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1. Introduction.

As evidenced by the book [1], much of the recent research on factor-
ization in (commutative integral) domains has concerned atomic domains.
Recall that if r is a nonzero nonunit of a domain R, then r is said to be
an atom of (or to be irreducible in) R if each factorization of r in R must
exhibit a unit factor; and R is said to be an atomic domain if each nonzero
nonunit of R is a product of finitely many atoms of R. Our concern in this
paper is with domains whose factorization behavior differs greatly from that
of atomic domains. To this end, we say that a domain R is an antimatter
domain if no element r ∈ R is an atom of R. Of course, any field is an
antimatter domain; more significantly, so is any fragmented domain. (Recall
from [9] that a domain R is called a fragmented domain if, for each nonzero
nonunit r ∈ R, there exists a nonzero nonunit s of R such that r ∈ ∩∞n=0Rsn.)
The examples in Sections 2 and 3 show that the class of antimatter domains
is more plentiful than that of the fragmented domains; in fact, Example 2.7
and Corollary 3.11 show that if n is any positive integer or ∞, then there
exists an antimatter domain of Krull dimension n which is not fragmented.
Nevertheless, it is convenient in this study to emphasize the same contexts
which figured in [9], namely valuation domains, pseudo-valuation domains
(in the sense of [14]), divided domains (in the sense of [7]), and various types
of pullbacks.

Section 2 begins with the context of valuation domains. We note in
Corollary 2.2 that each atomic valuation domain which is not a field must
be Noetherian; that is, a DVR. (For arbitrary domains, we have the non-
reversible implications Noetherian ⇒ ACCP ⇒ atomic; any non- Noetherian
Krull domain satisfies ACCP, while Grams [13] has given an example of an
atomic domain which does not satisify ACCP.) On the other hand, Proposi-
tion 2.3 (b) establishes that a valuation domain is antimatter if and only its
value group (that is, the value group of any associated valuation), when writ-
ten additively, has no least positive element. More generally, if R is a domain
with multiplicative group of units U(R) and quotient field K, R is an anti-
matter domain if and only if its group of divisibility G(R) = (K \{0})/U(R),
when written additively, has no minimal positive elements. (Recall from [12]
that G(R) is partially ordered by decreeing that if a, b ∈ K \ {0}, then
aU(R) ≤ bU(R) if and only if b = ra for some r ∈ R. It is well known that if
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R is a valuation domain, then G(R) is order-isomorphic to the value group
of R. For additional motivation regarding a role for groups of divisibility
in the present work, see the characterization of fragmented domains in [9,
Remark 2.13 (a)].) The second half of Section 2 includes several examples of
antimatter valuation domains showing, i.a., that an antimatter (resp., non-
antimatter) domain may or may not have a proper antimatter overring other
than its quotient field. (As usual, by an overring of a domain R, we mean
any ring contained between R and its quotient field.) Also noteworthy in
Section 2 is the result (Proposition 2.13) that each domain can be embedded
as a subring of an antimatter domain which need not be an overring.

Section 3 uses the examples of antimatter valuation domains from Sec-
tion 2 to build examples of antimatter domains in more general contexts.
The most important of these contexts concerns pseudo-valuation domains,
or, in short, PVDs. (Recall from [14] that a domain R is a PVD if R has a
– necessarily uniquely determined – valuation overring T such that Spec(R)
= Spec(T ) as sets.) We show in Corollary 3.3(b) that a PVD is an antimat-
ter domain if and only if its canonically associated valuation overring is an
antimatter domain. (On the other hand, Corollary 3.3(a) establishes that a
PVD is an atomic domain if and only if its canonically associated valuation
overring is either a field or a DVR. Atomic PVDs have figured in factor-
ization studies such as [3] and [5].) The above results on PVDs follow by
reasoning based on the Spec(R) = Spec(T ) condition. Now, the more gen-
eral Spec(R) = Spec(T ) condition can be characterized by using pullbacks [4,
Theorem 3.25] and PVDs can also be canonically characterized by pullbacks
[4, Proposition 2.6], and so we devote part of Section 3 to determining when
pullbacks are antimattter domains. Perhaps our deepest result along these
lines is Theorem 3.9, which characterizes a class of divided antimatter pull-
backs. (Recall from [7] that a domain R is a divided domain if each prime
ideal P of R satisfies P = PRP ; that is, P is comparable under inclusion
with each ideal of R. Any PVD is a divided domain [8, p. 560].) In analyzing
pullbacks in Section 3, we assume familiarity with associated gluing results
on prime spectra and their order-theoretic consequences: cf. [11, Theorem
1.4 and Corollary 1.5].

For any domain D, it is convenient to let D∗ denote the set of nonzero
elements of D, U(D) the multiplicative group of units of D, J(D) the Ja-
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cobson radical of D, and dim(D) the Krull dimension of D. Also, for any
additively-written partially ordered abelian group G, we use G+ to denote
the set of positive elements of G. Any unexplained material is standard, as
in [12].

2. Antimatter valuation domains and overring behavior.

For the sake of concreteness, we devote the first part of this section to
antimatter valuation domains. To warm up, Corollary 2.2 characterizes the
atomic valuation domains. For this, it is convenient to begin with the fol-
lowing useful dichotomy.

Proposition 2.1: Let R be a valuation domain. Then either R is an antimat-
ter domain or R contains (up to associates) exactly one atom. In the latter
case, this atom is, in fact, a prime element of R which generates the unique
maximal ideal of R.

Proof: Suppose that R is not an antimatter domain. Then R contains at
least one atom, say r. We claim that each nonunit s of R is divisible by R.
Indeed, since R is a valuation domain, either r|s in R or s|r in R. If r 6 | s,
then r = as for some a ∈ R\U(R), contradicting the irreducibility of r. This
proves the above claim. Thus, if r is an atom of R and M is the maximal
ideal of R, then M = Rr. Then, since r generates a nonzero prime ideal o
f R, r is necessarily a prime element of R. Finally, if s is another atom of
R, the above reasoning gives M = Rs, whence Rs = Rr, so that s and r are
associated in R, to complete the proof. 2

Corollary 2.2: For a valuation domain R, the following conditions are equiv-
alent:

(1) R is Noetherian (i.e., either a field or a DVR);
(2) R satisfies ACCP;
(3) R is an atomic domain.

Proof: As noted in the Introduction, (1) ⇒ (2) ⇒ (3) for any domain R.
It remains only to prove that if R is an atomic valuation domain, then R is
Noetherian. Without loss of generality, R is not a field and so, by Proposi tion
2.1, R has a unique atom up to associates, say r. Since R is atomic, each ele-
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ment s ∈ R∗ can be written as s = urn for some u ∈ U(R) and some uniquely
determined nonnegative integer n = n(s). It follows easily that if I is any
non zero proper ideal of R, then I = Rrk, where k = min{n(s) : 0 6= s ∈ I}.
Thus, R is a PID and, in particular, Noetherian. 2

We next characterize antimatter domains by using groups of divisibility.

Proposition 2.3: (a) Let R be a domain with group of divisibility G(R). Then
R is an antimatter domain if and only if G(R)+ has no minimal elements.

(b) Let R be a valuation domain with value group G(R). Then R is an
antimatter domain if and only if G(R)+ has no least element.

Proof: We recalled in the Introduction that the value group of a valuation
domain is order-isomorphic to the group of divsibility of the domain. Accord-
ingly, it suffices to prove (a). Let K be the quotient field of R, and consider
a, b ∈ K∗. Using the description of the group- and order-theoretic structures
of G(R) given in the Introduction, we may draw several conclusions in quick
succession: aU(R) is the identity element of G(R) ⇔ a ∈ U(R); aU(R) is
nonnegative in G(R) ⇔ a ∈ R∗; aU(R) ∈ G(R)+ ⇔ a ∈ R∗ \ U(R); and
aU(R) < bU(R) in G(R)+ ⇔ a, b ∈ R∗ \ U(R), a|b in R, and b 6 | a in R. It
follows that bU(R) is a minimal element of G(R)+ if and only if b ∈ R∗\U(R)
and b is associated to each of its nonunit factors in R; that is, if and only if b
is an atom if R. Thus G(R)+ has no minimal elements if and o nly if R has
no atoms; that is, if and only if R is an antimatter domain. 2

Remark 2.4: (a) Recall from [9, Remark 2.13(b)] that a domain R is frag-
mented if and only if its group of divisibility G(R), when written additively,
has the property that for each g ∈ G(R)+, there exists h ∈ G(R)+ such
that g ≥ nh for each positive integer n. In the same spirit, we next note
that Corollary 2.2 and Proposition 2.3(b) can be used to obtain the following
classification result for valuation domains R:

(i) R is a DVR (and atomic) ⇔ R is not a field but R is Noetherian (and
G(R)+ has a least element);

(ii) R is a nonatomic non-antimatter domain ⇔ R is not Noetherian and
G(R)+ has a least element;

(iii) R is an antimatter domain⇔ G(R)+ has no least element (and either
R is a field or R is not Noetherian).
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(b) The criteria in Proposition 2.3 are easy to apply. For instance, if a
valuation domain R has divisible value group, then R is an antimatter do-
main. To see this, observe that a linearly ordered additively-written divisible
group cannot have a least positive element and apply Proposition 2.3(b).
Of course, valuation domains with divisible value group abound; for exam-
ple, consider any valuation domain with value group Q. (Cf. [12, Corollary
18.5].) However, the value group of an antimatter valuation domain need
not be divisible, as in any example having value group Z⊕Q with the lexi-
cographic order.

Recall from [9, Remark 2.7(b)] that an overring of a fragmented valuation
domain need not be fragmented. With this result as motivation, we proceed
to an example showing that “antimatter” exhibits similar instability behav-
ior.

Example 2.5: There exists a fragmented (hence antimatter) valuation domain
R and a nonzero nonmaximal prime ideal P of R such that the overring RP is
a DVR (hence atomic and not antimatter). For the construction, begin with
a fragmented valuation domain D which is not a field, for instance, the first
valuation domain discussed in [9, Remark 2.7(a)]. Let K be the quotient field
of D and put T = K[[X]]. Consider the pullback R = T ×K D = D + XT .
Since T = K + XT is a valuation domain, we may apply the result in [9,
Proposition 2.12(b)] on the classical D + M construction to conclude that R
is fragmented (hence antimatter). Moreover, by [17, p. 35], the pullback R is
a valuation domain and T = RP , where P = XT . As T is a DVR, it suffices
to note that P is a nonmaximal prime ideal of R, that is, that R 6= T . This
can be seen appealing to [9, Corollary 2.2(g)] or by noting that R/P ∼= D is
not a field.

Next we pursue the theme introduced in Example 2.5 by developing a
family of four valuation domain examples which exhibit the diversity of be-
havior of overring extensions in regard to the possible inheritance of the
“antimatter” property.

Example 2.6: (a) There exists a two-dimensional antimatter valuation do-
main R with quotient field K such that there is no antimatter overring prop-
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erly contained between R and K.
(b) There exists a two-dimensional antimatter valuation domain R whose

one-dimensional overring is also an antimatter domain.
(c) There exists a two-dimensional valuation domain R such that R is not

an antimatter domain but the one-dimensional overring of R is an antimatter
domain.

(d) There exists a two-dimensional valuation domain R with quotient
field K such that R is not an antimatter domain and there is no antimatter
overring properly contained between R and K.

Proof: Each of the domains R constructed in (a)-(d) below will be shown
to be a valuation domain whose value group is a lexicographic direct sum
of two rank 1 abelian groups. Since the Krull dimension of a valuation
domain coincides with the rank of its value group, it will follow that each
of these domains R is two-dimensional. Then since R is a two-dimensional
valuation domain, it will follow that the only proper overring of R other than
its quotient field is RP , where P is the height 1 prime ideal of R (cf. [12,
Theorem 17.6(a)]). Once the value group of RP has been identified, the later
assertions regarding the antimatter or non-antimatter status of R and RP

will follow by applying the criteria in Proposition 2.3(b).
Notice that, apart from the requirement of two-dimensionality, the do-

main R constructed via Nagata composition in Example 2.5 exhibits the other
features asserted for (a). Rather than using Nagata composition throughout,
we next develop (a)-(d) by constructing suitable localizations.

(a) Consider the domain A = F2[{Xα, Y
Xk : α ∈ Q+, k ≥ 1}] where X

and Y are independent indeterminates over F2, the field with two elements.
If M is the ideal of R generated by {Xα, Y

Xk : α ∈ Q+, k ≥ 1}, then M is
a maximal ideal of R since R/M ∼= F2. Put R = AM . The key point is
that each nonzero nonunit of R can be written either as a unit times Xα

for some α ∈ Q+ or as a unit times Y m

Xβ for some m ≥ 1, β ∈ Q (where β
may be positive, negative, or zero). It follows from routine calculations that
R is a valuation domain whose value group is Z⊕Q with the lexicographic
order and that the prime spectrum of R is 0 ⊆ P = ({ Y

Xk : k ≥ 1}) ⊆ M .
Evidently, RP has value group Z (and so RP is a DVR) and the assertions
now follow by the reasoning indicated above.

(b) Now, consider the domain A = F2[{Xα, Y β

Xk : α, β ∈ Q+, k ≥ 1}].
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Again, let R = AM , where M is the maximal ideal ({Xα, Y β

Xk : α, β ∈ Q+, k ≥
1}). In this case, every nonzero nonunit of R can be written either as a unit

times Xα for some α ∈ Q+ or as a unit times Y β

Xγ for some β ∈ Q+, γ ∈ Q.
It follows that R is a valuation domain whose value group is Q⊕Q with the
lexicographic order and that the prime spectrum of R is 0 ⊆ P = ({Y β

Xk : β ∈
Q+, k ≥ 1}) ⊆ M . It is easily verified that RP has value group Q.

(c) Next, consider A = F2[{X, Y β

Xk : β ∈ Q+, k ≥ 1}] and let R = AM ,

where M = ({X, Y β

Xk : β ∈ Q+, k ≥ 1}) = (X). Then R has value group
Q ⊕ Z with the lexicographic order and RP has value group Q, where P =
({Y β

Xk : β ∈ Q+, k ≥ 1}) is the height 1 prime ideal of R.
(d) Finally, consider A = F2[{X, Y

Xk : k ≥ 1}] and let R = AM , where
M = ({X, Y

Xk : k ≥ 1}) = (X). Then R has value group Z ⊕ Z with the
lexicographic order and RP has value group Z, where P = ({ Y

Xk : k ≥ 1}) is
the height 1 prime ideal of R. 2

Next, we continue building examples of antimatter valuation domains by
showing that nonfragmented examples exist in all positive dimensions.

Example 2.7: If n is any positive integer or ∞, then there exists an n-
dimensional antimatter valuation domain which is not fragmented.

Proof: (a) Consider the domain A = F2[{Xα, Y1

Xk , Y2

Y k
1
, . . . , Yn−1

Y k
n−2

: α ∈ Q+, k ≥
1}] or, written more succinctly, A = F2[{Xα, Ym

Y k
m−1

: α ∈ Q+, k ≥ 1, 1 ≤
m ≤ n − 1}]. Let R = AM , where M is the maximal ideal generated by
{Xα, Ym

Y k
m−1

: α ∈ Q+, k ≥ 1, 1 ≤ m ≤ n − 1}. By determining the possible

forms for the nonzero nonunits of R as in the proof of Example 2.6, we see
that R is an n-dimensional antimatter valuation domain whose value group
is Z⊕Q⊕ · · · ⊕Q with the lexicographic order and the prime spectrum of
R is 0 ⊆ ({Yn−1

Y k
n−2

: k ≥ 1}) ⊆ ({Yn−2

Y k
n−3

, Yn−1

Y k
n−2

: k ≥ 1}) ⊆ · · · ⊆ M . However, R is

not a fragmented domain since X is a nonzero nonunit of R which does not
lie in ∩∞n=0Rsn for any nonunit s ∈!R.

(b) The above construction may be extended to an infinite-dimensional
example by considering the domain A = F2 [{Xα, Y1

Xk , Y2

Y k
1
, Y3

Y k
2
, . . . : α ∈

Q+, k ≥ 1}] = F2 [ Xα, Ym

Y k
m−1

: α ∈ Q+, k ≥ 1, m ≥ 1}]. Let R = AM , where
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M is the maximal ideal generated by {Xα, Ym

Y k
m−1

: α ∈ Q+, k ≥ 1, m ≥ 1}. By

reasoning analogous to the a bove, R is an infinite-dimensional antimatter
valuation domain which is not a fragmented domain. 2

In view of Example 2.6, it seems natural to ask when an antimatter
valuation domain has a proper antimatter overring other than its quotient
field. An answer is given in Proposition 2.9, with “valuation” replaced by
the more general “divided” concept. For this, we need a lemma which shows
that, despite Example 2.7, any antimatter valuation domain exhibits some
“fragmented” behavior. It is convenient to say that if R is a domain and r is
a nonzero nonunit of R, then r fragments in R if there exists s ∈ R \ U(R)
such that r ∈ ∩∞n=0Rsn. Clearly, a domain R is a fragmented domain if and
only if each nonzero nonunit of R fragments in R.

Lemma 2.8: Let R be a divided antimatter domain. Let r be a nonzero
element of a prime ideal P of R. Then either r fragments in R or r is not an
atom of RP .

Proof: It suffices to show that if r is an atom of RP , then r fragments in
R. Since R is antimatter, r is not an atom of R, and so r = ab for some
a, b ∈ R \ U(R). However, r is an atom of RP , and so we may assume,
without l oss of generality, that b ∈ U(RP ). Then b ∈ U(RP ) ∩ R = R \ P
and, since P is a prime ideal of R, it follows from ab = r ∈ P that a ∈ P .
Since bn ∈ R \ P for each positive integer n, the “divided” property o f R
yields that a(bn)−1 ∈ PRP = P ⊆ R, whence a ∈ Rbn and r = ab ∈ Rbn+1.
In particular, r fragments in R. 2

Proposition 2.9: Let R be a divided antimatter domain properly contained
in its quotient field K. If R has no antimatter overrings properly contained
between R and K, then for every nonzero nonmaximal prime ideal P of R,
there exists a nonzero element r ∈ P which fragments in R.

Proof: Assume that R has no antimatter overrings strictly between R and
K. Then for any nonzero nonmaximal prime P , there exists an atom r in
RP , and we may assume that r ∈ P . By applying Lemma 2.8, we see that r
fragments in R. 2
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Remark 2.10: (a) A two-dimensional example of a domain R satisfying the
hypothesis in Proposition 2.9 is given by the ring R constructed in Example
2.6(a). In this example, Y can play the role of r, since Y ∈ ∩∞n=0RXn.

(b) The converse of Proposition 2.9 is false, even for fragmented valua-
tion domains. To see this, consider the linearly ordered set X consisting of
a0 < a1 < a2 < · · · < an < · · · < a∞ = b0 < b1 < b2 < · · · < bn < · · · < b∞.
It is easy to verify that every chain in X has a supremum and an infimum;
and that X satisfies the “im mediate neighbors” property. In other words, X
satisfies Kaplansky’s properties (K1) and (K2), as described in [15, p. 429].
Therefore, by [15, Corollary 3.6], there exists a valuation domain R whose
prime spectrum is order-isomorphic to X. Since the maximal ideal M of R
corresponds to b∞ ∈ X, M is the union of the nonmaximal prime ideals of
R. As R is a divided domain, it now follows from [9, Theorem 2.5] that
R is fragmented. Thus, by the above remarks, each nonzero nonunit of R
fragments in R. On the other hand, if P is the prime ideal of R which cor-
responds to a∞ = b0 ∈ X, then RP is a proper overring of R which is an
antimatter domain. Indeed, since PRP = P is the union of the nonmaximal
prime ideals of the valuation domain RP , it follows by the above reasoning
that RP is actually a fragmented domain.

Example 2.6(a) exhibited an antimatter valuation domain with a proper
overring which is not an antimatter domain. This raises the question of
where atoms can be found within an overring extension of a given antimatter
domain. The next result answers this question in the case of an integral
overring. More generally, observe that the lying-over property of integral
extensions (cf. [12, Theorem 11.5]) ensures that if R ⊆ T is an integral ex-
tension of domains, then U(T ) ∩R = U(R).

Proposition 2.11: Let R ⊆ T be domains such that R is an antimatter do-
main. Suppose also that U(T )∩R = U(R) (for instance, T integral over R).
Then no element of R is an atom of T .

Proof: Deny. Choose an element r ∈ R \ U(R) such that r is an atom of
T . Since R is antimatter, r is not an atom of R, and so r = ab for some
a, b ∈ R \ U(R). However, the hypothesis U(T ) ∩ R = U(R) ensures that
RinusU(R) ⊆ T \ U(T ), whence the factorization r = ab reveals that r is
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not an atom of T , the desired contradiction. 2

Remark 2.12: One cannot delete the integrality-like hypothesis regarding
units in Proposition 2.11. To see this, consider the antimatter domain R
constructed in Example 2.6(a). Recall that T = RP is a DVR with lo-
cal uniformizing paramater Y . Thus, Y is an atom of T and, of course,
Y = X · Y

X
∈ R.

Despite parts (b) and (d) of Example 2.6, some domains do not have
antimatter overrings other than their quotient field. For instance, if R is a
one-dimensional Noetherian domain and if T is an overring of R distinct from
the quotient field of R, then T is Noetherian by the Krull-Akizuki Theorem
(cf. [6, Proposition 5, p.500]); it follows that T is atomic and hence not an
antimatter domain. Accordingly, we close the section by considering passage
of the “antimatter” property beyond the quotient field. The situation here is
remarkably simpler than in the overring context studied in Example 2.6.

Theorem 2.13: Every domain can be embedded as a subring of some anti-
matter domain which is not a field.

Proof: Let R be a domain with quotient field K. There are two cases:
either R = K is a field or R is not a field. Suppose R = K. Consider
the domain A = K[{Xα : α ∈ Q+}] and its maximal ideal M generated by
{Xα : α ∈ Q+}. It is easy to see that each nonzero nonunit of T = AM can
be written as uXα, for some u ∈ U(T ) and α ∈ Q+. It follows that T is a
valuation domain with value group Q. Hence, by Corollary 2.3(b), T is an
antimatter domain.

It remains to consider the case in which R is not a field. Let K̄ be an
algebraic closure of K and let Ra be the integral closure of R in K̄. Of
course, R ⊆ Ra and by integrality (cf. [12, Lemma 11.3]), Ra is not a f ield.
It suffices to show that Ra is an antimatter domain. For this, consider any
nonzero nonunit α ∈ Ra, let n ≥ 2 be a positive integer, and take β ∈ K̄
to be any root of the polynomial Xn − α. As β ∈ K̄, the quotient field of
Ra, and β is integral over the integrally closed domain Ra, we have β ∈ Ra.
Since α = βn, it follows that α is not an atom of Ra. As α is arbitrary, Ra

is antimatter. 2
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3. Antimatter domains in the context of pseudo-valuation domains
and other pullbacks.

To broaden the applications of antimatter domains, we identify the an-
timatter PVDs in Corollary 3.3(b). In studying PVDs, it is convenient to
work in the more general context of distinct domains R ⊂ T , not fields, such
that Spec(R) = Spec(T ) as sets. Recall from [4, Proposition 3.3] that un-
der these conditions, R is quasilocal, say with maximal ideal M ; an oft-used
consequence is that R \ U(R) = M = T \ U(T ). For this “equal spectra”
context, the atomic domains are as easy to characterize as the antimatter
domains: see Proposition 3.2. We begin with a useful result on atoms.

Lemma 3.1: Let R ⊆ T be domains such that Spec(R) = Spec(T ). Let
r ∈ R. Then r is an atom of R if and only if r is an atom of T .

Proof: Without loss of generality, r 6= 0 and R 6= T . By the above remarks,
R is quasilocal with maximal ideal M = R \ U(R) = T \ U(T ). Without
loss of generality, r ∈ M . Now, r is not an atom of R ⇔ r = ab f or some
a, b ∈ M ⇔ r = ab for some a, b ∈ T \ U(T ) ⇔ r is not an atom of T . The
assertion is now immediate. 2

It was shown recently by Badawi [5, Theorem 2] that any atomic PVD is
a half-factorial domain. (The same conclusion may be reached by combining
[3, Theorem 6.2 and Corollary 5.2] with [4, Proposition 2.5] and Corollary
3.3(a).) Corollary 3.3(a) characte rizes the atomic PVDs. First, in Propo-
sition 3.2, we work in the “equal spectra” context. Notice that Proposition
3.2(b) is the “antimatter” analogue of a “fragemented” result [9, Proposition
2.12(a)].

Proposition 3.2: Let R ⊆ T be domains such that Spec(R) = Spec(T ). Then:
(a) R is an atomic domain if and only if T is an atomic domain;
(b) R is an antimatter domain if and only if T is an antimatter domain.

Proof: Any atom of T must be a nonunit of T and hence, since Spec(R) =
Spec(T ), must be an element of R. Since a domain is antimatter if and only
if it has no atoms, (b) now follows directly form Lemma 3.1. As for (a),
R 6= T , without loss of generality. Then R is quasilocal, say with maximal
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ideal M = R \ U(R) = T \ U(T ). By Lemma 3.1 and the first sentence of
this proof, “atom of R” is equivalent to “atom of T”. Hence, R is an atomic
domain ⇔ fo r each nonzero r ∈ M , r is a product of finitely many atoms of
R ⇔ for each nonzero r ∈ M , r is a product of finitely many atoms of T ⇔
T is an atomic domain. 2

Corollary 3.3: Let R be a pseudo-valuation domain, with canonically associ-
ated valuation overring V . Then:

(a) R is an atomic domain if and only if V is Noetherian (that is, if and
only if V is either a field or a DVR).

(b) R is an antimatter domain if and only of V is an antimatter domain
(that is, if and only if G(V )+ has no least element).

Proof: V is the valuation overring of R satisfying Spec(R) = Spec(V ). Ac-
cordingly, (a) follows from Proposition 3.2(a) and Corollary 2.2; and (b)
follows from Proposition 3.2(b) and Proposition 2.3(b). 2

Corollary 3.4: (Bawadi [5, Theorem 7]) If R is an atomic pseudo-valuation
domain, then dim(R) ≤ 1.

Proof: Let V be the canonically associated valuation overring of R. By
Corollary 3.3(a), either V is a field or V is a DVR. In the former case,
dim(V ) = 0; and in the latter case, dim(V ) ≤ 1. Hence dim(V ) ≤ 1. How-
eve r, since Spec(R) = Spec(V ), we have dim(R) = dim(V ), to complete the
proof. 2

The reader may find it interesting to compare the above “equal-spectra”
approach to atomic PVDs with the factorization-theoretic approaches using
length functions in [3] and [5].

Remark 3.5: We next sketch a proof of Corollary 3.3(b) which seems rather
different from the proof given above. Let V be the canonically associated
valuation overring of a PVD, R. Let M be the maximal ideal of R (and V ),
and consider the fields k = R/M and F = V/M . By [16, (5), page 397],
there is a lexicographically exact sequence of multiplicative groups

1 −→ F ∗/k∗ −→ G(R) −→ G(V ) −→ 1.
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Since the partial order on F ∗/k∗ is the trivial (identity) partial order (cf.
[16, page 389]), it follows from the definition of a lexicographically exact
sequence [19, page 577] that G(R)+ = {bU(R) : b is in the quotient field
of R and bU(V ) ∈ G(V )+}. Thus, G(R)+ = {bU(R) : b ∈ R∗ \ U(R)} =
{bU(R) : 0 6= b ∈ M}. (Of course, the same conclusion can be found di-
rectly, by reasoning as in the proof of Proposition 2.3.) Similarly, G(V )+ =
{bU(R) : 0 6= bınM}. Let β = bU(R) (resp., bU(V )) be a member of G(R)+

(resp., G(V )+). By reasoning as in the proof of Proposition 2.3, we see that
β is a minimal positive element in G(R) (resp., G(V )) if and only if there
does not exist a nonzero element a ∈ M such that b = am for some element
m ∈ M . In particular, G(R)+ has a minimal element if and only if G(V )+

has a minimal element. Thus, by the criterion in Proposition 2.3(a), R is an
antimatter domain if and only if V is an antimatter domain, to complete the
proof.

It is convenient next to record the following useful result, an “antimatter”
analogue of a “fragmented” result [9, Lemma 2.3].

Proposition 3.6: Let R be an antimatter domain and let P be a prime ideal
of R such that P ⊆ J(R). Then R/P is an antimatter domain.

Proof: Set A = R/P . If the assertion fails, choose an atom α of A. Then
α = r + P for some r ∈ R. As α is a nonzero nonunit of A, we see that
r ∈ R \ (P ∪ U(R)). Since R is an antimatter domain, r is not an atom of
R, and so r = bc for some b, c ∈ R \ U(R). Put β = b + P and γ = c + P .
Then α = βγ in A. As α is an atom of A, we may assume, without loss of
generality, that β ∈ U(A). Hence, there exists a coset representative s ∈ R
of β−1; that is, β(s + P ) = 1 + R ∈ A. It follows that bs − 1 ∈ P ⊆ J(R),
whence βs ∈ 1 + J(R) ⊆ U(R) and b ∈ U(R), the desired contradiction. 2

It was shown in [4, Proposition 2.6] that PVDs may be characterized as
pullbacks of the form R = V ×F k, where (V, M) is a valuation domain with
residue field F = V/M and k is a subfield of F . (Then V is the canonically
associated valuation overring of R and k ∼= R/M .) As the “equal spectra”
context may also be characterized using pullbacks [4, Theorem 3.25], we ex-
pand upon our above work by devoting the rest of this paper to studying
pullbacks which are antimatter (or, occasionall y, atomic) domains. We be-
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gin this direction with what amounts to a pullback-theoretic reformulation
of Proposition 3.2.

Proposition 3.7: Let (T, M) be a quasilocal domain, let F = T/M , and let
D be a subfield of F . Consider the pullback R = T ×F D. Then:

(a) R is an atomic domain if and only if T is an atomic domain.
(b) R is an antimatter domain if and only if T is an antimatter domain.

Proof: Applying the gluing result [11, Theorem 1.4] to the pullback defining
R, we see that Spec(R), with the Zariski topology, is homeomorphic to the
quotient space of the disjoint union of Spec(T ) and Spec(D) in which M ∈
Spec(T ) is identif ied with 0 ∈ Spec(D). It follows that the canonical map
Spec(T ) −→ Spec(R) is a homeomorphism, whence Spec(R) = Spec(T ) as
sets. (We have given the above argument as a gentle reminder of the gluing
techniques from [11]. These will be needed in our later results whenever D is
not assumed to be a field, for then Spec(R) 6= Spec(T ). For the present re-
sult, since D is a field, we may obtain the conclusion that Spec(R) = Spec(T )
more simply than quoting [11], as follows. Observe that M is a maximal ideal
of R, since R/M ∼= D is a field. Thus, each maximal ide al of T (namely, M !)
is a maximal ideal of R and so, by [4, Theorem 3.10], Spec(R) = Spec(T ) as
sets.) As Spec(R) = Spec(T ), an application of Proposition 3.2 completes
the proof. 2

We show next that the condition that D is a field (which was a hypothesis
in Proposition 3.7) is actually a consequence of assuming that the pullback
R is an atomic domain. Theorem 3.8 was obtained in [2, Proposition 1.2] for
the case T = F +M (but for the result in [2], T was not assumed quasilocal).

Theorem 3.8: Let (T,M) be a quasilocal domain which is not a field, let
F = T/M , and let D be a subring of F . Consider the pullback R = T ×F D.
Then R is an atomic domain if and only if T is an atomic domain and D is
a field.

Proof: By Proposition 3.7(a), it suffices to show that if R is atomic, then
D is a field. Deny. Using the gluing results from [11], observe that as a
partially ordered set, Spec(R) can be obtained (up to order-isomorphism) by
gluing Spec(D) “on t op of” Spec(T ) with 0 ∈ Spec(D) identified with M ∈
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Spec(T ). Now, since D is not a field, we can choose a nonzero maximal ideal
P of D. Under the above gluing, P corresponds to a maximal ideal Q of R
such that M is properly contained in Q. (In detail, if π : T −→ F is the
canonica l surjection, then Q = π−1(P ).) Thus, by picking r ∈ Q \M , we
produce an element r ∈ R \ U(R) such that r 6∈ M . Hence, r ∈ R \M ⊆
T \M = U(T ), so that r−1 ∈ T . Thus, if m ∈ M , we hav e m = r(r−1m),
with r−1m ∈ TM = M ⊆ R\U(R). In particular, M contains no atoms of R.
However, since M 6= 0, we may choose a nonzero element s ∈ M . Then, since
R is atomic, factor s as a product of atoms αi o f R. Now, since R/M ∼= D
is a domain, M is a prime ideal of R, and so some αi ∈ M , contradicting the
fact that M contains no atoms of R. The proof is complete. 2

One cannot delete the hypothesis in Theorem 3.8 that T is not a field.
Indeed, if M = 0, then F = T and R = D, so that a counterexample to the
“only if” assertion would result by taking T to be a field and D be an atomic
domain such that DeteqT and D is not a field.

Theorem 3.9 is an “antimatter” counterpart of Theorem 3.8 and can be
viewed as a vast generalization of the “if” assertion in Corollary 3.3(b). (More
specifically, if R is a PVD, then D is a field possibly distinct from F , but the
proof of Theo rem 3.9 adapts to this case since MRM = M .)

Theorem 3.9: Let (T, M) be a divided antimatter domain, let F = T/M , and
let D be a domain with quotient field F . Consider the pullback R = T ×F D.
Then R is a divided antimatter domain if and only if D is a divided antimat-
ter domain.

Proof: Any divided domain is quasilocal [7, Proposition 2.1], and so T does
indeed have a unique maximal ideal, say M . By using gluing techniques
from [11] as in the proof of Theorem 3.8, we see that M ⊆ J(R). Thus,
by Proposition 3.6, if R is an antimatter domain, then so is R/M ∼= D.
Moreover, if R is a divided domain, then [7, Lemma 2.2(c)] assures that
R/M ∼= D is also a divided domain, thus completing the proof of the “only
if” assertion. (Notice that the “only if ” pro of did not require that D have
quotient field F or that T be divided and antimatter, but only that (T, M)
be quasilocal. The full hypotheses on D and T will be used in the “if” proof
below.)

For the “if” assertion, suppose that D is a divided antimatter domain.
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A well known calculation in the folklore of pullbacks shows that RM = T
follows from the condition that F is the quotient field of D. Hence, MRM =
MT = M . As R/M ∼= D and RM = T are each divided domains, [10,
Proposition 2.12] yields that R + MRM = R + M = R is also a divided
domain. It remains only to show that R is an antimatter domain.

If the assertion fails, choose an atom r of R. Since T is an antimatter
domain, T has no atoms and, in particular, r is not an atom of T . If r ∈ M ,
then r is a nonunit of T , and so r = t1t2 for some elements t1, t2 ∈ T \U(T ) =
M ⊆ R \ U(R), contradicting the irreducibility of r in R. Hence r 6∈ M .

Let π : T −→ T/M = F denote the canonical surjection, and put d =
π(r). As r ∈ R \M , we have d 6= 0. In fact, d 6∈ U(D). To see this, pick a
maximal ideal N of R such that r ∈ N , observe that M ⊆ J(R) ⊆ N , and
(identifying D with R/M via π) conclude that d = r + M is an element of
the maximal ideal N/M of D. (We pause to give an alternate proof that d is
a nonunit of D. Deny. Then there exists a coset representative s ∈ R such
that rs − 1 ∈ M , whence rs ∈ 1 + M ⊆ 1 + J(R) ⊆ U(R) and r ∈ U(R),
contradicting that r is an atom of R.)

Since D is an antimatter domain, d is not an atom of D. As d ∈ D∗\U(D),
there exist r1, r2 ∈ R such that d = π(r1)π(r2) and π(r1), π(r2) ∈ D∗ \U(D).
It follows that r1, r2 ∈ R \ (MpU(R)). However, since d = π(r1)π(r2), we
have r − r1r2 ∈ M , so that

r(r1r2)
−1 − 1 = (r − r1r2)(r1r2)

−1 ∈ MRM = M.

Then u = r(r1r2)
−1 satisfies u ∈ 1+M ⊆ 1+J(R) ⊆ U(R), so that r = ur1r2,

contradicting the irreducibility of r in R, to complete the proof. 2

We close with some applications of Theorem 3.9. The first of these con-
cerns the classical D + M construction (in the sense of [12]).

Corollary 3.10: Let V = F + M be a nontrivial valuation domain, where F
is a field and M is the maximal ideal of V . Let D be a domain with quotient
field F , and put R = D + M . Then R is a divided antimatter domain if and
only if D is a divided a ntimatter domain.

Proof: As recalled in the Introduction, any (pesudo-)valuation domain is a
divided domain. Since V ×F D = D + M = R, an application of Theorem
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3.9 completes the proof. 2

Finally, we show how to use Theorem 2.9 to construct non-fragmented
antimatter valuation domains of arbitrary finite positive Krull dimension. In
contrast to the constructions in Example 2.7(a), whose properties involved
extensive calculations which were left to the reader, the pullback methods in
Corollary 3.11 lead to simple proofs. However, we have not found an infinite-
dimensional pullback-theoretic construction with the properties in Example
2.7(b).

Corollary 3.11: (a) Let K be a field, let A = K[{Xα : α ∈ Q+}], let M be
the ideal of A generated by {Xα : α ∈ Q+}, and put R = AM . Then R is a
one-dimensional antimatter valuation domain with residue field K.

(b) For each positive integer n, an n-dimensional non-fragmented anti-
matter valuation domain Vn may be inductively constructed as follows. For
n = 1, take V1 to be the ring R constructed in (a), using K = F2. For
n ≥ 1, given Vn as asserted with quotient field Kn, define Vn+1 as the pull-
back R×Kn Vn, where R is the ring constructed in (a), using K = Kn.

Proof: (a) If p, q ∈ Z+, then (X
p
q )q = Xp ∈ K[X]. It follows easily that A

is integral over K[X], whence dim(A) = dim(K[X]) = 1 (cf. [12, 11.8]). As
1 6∈ M , M has height 1 in A, and so dim(R) = 1. Of course, the residue field
of R is canonically AM/MAM

∼= A/M ∼= K. The remaining details are like
those left to the reader for the case n = 1 in Example 2.7(a). For the sake
of completeness (and because K need not be F2 here), we sketch the details
next. Reasoning as in Example 2.6(a), we see that each nonzero nonunit of
R can be written as uXα, for some u ∈ U(R) and α ∈ Q+. It follows readily
that R is a valuation domain. Moreover, as Xha = (X

α
2 )2 for each α ∈ Q+,

R has no atoms; that is, R is an antimatter domain.
(b) The “non-fragmented” conclusions follow from the result (cf. [9,

Corollary 2.6 or Corollary 2.8]) that a fragmented valuation domain which
is not a field must have infinite Krull dimension. Thus, by (a), V1 has the
asserted properties. (Another w ay to see that V1 is not fragmented is to
recall that any one-dimensional domain is Archimedean [18, Corollary 1.4]
and, hence, not fragmented [9, page 464].)

Now, suppose that n ≥ 1 and that Vn, with quotient field Kn, has the
asserted properties. As Vn+1 = R×Kn Vn is obtained by Nagata composition
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of valuation domains, it follows from [17, page 35] that Vn+1 is a valua-
tion doma in. Moreover, since dim(R) = 1 and dim(Vn) = n, it follows
from standard gluing techniques [11, Proposition 2.1(5)] that dim(Vn+1) =
dim(Vn) + dim(R) = n + 1. Finally, since (pseudo-)valuation domains are
divided, Theo rem 2.9 may be applied to show that Vn+1 is an antimatter
domain. The proof is complete. 2
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