-dimensional surface in the 6-dimensional phase

space. Leaving aside the Hamiltonian aspects of integra-

bility, we are interested just in this simpler issue: do

orbits of the map (6–9) lie on two-dimensional surfaces

in R6?

A usual way to establish such a property would be to

establish the existence of four functionally independent

conserved quantities for this map. (We note in passing

that plots of orbits are not very reliable in deciding about

integrability. For instance, there are indications that Ka-

han’s discretization (2–3) of the Lotka–Volterra system

is nonintegrable, even if its orbits visually lie on closed

curves in the phase plane. A strong magnification unveils

the existence of very small regions in the phase plane with

chaotic behavior.)

We will show that the answer to the above question is

in the affirmative. To this end, we apply the approach

based on the notion of HK basis. As a first step, we

apply the numerical algorithm N to the maximal set of

monomials, which includes all monomials of which the

integrals (6–3)–(6–6) of the continuous Clebsch system

are built:

ϕ1(m, p) = p2
1, ϕ2(m, p) = p2

2,

ϕ3(m, p) = p2
3, ϕ4(m, p) = m2

1,

ϕ5(m, p) = m2
2, ϕ6(m, p) = m2

3,

ϕ7(m, p) = m1p1, ϕ8(m, p) = m2p2,

ϕ9(m, p) = m3p3, ϕ10(m, p) = 1.

We arrive at the following result:

Theorem 6.1. The set of functions

Φ = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m1p1, m2p2, m3p3, 1)

is an HK basis for the map (6–9), with dimKΦ(m, p) = 4.

Thus, any orbit of the map (6–9) lies on an intersection

of four quadrics in R6.

At this point, Theorem 6.1 remains a numerical result,

based on the algorithm N . A direct symbolic proof of this

statement is impossible, since it requires dealing with f i,

i ∈ [−4, 4], and the fourth iterate f4 is a forbiddingly

large expression. In order actually to prove Theorem 6.1

and to extract from it four independent integrals of mo-

tion, it is desirable to find HK (sub)bases with a smaller

number of monomials, corresponding to some (preferably

one-dimensional) subspaces of KΦ(m, p). Much more de-

tailed information on HK bases is provided by the follow-

ing statement.

Theorem 6.2. The following four sets of functions are

HK bases for the map (6–9) with one-dimensional null

spaces:

Φ0 = (p2
1, p

2
2, p

2
3, 1), (6–11)

Φ1 = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m1p1), (6–12)

Φ2 = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m2p2), (6–13)

Φ3 = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m3p3). (6–14)

If all the null spaces are considered as subspaces of R10,

so that

KΦ0
= [c1 : c2 : c3 : 0 : 0 : 0 : 0 : 0 : 0 : c10],

KΦ1
= [α1 : α2 : α3 : α4 : α5 : α6 : α7 : 0 : 0 : 0],

KΦ2
= [β1 : β2 : β3 : β4 : β5 : β6 : 0 : β8 : 0 : 0],

KΦ3
= [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : 0 : 0 : γ9 : 0],

then

KΦ = KΦ0
⊕ KΦ1

⊕ KΦ2
⊕ KΦ3

.

This statement, too, was first found with the help

of numerical experiments based on the algorithm N .

In what follows, we will discuss how these claims can

be given a rigorous (computer-assisted) proof, and how

much additional information (for instance, about con-

served quantities for the map (6–9)) can be extracted

from such a proof.

6.4 First HK Basis

Theorem 6.3. The set (6–11) is an HK basis for the

map (6–9) with dimKΦ0
(m, p) = 1. At each point
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(a) m1, m2, m3 (b) p1, p2, p3

FIGURE 3. An orbit of the discrete Clebsch system with ω1 = 1, ω2 = 0.2, ω3 = 30, and ǫ = 1; initial point (m0, p0) =
(1, 1, 1, 1, 1, 1).

(a) m1, m2, m3 (b) p1, p2, p3

FIGURE 4. An orbit of the discrete Clebsch system with ω1 = 0.1, ω2 = 0.2, ω3 = 0.3, and ǫ = 1; initial point
(m0, p0) = (1, 1, 1, 1, 1, 1).

(m, p) ∈ R6,

KΦ0
(m, p) = [c1 : c2 : c3 : c10]

=

[
1 + ǫ2(ω1 − ω2)p

2
2 + ǫ2(ω1 − ω3)p

2
3

p2
1 + p2

2 + p2
3

:

1 + ǫ2(ω2 − ω1)p
2
1 + ǫ2(ω2 − ω3)p

2
3

p2
1 + p2

2 + p2
3

:

1 + ǫ2(ω3 − ω1)p
2
1 + ǫ2(ω3 − ω2)p

2
2

p2
1 + p2

2 + p2
3

: −1

]

=

[
1

J
+ ǫ2ω1 :

1

J
+ ǫ2ω2 :

1

J
+ ǫ2ω3 : −1

]
, (6–15)

where

J(m, p, ǫ) =
p2
1 + p2

2 + p2
3

1 − ǫ2(ω1p2
1 + ω2p2

2 + ω3p2
3)

. (6–16)

The function (6–16) is an integral of motion of the map

(6–9).

Proof: The statement of the theorem means that for ev-

ery (m, p) ∈ R6 the space of solutions of the homogeneous

system

(c1p
2
1 + c2p

2
2 + c3p

2
3 + c10) ◦ f i(m, p) = 0, i = 0, . . . , 3,

is one-dimensional. This system involves the third iterate

of f ; therefore its symbolic treatment is impossible. Ac-

cording to the strategy B, we set c10 = −1 and consider

the inhomogeneous system

(c1p
2
1 + c2p

2
2 + c3p

2
3) ◦ f i(m, p) = 1, i = 0, 1, 2. (6–17)
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FIGURE 5. Plot of the coefficients c1, c2, c3.

This system involves the second iterate of f , which still

precludes its symbolic treatment. There are now several

ways in which to proceed.

• First, we could follow the recipe E and find fur-

ther information about the solutions ci. To this

end, we plot the points (c1(m, p), c2(m, p), c3(m, p))

for different initial data (m, p) ∈ R6. Figure 5

shows such a plot, with 300 initial data points (m, p)

randomly chosen from the set [0, 1]6. The points

(c1(m, p), c2(m, p), c3(m, p)) seem to lie on a line in

R3, which means that there should be two linear de-

pendencies among the functions c1, c2, and c3.

In order to identify these linear dependencies, we run

the PSLQ algorithm [Ferguson and Bailey 91, Fer-

guson et al. 99] with the vectors (c1, c2, 1) as input

(see Remark 6.4 after the end of the proof, concern-

ing implementation of this step). In this way we

obtain the conjecture

c1 − c2 = ǫ2(ω1 − ω2).

Similarly, running the PSLQ algorithm with the vec-

tors (c2, c3, 1) as input leads to the conjecture

c2 − c3 = ǫ2(ω2 − ω3).

Having identified (numerically!) these two linear re-

lations, we use them instead of two equations in the

system (6–17)), say the equations for i = 1, 2. The

resulting system becomes extremely simple:
⎧
⎨
⎩

c1p
2
1 + c2p

2
2 + c3p

2
3 = 1,

c1 − c2 = ǫ2(ω1 − ω2),
c2 − c3 = ǫ2(ω2 − ω3).

It contains no iterates of f at all and can be solved

immediately by hand, with the result (6–15). It

should be stressed that this result still remains con-

jectural, and one has to prove a posteriori that the

functions c1, c2, c3 are integrals of motion.

• Alternatively, we can combine the above approach

based on the prescription E with the recipe D. For

this, we use just one of the linear dependencies found

above to replace the equation in (6–17) with i = 2,

and then let Maple solve the remaining system. The

computation takes 22.33 seconds on a 1.83-GHz Core

Duo PC and consumes 32.43 MB RAM. The output

is still as in (6–15), but arguing in this way, one

does not need to verify a posteriori that c1, c2, c3

are integrals of motion, because they are manifestly

even functions of ǫ, while the symmetry of the linear

system with respect to ǫ has been broken.

To finish the proof along the lines of the first of the pos-

sible arguments above, we show how to verify the state-

ment that the function J in (6–16) is an integral of mo-

tion, i.e., that

p2
1 + p2

2 + p2
3

1 − ǫ2(ω1p2
1 + ω2p2

2 + ω3p2
3)

=
p̃2
1 + p̃2

2 + p̃2
3

1 − ǫ2(ω1p̃2
1 + ω2p̃2

2 + ω3p̃2
3)

.

This is equivalent to

p̃2
1 − p2

1 + p̃2
2 − p2

2 + p̃2
3 − p2

3

= ǫ2
[
(ω2 − ω1)(p̃

2
1p

2
2 − p̃2

2p
2
1) + (ω3 − ω2)(p̃

2
2p

2
3 − p̃2

3p
2
2)

+ (ω1 − ω3)(p̃
2
3p

2
1 − p̃2

1p
2
3)

]
.

On the left-hand side of this equation we replace p̃i −

pi with the expressions from the last three equations

of motion (6–8); on the right-hand side we replace

ǫ(ωk − ωj)(p̃jpk + pj p̃k) by m̃i − mi, according to the

first three equations of motion (6–8). This brings the

equation we want to prove into the form

(p̃1 + p1)(m̃3p2 + m3p̃2 − m̃2p3 − m2p̃3)

+ (p̃2 + p2)(m̃1p3 + m1p̃3 − m̃3p1 − m3p̃1)

+ (p̃3 + p3)(m̃2p1 + m2p̃1 − m̃1p2 − m1p̃2)

= (p̃1p2 − p1p̃2)(m̃3 − m3)

+ (p̃2p3 − p2p̃3)(m̃1 − m1)

+ (p̃3p1 − p3p̃1)(m̃2 − m2).

But the latter equation is an algebraic identity in

twelve variables mk, pk, m̃k, p̃k. This finishes the proof.
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Remark 6.4. In the above proof and on many occasions

below we make use of the PSLQ algorithm in order to

identify possible linear relations among conserved quan-

tities. Its applications are well documented in the liter-

ature on experimental mathematics [Borwein and Bailey

03, Borwein et al. 04], so that we restrict ourselves here

to a couple of minor remarks.

We apply the PSLQ algorithm to the numerical values

of (the candidates for) the conserved quantities obtained

from the algorithm N . We note that it is crucial to ap-

ply the PSLQ algorithm with many different initial data;

from the large amount of possible linear relations one

should, of course, filter out those relations that remain

unaltered for different initial data.

It proved useful to perform these computations with

rational data (initial values of phase variables and param-

eters of the map) as well as with high-precision floating-

point numbers. In our experiments we have been able to

automate this task to a large extent. All computations

of this kind were performed on an Apple MacBook with

a 1.83-GHz Intel Core Duo processor and 2 GB of RAM.

6.5 Remaining HK Bases

We now consider the remaining HK bases Φ1, Φ2, and

Φ3. Here we are dealing with the three linear systems

(α1p
2
1 + α2p

2
2 + α3p

2
3 + α4m

2
1 + α5m

2
2 + α6m

2
3) ◦ f i(m, p)

= m1p1 ◦ f i(m, p), (6–18)

(β1p
2
1 + β2p

2
2 + β3p

2
3 + β4m

2
1 + β5m

2
2 + β6m

2
3) ◦ f i(m, p)

= m2p2 ◦ f i(m, p), (6–19)

(γ1p
2
1 + γ2p

2
2 + γ3p

2
3 + γ4m

2
1 + γ5m

2
2 + γ6m

2
3) ◦ f i(m, p)

= m3p3 ◦ f i(m, p), (6–20)

already made inhomogeneous by normalizing the last co-

efficient in each system, as in recipe B, with l = 7. The

claim about each of the systems is that it admits a unique

solution for i ∈ Z. It is enough to solve each system for

two different but intersecting ranges of l − 1 = 6 consec-

utive indices i, such as i ∈ [−2, 3] and i ∈ [−3, 2], and to

show that solutions coincide for both ranges (recipe C).

Actually, since the index range i ∈ [−2, 3] is asymmetric,

it would be enough to consider the system for this one

range and to show that the solutions αj , βj, γj are even

functions with respect to ǫ (recipe D). However, sym-

bolic manipulations with the iterates f i for i = ±2,±3

are impossible. In what follows, we will gradually extend

the available information about the coefficients αj , βj, γj ,

which at the end will allow us to get the analytic expres-

sions for all of them and to prove that they are indeed

integrals.

6.6 First Additional HK Basis

Theorem 6.2 shows that after finding the HK basis

Φ0 with dimKΦ0
(x) = 1 it is enough to concen-

trate on (sub)bases not containing the constant function

ϕ10(m, p) = 1. It turns out to be possible to find an

HK basis without ϕ10 and with a one-dimensional null

space, which is more amenable to a symbolic treatment

than Φ1, Φ2, Φ3. Numerical algorithm N suggests that

the following set of functions is an HK basis with d = 1:

Ψ = (p2
1, p

2
2, p

2
3, m1p1, m2p2, m3p3). (6–21)

Theorem 6.5. The set (6–21) is an HK basis for the map

(6–9) with dimKΨ(m, p) = 1. At every point (m, p) ∈

R6,

KΨ(m, p) = [−1 : −1 : −1 : d7 : d8 : d9],

with

dk =
(p2

1 + p2
2 + p2

3)(1 + ǫ2d
(2)
k + ǫ4d

(4)
k + ǫ6d

(6)
k )

∆
,

(6–22)

k = 7, 8, 9, and

∆ = m1p1 + m2p2 + m3p3 + ǫ2∆(4) + ǫ4∆(6) + ǫ6∆(8),
(6–23)

where d
(2q)
k and ∆(2q) are homogeneous polynomials of

degree 2q in phase variables. In particular,

d
(2)
7 = m2

1 + m2
2 + m2

3 + (ω2 + ω3 − 2ω1)p
2
1 + (ω3 − ω2)p

2
2

+ (ω2 − ω3)p
2
3,

d
(2)
8 = m2

1 + m2
2 + m2

3 + (ω3 − ω1)p
2
1 + (ω3 + ω1 − 2ω2)p

2
2

+ (ω1 − ω3)p
2
3,

d
(2)
9 = m2

1 + m2
2 + m2

3 + (ω2 − ω1)p
2
1 + (ω1 − ω2)p

2
2

+ (ω1 + ω2 − 2ω3)p
2
3,

and

∆(4) = m1p1d
(2)
7 + m2p2d

(2)
8 + m3p3d

(2)
9 .

(All other polynomials are too messy to be given here.)

The functions d7, d8, d9 are integrals of the map (6–9).

They are dependent due to the linear relation

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω1 − ω2)d9 = 0. (6–24)

Any two of them are functionally independent. Moreover,

any two of them together with J are still functionally

independent.
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Proof: As already mentioned, numerical experiments

suggest that for any (m, p) ∈ R6 there exists a one-

dimensional space of vectors (d1, d2, d3, d7, d8, d9) satis-

fying

(d1p
2
1 + d2p

2
2 + d3p

2
3 + d7m1p1 + d8m2p2 + d9m3p3)

◦ f i(m, p) = 0

for i = 0, 1, . . . , 5. According to recipe A, one can equally

well consider this system for i = −2,−1, . . . , 3, which,

however, still contains the third iterate of f and is there-

fore not manageable. Therefore, we apply recipe E and

look for linear relations between the (numerical) solu-

tions. Two such relations can be observed immediately,

namely

d1 = d2 = d3. (6–25)

Accepting these (still hypothetical) relations and apply-

ing recipe B, i.e., setting the common value of (6–25)

equal to −1, we arrive at the inhomogeneous system of

only three linear relations

(d7m1p1 + d8m2p2 + d9m3p3) ◦ f i(m, p) (6–26)

= (p2
1 + p2

2 + p2
3) ◦ f i(m, p)

for i = −1, 0, 1. Fortunately, it is possible to find one

more linear relation among d7, d8, d9. This was discov-

ered numerically: we produced a three-dimensional plot

of the points (d7(m, p), d8(m, p), d9(m, p)), which can be

seen in Figure 6 in two different projections. This figure

suggests that all these points lie on a plane in R3, the

second picture being a “side view” along a direction par-

allel to this plane. Thus, it is plausible that one more

linear relation exists. With the help of the PSLQ algo-

rithm this hypothetical relation can be then identified as

(6–24). Now the ansatz (6–26) is reduced to the following

system of three equations for (d7, d8, d9), which involves

only one iterate of the map f :
⎧
⎪⎪⎨

⎪⎪⎩

(d7m1p1 + d8m2p2 + d9m3p3) ◦ f i(m, p)

= (p2
1 + p2

2 + p2
3) ◦ f i(m, p), i = 0, 1,

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω2 − ω2)d9 = 0.

(6–27)

This system can be solved by Maple, resulting in func-

tions given in (6–22), (6–23).2. They are manifestly even

functions of ǫ, while the system has no symmetry with

respect to ǫ �→ −ǫ. This proves that they are integrals of

motion for the map f . This argument slightly generalizes

the recipes D and E , and since it is used not only here

2These (long) expressions can be found at http://www-m8.ma.
tum.de/personen/suris/Worksheets.zip.

but also on several further occasions in this paper, we

give here its formalization.

Proposition 6.6. Consider a map f : R6 → R6 de-

pending on a parameter ǫ, reversible in the sense of

(6–10). Let I(m, p, ǫ) be an integral of f , even in ǫ, and

let A1, A2, A3 ∈ R. Suppose that the set of functions

Φ = (ϕ1, . . . , ϕ4) is such that the system of three linear

equations for (a1, a2, a3),

⎧
⎨

⎩

(a1ϕ1 + a2ϕ2 + a3ϕ3) ◦ f i(m, p, ǫ) = ϕ4 ◦ f i(m, p, ǫ),
i = 0, 1,

A1a1 + A2a2 + A3a3 = I(m, p, ǫ),
(6–28)

admits a unique solution that is even with respect to ǫ.

Then this solution (a1, a2, a3) consists of integrals of the

map f , and Φ is an HK basis with dimKΦ(m, p) = 1.

Proof: Since (a1, a2, a3) are even functions of ǫ, they sat-

isfy also the system (6–28) with ǫ �→ −ǫ, which, due to

the reversibility (6–10), can be represented as

⎧
⎨

⎩

(a1ϕ1 + a2ϕ2 + a3ϕ3) ◦ f i(m, p, ǫ) = ϕ4 ◦ f i(m, p, ǫ),
i = 0,−1,

A1a1 + A2a2 + A3a3 = I(m, p, ǫ).
(6–29)

Since the functions (a1, a2, a3) are uniquely determined

by any of the systems (6–28), (6–29), we conclude

that they remain invariant under the change (m, p) �→

f(m, p, ǫ), or in other words, that they are integrals of

motion. Finally, we can conclude that these functions

satisfy the equation (a1ϕ1+a2ϕ2+a3ϕ3)◦f i = ϕ4◦f i for

all i ∈ Z (and can be uniquely determined by this prop-

erty), and that the linear relation A1a1+A2a2+A3a3 = I

is satisfied as well.

Application of Proposition 6.6 to system (6–27) shows

that d7, d8, d9 are integrals of motion, since they are even

in ǫ. Note that here, as always in similar context, the

evenness of solutions is due to “miraculous cancellation”

of the equal noneven polynomials that factor out both

in the numerators and denominators of the solutions. In

the present computation, these common noneven factors

are of degree 2 in ǫ.

It remains to prove that any two of the integrals

d7, d8, d9 together with the previously found integral J

are functionally independent. To this end, we show that

from such a triple of integrals one can construct another

triple of integrals that yields in the limit ǫ → 0 three

independent conserved quantities H3, H4, H1 of the con-
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FIGURE 6. Plot of the points (d7, d8, d9) for 729 values of (m, p) from a six-dimensional grid around the point (1, 1, 1, 1, 1, 1)
with a grid size of 0.01 and the parameters ǫ = 0.1, ω1 = 0.1, ω2 = 0.2, ω3 = 0.3.

tinuous Clebsch system. Indeed,

J = p2
1 + p2

2 + p2
3 + O(ǫ2) = H3 + O(ǫ2),

J

dk+6
= m1p1 + m2p2 + m3p3 + O(ǫ2) = H4 + O(ǫ2).

On the other hand, it is easy to derive

d7

d8
= 1 + ǫ2(d

(2)
7 − d

(2)
8 ) + O(ǫ4)

= 1 + ǫ2(ω2 − ω1)(p
2
1 + p2

2 + p2
3) + O(ǫ4),

and taking this into account and computing the terms of

order ǫ4, one obtains

d7

d8
− 1 − ǫ2(ω2 − ω1)J

= ǫ4(ω2 − ω1)(2H2
4 + ω2H

2
3 − 2H3H1) + O(ǫ6),

from which one easily extracts H1. This proves our claim.

Remark 6.7. With the basis Ψ, we encounter for the first

time the following interesting phenomenon: it can hap-

pen that an HK basis with a one-dimensional null space

provides several (in this case two) functionally indepen-

dent integrals. With Theorem 6.5, we established the

existence of three independent conserved quantities and

two HK bases with linearly independent null spaces. So,

every orbit of the discrete Clebsch system is shown to

lie in a three-dimensional manifold that belongs to an

intersection of two quadrics in R6.

The aim of the following is to find one more in-

dependent integral and two more HK bases with one-

dimensional null spaces linearly independent of KΦ0
, KΨ.

6.7 Second Additional HK Basis

From the (still hypothetical) properties (6–18))–(6–20)

of the bases Φ1, Φ2, Φ3 it follows that for any (m, p) ∈ R6

the system of linear equations

(g1p
2
1 + g2p

2
2 + g3p

2
3 + g4m

2
1 + g5m

2
2 + g6m

2
3) ◦ f i(m, p)

= (m1p1 + m2p2 + m3p3) ◦ f i(m, p) (6–30)

has a unique solution (g1, g2, g3, g4, g5, g6). Indeed, the

solution should be given by

gj = αj + βj + γj , j = 1, . . . , 6. (6–31)

As for the bases Φ1, Φ2, Φ3, the solution of (6–30) can be

determined by solving these equations for two different

but intersecting ranges of six consecutive values of i, say

for i ∈ [−3, 2] and i ∈ [−2, 3]. However, it turns out that

due to the existence of several linear relations among the

solutions gj , system (6–30) is much easier to deal with

than systems (6–18)–(6–20), so that the functions gj can

be determined and studied independently of αj , βj , γj .

Theorem 6.8. The set of functions

Θ = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, m1p1 + m2p2 + m3p3)

is an HK basis for the map (6–9) with dim KΘ(m, p) = 1.

At every point (m, p) ∈ R6,

KΘ(m, p) = [g1 : g2 : g3 : g4 : g5 : g6 : −1].

Here g1, g2, g3 are integrals of the map (6–9) given by

gk =
g
(4)
k + ǫ2g

(6)
k + ǫ4g

(8)
k + ǫ6g

(10)
k

2(p2
1 + p2

2 + p2
3)∆

, k = 1, 2, 3,
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where g
(2q)
k are homogeneous polynomials of degree 2q in

phase variables, and ∆ is given in (6–23). For instance,

g
(4)
k = 2H2

4 − H3H1 + ωkH2
3 .

Integrals g4, g5, g6 are given by

g4 =
g2 − g3

ω2 − ω3
, g5 =

g3 − g1

ω3 − ω1
, g6 =

g1 − g2

ω1 − ω2
. (6–32)

Proof: Since system (6–30) involves too many iterates of

f for a symbolic treatment, we look for linear relations

among the (numerical) solutions of this system. Appli-

cation of the PSLQ algorithm allows us to identify three

such relations, as given in (6–32). This reduces system

(6–30) to the following one:

[
g1

(
p2
1 +

m2
2

ω1 − ω3
+

m2
3

ω1 − ω2

)

+ g2

(
p2
2 +

m2
1

ω2 − ω3
+

m2
3

ω2 − ω1

)

+ g3

(
p2
3 +

m2
1

ω3 − ω2
+

m2
2

ω3 − ω1

)]
◦ f i(m, p)

= (m1p1 + m2p2 + m3p3) ◦ f i(m, p). (6–33)

Thus, one can say that we are dealing with a reduced

Hirota–Kimura basis consisting of l = 4 functions

Θ̃ = (I1, I2, I3, H4);

see (6–7). Interestingly, this is a basis of integrals for

the continuous-time Clebsch system, but we do not know

whether this is just a coincidence or it has some deeper

meaning. System (6–33) has to be solved for two differ-

ent but intersecting ranges of l − 1 = 3 consecutive in-

dices i. It would be enough to show that the solution for

one asymmetric range, e.g., for i ∈ [0, 2], consists of even

functions of ǫ. However, this asymmetric system involves

of necessity the second iterate f2. To avoid dealing with

f2, one more linear relation for g1, g2, g3 would be needed.

Such a relation has been found with the help of the PSLQ

algorithm; it no longer has constant coefficients but in-

volves the previously found integrals d7, d8, d9:

(ω2 − ω3)g1 + (ω3 − ω1)g2 + (ω1 − ω2)g3 (6–34)

=
1

2
(ω2 − ω3)(ω3 − ω1)(d8 − d7).

Of course, due to (6–24), the right-hand side of (6–34)

can be equivalently written as

1

2
(ω3−ω1)(ω1−ω2)(d9−d8) =

1

2
(ω1−ω2)(ω2−ω3)(d7−d9).

The linear system consisting of (6–33) for i = 0, 1 and

(6–34) can be solved by Maple with the result given in the

theorem. Since (d7, d8, d9) have already been proven to

be integrals of motion, and since the solutions (g1, g2, g3)

are manifestly even in ǫ, Proposition 6.6 yields that

(g1, g2, g3) are integrals of the map f .

Theorem 6.8 gives us the third HK basis with a one-

dimensional null space for the discrete Clebsch system.

Thus, it shows that every orbit lies in the intersection

of three quadrics in R6. Concerning the integrals of mo-

tion, it turns out that the basis Θ does not provide us

with additional ones: a numerical check with gradients

shows that integrals g1, g2, g3 are functionally dependent

on those previously found. At this point we are lacking

one more HK basis with a one-dimensional null space,

linearly independent of KΦ0
, KΨ, KΘ, and one more inte-

gral of motion, functionally independent of J and d7, d8.

6.8 Proof for the Bases Φ1, Φ2, Φ3

Now we return to the bases Φ1, Φ2, Φ3 discussed in Sec-

tion 6.5. In order to be able to solve systems (6–18)–

(6–20) symbolically and to prove that the solutions

αj , βj , γj are indeed integrals, we have to find additional

linear relations for these quantities (recipe E). Within

each set of coefficients we were able to identify just one

relation:

(ω1 − ω3)α5 = (ω1 − ω2)α6, (6–35)

(ω2 − ω3)β4 = (ω2 − ω1)β6, (6–36)

(ω3 − ω2)γ4 = (ω3 − ω1)γ5. (6–37)

This reduces the number of equations in each system by

one, which, however, does not resolve our problems. A

way out consists in looking for linear relations among all

the coefficients αj , βj , γj . Remarkably, six more indepen-

dent linear relations of this kind can be identified:

α4 = β5 = γ6, (6–38)

and

α2 − α3 − (ω2 − ω3)α4

ω2 − ω3
=

β2 − β3 − (ω2 − ω3)β4

ω3 − ω1

=
γ2 − γ3 − (ω2 − ω3)γ4

ω1 − ω2
,

(6–39)

α3 − α1 − (ω3 − ω1)α5

ω2 − ω3
=

β3 − β1 − (ω3 − ω1)β5

ω3 − ω1

=
γ3 − γ1 − (ω3 − ω1)γ5

ω1 − ω2
.

(6–40)
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There are two more similar relations:

α1 − α2 − (ω1 − ω2)α6

ω2 − ω3
=

β1 − β2 − (ω1 − ω2)β6

ω3 − ω1

=
γ1 − γ2 − (ω1 − ω2)γ6

ω1 − ω2
,

but these follow from the already listed ones (6–35)–

(6–40). We stress that all these linear relations were iden-

tified numerically, with the help of the PSLQ algorithm,

and remain at this stage hypothetical.

With nine linear relations (6–35)–(6–40), we have to

solve systems (6–18)–(6–20) simultaneously for a range

of three consecutive indices i. Taking this range as

i = −1, 0, 1, we can avoid dealing with f2, which, how-

ever, would leave us with the problem of a proof that the

solutions are integrals. Alternatively, we can choose the

range i = 0, 1, 2, and then the solutions are automatically

integrals, as soon as it is established that they are even

functions of ǫ.

A symbolic solution of the system consisting of eigh-

teen linear equations, namely (6–18)–(6–20) with i =

0, 1, 2, along with nine simple equations (6–35)–(6–40)

would require astronomical amounts of memory, because

of the complexity of f2. However, this task becomes

manageable and even simple for fixed (numerical) values

of the phase variables (m, p) and of the parameters ωi,

while leaving ǫ a symbolic variable. For rational values

of mk, pk, ωk, all computations can be done precisely (in

rational arithmetic). This means that αj , βj , and γj

can be evaluated, as functions of ǫ, at arbitrary points in

Q9(m, p, ω1, ω2, ω3). A large number of such evaluations

provides us with convincing evidence in favor of the claim

that these functions are even in ǫ.

In order to obtain a rigorous proof without dealing

with f2, further linear relations would be necessary. Be-

fore introducing these, we present some preliminary con-

siderations. Assuming that Φ1, Φ2, Φ3 are HK bases with

one-dimensional null spaces, results of Theorem 6.5 on

the HK basis Ψ tell us that the row vector (d7, d8, d9) is

the unique left null vector for the matrix

M2 =

⎛
⎝

α4 α5 α6

β4 β5 β6

γ4 γ5 γ6

⎞
⎠ ,

normalized so that

(d7, d8, d9)M1 = (1, 1, 1),

where

M1 =

⎛

⎝
α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎞

⎠ .

Note that due to (6–35)–(6–38), the matrix M2 has at

most four (linearly) independent entries. Denoting the

common values in these equations by A, B, C, D, respec-

tively, we obtain

M2 =

⎛
⎝

α4 α5 α6

β4 β5 β6

γ4 γ5 γ6

⎞
⎠ (6–41)

=

⎛
⎝

D A/(ω1 − ω3) A/(ω1 − ω2)
B/(ω2 − ω3) D B/(ω2 − ω1)
C/(ω3 − ω2) C/(ω3 − ω1) D

⎞
⎠ .

The existence of the left null vector (d7, d8, d9) shows that

det(M2) = 0, or equivalently,

D2 −
AB

(ω1 − ω3)(ω2 − ω3)
−

BC

(ω2 − ω1)(ω3 − ω1)

−
CA

(ω3 − ω2)(ω1 − ω2)
= 0. (6–42)

From (6–41) and (6–42) one easily derives that the row

vector
(

D −
B

ω2 − ω3
−

C

ω3 − ω2
, D −

A

ω1 − ω3
−

C

ω3 − ω1
,

D −
A

ω1 − ω2
−

B

ω2 − ω1

)

= (α4 − β4 − γ4, −α5 + β5 − γ5, −α6 − β6 + γ6)

is a left null vector of the matrix M2, and therefore

(d7, d8, d9) is proportional to this vector. The propor-

tionality coefficient can be now determined with the help

of the PSLQ algorithm, and it turns out to be extremely

simple. Namely, the following relations hold:

α4 − β4 − γ4 = D −
B − C

ω2 − ω3
=

1

2
d7, (6–43)

−α5 + β5 − γ5 = D −
C − A

ω3 − ω1
=

1

2
d8, (6–44)

−α6 − β6 + γ6 = D −
A − B

ω1 − ω2
=

1

2
d9. (6–45)

Only two of them are independent, because of (6–24).

We note also that according to (6–31), one has

α4 + β4 + γ4 = D +
B − C

ω2 − ω3
= g4, (6–46)

α5 + β5 + γ5 = D +
C − A

ω3 − ω1
= g5, (6–47)

α6 + β6 + γ6 = D +
A − B

ω1 − ω2
= g6. (6–48)

Equations (6–43)–(6–48) and (6–42) are already enough

to determine all four integrals A, B, C, D, that is, all
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αj , βj , γj with j = 4, 5, 6, provided it is proven that they

are indeed integrals. These (conditional) results read

A =
1 + ǫ2A(2) + ǫ4A(4) + ǫ6A(6) + ǫ8A(8)

2ǫ2∆
, (6–49)

B =
1 + ǫ2B(2) + ǫ4B(4) + ǫ6B(6) + ǫ8B(8)

2ǫ2∆
, (6–50)

C =
1 + ǫ2C(2) + ǫ4C(4) + ǫ6C(6) + ǫ8C(8)

2ǫ2∆
, (6–51)

D =
p2
1 + p2

2 + p2
3 + ǫ2D(4) + ǫ4D(6) + ǫ6D(8)

2∆
, (6–52)

where A(2q), B(2q), C(2q), D(2q) are homogeneous poly-

nomials of degree 2q in phase variables, for instance,

A(2) = B(2) = C(2)

= m2
1 + m2

2 + m2
3 + (ω2 + ω3 − 2ω1)p

2
1

+ (ω3 + ω1 − 2ω2)p
2
2 + (ω1 + ω2 − 2ω3)p

2
3,

D(4) = (m1p1 + m2p2 + m3p3)
2

+ (p2
1 + p2

2 + p2
3)

×
(
(ω2 + ω3 − 2ω1)p

2
1 + (ω3 + ω1 − 2ω2)p

2
2

+ (ω1 + ω2 − 2ω3)p
2
3

)
.

We remark that (6–42) tells us that no more than three

of the functions A, B, C, D are actually functionally in-

dependent. Computation with gradients shows that

A, B, C are functionally indeed independent. Moreover,

all other previously found integrals J , d7, d8, d9, and

g1, g2, g3 are functionally dependent on these.

Theorem 6.9. The sets (6–12)–(6–14) are HK bases for

the map (6–9) with dimKΦ1
(m, p) = dimKΦ2

(m, p) =

dimKΦ3
(m, p) = 1. At each point (m, p) ∈ R6,

KΦ1
(m, p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],

KΦ2
(m, p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],

KΦ3
(m, p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj, βj, and γj are rational functions of (m, p),

even with respect to ǫ. They are integrals of motion for

the map (6–9) and satisfy linear relations (6–35)–(6–40).

For j = 4, 5, 6 they are given by (6–41), (6–51), (6–52).

For j = 1, 2, 3 they are of the form

h =
h(2) + ǫ2h(4) + ǫ4h(6) + ǫ6h(8) + ǫ8h(10) + ǫ10h(12)

2ǫ2(p2
1 + p2

2 + p2
3)∆

,

(6–53)

where h stands for any of the functions αj , βj , γj, j =

1, 2, 3, and the corresponding h(2q) are homogeneous poly-

nomials in phase variables of degree 2q. For instance,

α
(2)
1 = H3 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = H3 − I2, β

(2)
3 = −I2, (6–54)

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = H3 − I3.

The four functions J , α1, β1, and γ1 are functionally

independent.

Proof: The proof consists of several steps.

Step 1. Consider the system for the 18 unknowns

αj , βj , γj, j = 1, . . . , 6, consisting of 17 linear equations:

(6–18)–(6–20) with i = 0, 1, (6–35)–(6–40), and (6–43),

(6–44). This system is underdetermined, so that in prin-

ciple it admits a one-parameter family of solutions.

Remarkably, the symbolic Maple solution shows that

all variables αj , βj , γj with j = 4, 5, 6 are determined by

this system uniquely, the results coinciding with (6–41),

(6–51)–(6–52). (Actually, the Maple answers are much

more complicated, and their simplification was carried

out with Singular, which was used to cancel out com-

mon factors from the huge expressions in numerators and

denominators of these rational functions.) Since these

uniquely determined αj , βj, γj with j = 4, 5, 6 are even

functions of ǫ, this proves that they (i.e., A, B, C, D) are

integrals of motion.

Step 2. Having determined αj , βj , γj with j = 4, 5, 6, we

are in a position to compute αj , βj , γj with j = 1, 2, 3.

For instance, to obtain the values of αj with j = 1, 2, 3,

we consider the symmetric linear system (6–18) with

i = −1, 0, 1 (and with already found α4, α5, α6). This

system was solved by Maple. The solutions are huge ra-

tional functions, which, however, turn out to admit mas-

sive cancellations. These cancellations were carried out

with the help of Singular. The resulting expressions for

α1, α2, α3 turn out to satisfy the ansatz (6–53) with the

leading terms given in the first line of (6–54).3

However, this computation does not prove that the

functions so obtained are indeed integrals of motion. To

prove this, one could, in principle, either check directly

the identities αj ◦ f = αj , j = 1, 2, 3, or verify equation

(6–18) with i = 2. Both approaches are prohibitively

expensive, so that we have to look for an alternative one.

3All further terms can be found at http://www-m8.ma.tum.de/
personen/suris/Worksheets.zip.
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Step 3. The results of Step 2 yield an explicit expression

for the function

F = (ω2 − ω3)α1 + (ω3 − ω1)α2 + (ω1 − ω2)α3, (6–55)

which is of the form

F =
(ω2 − ω3)(1 + ǫ2F (2) + ǫ4F (4) + ǫ6F (6) + ǫ8F (8))

2ǫ2∆
.

It is of a crucial importance for our purposes that it can

be proven directly that F is an integral of motion. We

have proved this with the method G based on the Gröbner

basis for the ideal generated by discrete equations of mo-

tion. The application of this method to F is more fea-

sible than to any of the αj , j = 1, 2, 3, because of the

cancelation of the huge polynomial coefficient of ǫ10 in

the numerator of F .

In fact, more is true: F is not only an integral, but is

functionally dependent on the previously found ones, say

on J, d7, d8. For a proof of this claim, it would be most fa-

vorable to find the explicit dependence F = F (J, d7, d8),

but it remains unknown to us. Instead, we have chosen

the way of verification that

∇F ∈ span(∇J,∇d7,∇d8).

This is easily checked numerically for arbitrarily many

(rational) values of the data involved. For a symbolic

check, one has to prove the existence of three scalar func-

tions λ1, λ2, λ3 such that

∇F = λ1∇J + λ2∇d7 + λ3∇d8.

This is a system of six equations in three unknowns.

Since J does not depend on mk, one can determine λ2,

λ3 from a system of only three equations:

∇mF = λ2∇md7 + λ3∇md8.

After that, it remains to check that ∇pF − λ2∇pd7 −

λ3∇pd8 is proportional to ∇pJ . Clearly, these compu-

tations can be arranged so as to verify the vanishing of

certain (very big) polynomials. We have been able to

perform these computations with the help of Singular for

symbolic mk, pk but with (several sets of) numeric values

of coefficients ωk only.

Step 4. The result of Step 3 allows us to proceed as

follows. Consider the system of three linear equations

for α1, α2, α3, consisting of (6–18) with i = 0, 1 and

(ω2 − ω3)α1 + (ω3 − ω1)α2 + (ω1 − ω2)α3 = F,

where F is the explicit expression obtained and proven to

be an integral in Step 3. This system can now be solved

by Maple; the results, again simplified with singular, are

even functions of ǫ (indeed, the same ones obtained in

Step 1 from the symmetric system). Noneven polynomi-

als in ǫ of degree 7 cancel in a miraculous way from the

numerators and the denominator. Now Proposition 6.6

ensures that these solutions are integrals of motion.

Step 5. Finally, in order to find β1, β2, β3 and γ1, γ2, γ3,

we solve the two systems consisting of (6–19) and (6–20)

with i = 0, 1, and respectively the first and the second

linear relations in (6–39). The results are even functions

of ǫ satisfying the ansatz (6–53) with the leading terms

given in (6–54). Proposition 6.6 yields that these func-

tions are also integrals of motion.4

6.9 Preliminary Results on the Hirota–Kimura-Type

Discretization of the General Flow of the Clebsch

System

The general flow of the Clebsch system, depending on

three real parameters b1, b2, b3 (or rather on their differ-

ences bi − bj , which gives two independent real parame-

ters), reads as follows:

{
ṁ = m × Cm + p × Bp ,

ṗ = p × Cm,
(6–56)

where B = diag(b1, b2, b3) and C = diag(c1, c2, c3) with

c1 =
b2 − b3

ω2 − ω3
, c2 =

b3 − b1

ω3 − ω1
, c3 =

b1 − b2

ω1 − ω2
. (6–57)

This flow is Hamiltonian with the quadratic Hamilton

function

H =
1

2
〈m, Cm〉 +

1

2
〈p, Bp〉 =

1

2

3∑

k=1

(ckm2
k + bkp2

k)

=
1

2
(b1I1 + b2I2 + b3I3).

In components, system (6–56) reads

ṁ1 = (c3 − c2)m2m3 + (b3 − b2)p2p3,

ṁ2 = (c1 − c3)m3m1 + (b1 − b3)p3p1,

ṁ3 = (c2 − c1)m1m2 + (b2 − b1)p1p2,

ṗ1 = c3m3p2 − c2m2p3,

ṗ2 = c1m1p3 − c3m3p1,

ṗ3 = c2m2p1 − c1m1p2.

4Maple worksheets for all computations used in this sec-
tion can be found at http://www-m8.ma.tum.de/personen/suris/
Worksheets.zip.
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The KH discretization of the flow (6–56) reads

{
m̃ − m = ǫ(m̃ × Cm + m × Cm̃ + p̃ × Bp + p × Bp̃ ),

p̃ − p = ǫ (p̃ × Cm + p × Cm̃) .

In components,

m̃1 − m1 = ǫ(c3 − c2)(m̃2m3 + m2m̃3) (6–58)

+ ǫ(b3 − b2)(p̃2p3 + p2p̃3),

m̃2 − m2 = ǫ(c1 − c3)(m̃3m1 + m3m̃1)

+ ǫ(b1 − b3)(p̃3p1 + p3p̃1),

m̃3 − m3 = ǫ(c2 − c1)(m̃1m2 + m1m̃2)

+ ǫ(b2 − b1)(p̃1p2 + p1p̃2),

p̃1 − p1 = ǫc3(m̃3p2 + m3p̃2) − ǫc2(m̃2p3 + m2p̃3),

p̃2 − p2 = ǫc1(m̃1p3 + m1p̃3) − ǫc3(m̃3p1 + m3p̃1),

p̃3 − p3 = ǫc2(m̃2p1 + m2p̃1) − ǫc1(m̃1p2 + m1p̃2).

In what follows, we will use the abbreviations bij =

bi−bj and cij = ci−cj. The linear system (6–58) defines

an explicit birational map f : R6 → R6,

(
m̃
p̃

)
= f(m, p, ǫ) = M−1(m, p, ǫ)

(
m
p

)
, (6–59)

where

M(m, p, ǫ) =
⎛
⎜⎜⎜⎜⎜⎝

1 ǫc23m3 ǫc23m2 0 ǫb23p3 ǫb23p2

ǫc31m3 1 ǫc31m1 ǫb31p3 0 ǫb31p1

ǫc12m2 ǫc12m1 1 ǫb12p2 ǫb12p1 0
0 ǫc2p3 −ǫc3p2 1 −ǫc3m3 ǫc2m2

−ǫc1p3 0 ǫc3p1 ǫc3m3 1 −ǫc1m1

ǫc1p2 −ǫc2p1 0 −ǫc2m2 ǫc1m1 1

⎞
⎟⎟⎟⎟⎟⎠

.

As usual, the map (6–59) possesses the reversibility

property

f−1(m, p, ǫ) = f(m, p,−ǫ).

Conjecture 6.10. All claims of Theorems 6.1, 6.2 hold

also for the discretization (6–59) of the general flow of

the Clebsch system, with the HK basis Φ0 being replaced

by

Φ0 = (p2
1, p

2
2, p

2
3, m

2
1, m

2
2, m

2
3, 1). (6–60)

This conjecture is supported by numerical results

based on the algorithm N . The claim concerning the

set Φ0 given in (6–60) is proven symbolically. In order

to keep the notation compact, we give here this proof for

the second flow of the Clebsch system only.

Recall that the first flow of the Clebsch system, consid-

ered in Section 6, corresponds to bi = ωi and ci = 1. The

second flow is characterized by the Hamilton function

H =
1

2
H2

=
1

2

(
ω1m

2
1 + ω2m

2
2 + ω3m

2
3 − ω2ω3p

2
1 − ω1ω3p

2
2

− ω1ω2p
2
3

)
.

In other words, the choice of parameters bk characterizing

the second flow is

b1 = −ω2ω3, b2 = −ω3ω1, b3 = −ω1ω2, (6–61)

so that

c1 = ω1, c2 = ω2, c3 = ω3. (6–62)

For the HK discretization of the second Clebsch flow, we

give a more concrete formulation of our findings concern-

ing the HK basis Φ0, including a “nice” integral.

Theorem 6.11. For the map (6–59) the set of functions

(6–60) is an HK basis with dimKΦ0
(m, p) = 1. At each

point (m, p) ∈ R6, we have

KΦ0
(m, p) = [e1 : e2 : e3 : e4 : e5 : e6 : −1],

where all ei are fractional linear functions of a single

integral L = L(m, p, ǫ) of the map (6–59), which is a

quotient of two quadratic polynomials in mk, pk.

If the coefficients bk, ck are as in (6–61)), (6–62), then

the integral L can be taken as

L =
E1G1 + E2G2 + E3G3

1 + ǫ2ω1G1 + ǫ2ω2G2 + ǫ2ω3G3
,

with

E1 = ω3ω1 + ω1ω2 − ω2ω3,

E2 = ω1ω2 + ω2ω3 − ω3ω1, (6–63)

E3 = ω2ω3 + ω3ω1 − ω1ω2,

and

G1 = ω1m
2
1 + ω2ω3p

2
1,

G2 = ω2m
2
2 + ω3ω1p

2
2,

G3 = ω3m
2
3 + ω1ω2p

2
3.
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In this case,

e1

ω2ω3
=

e4

ω1
=

E1

L
− ǫ2ω1

=
E1 + ǫ2(ω1 − ω2)E3G2 + ǫ2(ω1 − ω3)E2G3

E1G1 + E2G2 + E3G3
,

e2

ω3ω1
=

e5

ω2
=

E2

L
− ǫ2ω2

=
E2 + ǫ2(ω2 − ω3)E1G3 + ǫ2(ω2 − ω1)E3G1

E1G1 + E2G2 + E3G3
,

e3

ω1ω2
=

e6

ω3
=

E3

L
− ǫ2ω3

=
E3 + ǫ2(ω3 − ω1)E2G1 + ǫ2(ω3 − ω2)E1G2

E1G1 + E2G2 + E3G3
.

The numerator of L,

L(m, p, 0) = E1(ω1m
2
1 + ω2ω3p

2
1) + E2(ω2m

2
2 + ω3ω1p

2
2)

+ E3(ω3m
2
3 + ω1ω2p

2
3),

is a linear combination of quadratic integrals of motion

of the continuous Clebsch system.

Proof: We will present the proof for only the second Cleb-

sch flow. The claim of the theorem refers to the linear

system

(e1p
2
1 + e2p

2
2 + e3p

2
3 + e4m

2
1 + e5m

2
2 + e6m

2
3)◦ f i(m, p) = 1

for i from the ranges containing six consecutive numbers,

such as i ∈ [−2, 3] or i ∈ [−3, 2]. Since the solution of

such a system clearly requires more iterates of the map

f than could be handled symbolically, we follow recipe E

and look for linear relations between the ei. It turns out

to be possible to identify the following five relations:

ω1e1 − ω2ω3e4 = 0, (6–64)

ω2e2 − ω3ω1e5 = 0, (6–65)

ω3e3 − ω1ω2e6 = 0, (6–66)

e1 − e2 − (ω1 − ω2)e6 = ǫ2ω2
3(ω1 − ω2), (6–67)

e3 − e1 − (ω3 − ω1)e5 = ǫ2ω2
2(ω3 − ω1). (6–68)

Of course, there is also a third inhomogeneous relation:

e2 − e3 − (ω2 − ω3)e4 = ǫ2ω2
1(ω2 − ω3),

but it is actually a consequence of the previous five. As

usual, these (at this point conjectural) identities can be

(and have been) found using the PSLQ algorithm. Now

we obtain the six functions ei by solving a simple system

of six linear equations that involves no iterates of the

map f at all and consists of

e1p
2
1 + e2p

2
2 + e3p

2
3 + e4m

2
1 + e5m

2
2 + e6m

2
3 = 1

along with the relations (6–64)–(6–68). The solution is

given in the formulation of the theorem. To prove that

the function L is an integral of motion, one can use a

straightforward computation using Maple. Also, a proof

based on the equations of motion alone can be given,

similar to the proof for L (see the proof of Theorem 6.3).

The last claim of the theorem about L(x, 0) follows in

the limit ǫ → 0, but can be also easily checked directly,

by verifying conditions (6–57) for bi = ωjωkEj and ci =

ωiEi with Ei from (6–63). These conditions are satisfied

due to the identities

ωjEi − ωiEj = (ωi − ωj)Ek,

where (i, j, k) is any permutation of (1, 2, 3).

7. CONCLUSIONS

We have established the integrability of the Hirota–

Kimura-type discretization of the Clebsch system, in the

following senses:

• the existence for every initial point (m, p) ∈ R6 of

a four-dimensional pencil of quadrics containing the

orbit of this point; in our terminology, this can be

formulated as existence of an HK basis with a four-

dimensional null space consisting of quadratic mono-

mials;

• the existence of four functionally independent inte-

grals of motion (conserved quantities).

Numerical experiments show that this remains true

also for an arbitrary flow of the Clebsch system. It is

interesting to note that the maps generated by Hirota–

Kimura discretizations of various flows do not commute

with each other. It would be important to understand

whether some analogue of commutativity of the continu-

ous flows survives in the discrete situation.

Our investigations were based mainly on computer ex-

periments. Our proofs are computer assisted and were

obtained with the help of symbolic calculations with

Maple, Singular, and Form. A general structure behind

these facts that would provide us with more-systematic

and less-computational proofs and with more insight re-

mains unknown. In particular, nothing like a Lax rep-

resentation has been found. Nothing is known about

the existence of an invariant Poisson structure for these

maps. (For a simpler system, Hirota–Kimura discretiza-

tion of the Euler top, an invariant volume measure as

well as a bi-Hamiltonian structure have been found in

[Petrera and Suris 07].)
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Hirota and Kimura demonstrated that their discretiza-

tion leads to an integrable map also for the Lagrange top

[Kimura and Hirota 00]. Our preliminary investigations

have shown remarkable features pointing toward the in-

tegrability of the Hirota–Kimura discretizations of the

following systems: Zhukovsky–Volterra gyrostat; so(4)

Euler top and its commuting flows; Volterra and Toda

lattices; classical Gaudin magnet. Based on these obser-

vations, we formulate the following conjecture.

Conjecture 7.1. For any algebraically completely inte-

grable system with a quadratic vector field, its Hirota–

Kimura discretization remains algebraically completely

integrable.

If true, this statement could be related to addition the-

orems for multidimensional theta functions. Such a rela-

tion has already been established for the Hirota–Kimura

discretization of the Euler top, which can be solved ex-

plicitly in elliptic functions [Suris 08]. In our ongoing

investigations, we hope to establish integrability of the

above-mentioned discrete-time systems and to uncover

general mechanisms behind it.
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