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Czechoslovak Mathematical Journal, 42 (117) 1902, Praha 

ON INTEGRAL INCLUSIONS OF VOLTERRA TYPE 

IN BANACH SPACES 

NIKOLAOS S. PAPAGEORGIOU,*) Melbourne 

(Received June 13, 1991) 

1. INTRODUCTION 

In this paper, we study Volterra integral inclusions defined in a Banach space. 

The necessity of studying such mathematical objects, comes from control theory 

and engineering problems. Recall that every control system (finite or infinite di-

mensional), under minimal hypotheses on its data, has an equivalent formulation in 

which the dynamics are described by an inclusion (differential, integral or functional 

inclusion). In this inclusion description, the control variable does not appear explic-

itly ("deparametrization" of the system). This equivalent inclusion description of 

the system, plays an important role when studying the relaxed (i.e. ''convexified") 

system (see [24]). On the other hand, recently Glashoff-Sprekels [8], [9], studied 

the problem of thermostatic regulation, in which the heating devices controlling the 

temperature of the system, are governed by a relay switch, and established that 

the system dynamics can be modeled via an integral inclusion. Finally, recently 

Leitmann and his coworkers [15], [16], advocated a nonstochastic approach to the 

robustness of uncertain control systems, which is based on differential and integral 

inclusions. 

The results in the paper, extend the single-valued works of Szufla [26] and Vaughn 

[29] and the multivalued ones by Ragimkhanov [25], Lyapin [17] (who studied integral 

inclusions in Rn) and by Papageorgiou [20], [21] (who considered integral inclusions 

in Banach spaces). 

*) Research supported by NSF Grant DMS-8802688 
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2. P R E L I M I N A R I E S 

In this section we recall some basic definitions and results about the measurability 

and continuity properties of multifunctions (set-valued functions), tha t we will need 

in the sequel. 

So let (Q, E) be a measurable space and X a separable Banach space. Throughout 

this paper we will be using the following notations: 

P/(C)(X) = {AC X: nonempty, closed, (convex)} 

and P(ti,)fc(c) = {AC X: nonempty, (weakly-)compact, (convex)}. 

A multifunction F: Q —• Pf(X) is said to be measurable, if for every x G K, the 

R+-valued function u) —• d(x, F(u))) = inf{| |z — z\\: z G F(u))} is measurable. In 

fact, this is equivalent to saying that for every U C X open, F~(U) = {u) G Q: 

F(u) fl U ^ 0} G £ or tha t there exists a sequence {/n}n^i of measurable functions 

fn : Q —• X s.t. F(UJ) = {fn(u)}n>l for all u) G Q. For details we refer to the survey 

paper of Wagner [30]. For a multifunction F: Q —• 2X \ {0}, the graph of F() is 

defined by GrF = {(u,x) G fi x X: x G F(u>)}. We will say that F() is "grapri-

measurable" if and only if GrF G E x B(X), with B(X) being the Borel cr-field of 

X. For a Pf (K)-valued multifunction, we know that measurability implies graph 

measurability, while the converse is true if there exists a cr-finite measure //(•) on E, 

with respect to which E is complete. A multifunction F: Q —+ 2X \ {0} is said to be 

weakly (or scalarly) measurable, if for all x* G K*, u) —• a(x*,F(u))) = s u p { ( x * , z ) : 

z G F(ui)} is a measurable function. Again measurability implies weak measurabili ty 

and the converse is true if there exists a complete, cr-finite measure //(•) on E and 

the multifunction is P t / ;jkc(X)-valued. 

Suppose (Q, E, fi) is a finite measure space and F: Q —• 2X \ {0} a multifunction. 

By S]p we will denote the set of integrable selectors of F(); i.e. S}? = {/ G Ll(X): 

f(u)) G F(u))fi- a .e.}. This set may be empty. For a graph measurable multifunction, 

it is nonempty if and only if u) —• inf{|lz| | : z G F(u))} G L\. This is the case if 

u) —• | F ( ^ ) | = sup{ | |z | | : z G F(u>)} G F^_ and such a multifunction is usually called 

"integrably bounded". For a graph measurable multifunction Sp is closed in Ll(X) if 

and only if F() is Pf(X)- valued and convex if and only if F() is convex valued. For 

details we refer to [22]. Using the set 5jp, we can define a set valued integral for F() 

by setting fn F(u>) d/i(u)) = {fnf(u))dfj,(u)): f G Sl
F}- The vector-valued integrals 

involved in this definition are understood in the sense of Bochner. A detailed study 

of this set-valued integral can be found in [12]. 

Next let Y, Z be Hausdorff topological space and F: Y —• 2Z \ {0}. We say 

tha t F(-) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.)), if for 
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every U C Z open, the set F+(U) = {y G Y: F(y) C U} (resp. F"(U) - - { y e V : 

-^(y) n U -̂ 0}), is open in Y. If F() is both u.s.c. and /.s.c. then we say that 

F() is continuous. In fact, continuity is equivalent to saying that F() is continuous 

from Y into 2 Z \ {0}, the latter equipped with the Vietoris topology. If Z is a 

metric space, on Pj(Z) we can define a (generalized) metric, known as the Hausdorff 

metric, by setting h(A, B) = maxfsup d(ay 5 ) , sup cf(6,>l)], A,B £ Pj(Z). It is an 
a£A b£B 

elementary, yet rather technical exercise, to verify that completeness of Z implies 

completeness of the metric space (P/ (Z) ,h) , A multifunction F: Y —• Pj(Z) is said 

to be Hausdorff continuous (/i-continuous) if it is continuous from Y into the metric 

space (P/(Z), h). If F() is Pk(Z)- valued, then continuity and /i-continuity coincide. 

This follows from the fact that on Pk(Z), the Vietoris and Hausdorff topologies 

coincide (see Klein-Thompson [14], corollary 4.2.3, p. 41). 

Let X be a Banach space and B its family of bounded set. Then the Hausdorff 

(ball)-measure of noncompactness ft: B —• R+ is defined by 

ft(B) = inf{r > 0: B can be covered by finitely many balls of radius r} . 

A comprehensive introduction to the subject of measures of noncompactness and 

their applications, can be found in the book of Banas-Goebel [2]. 

Finally, if {An}n>1 C 2X \ {0}, we set 

\imAn = {x e : \imd(x,An) = 0} = {x £ X: xn A x, xn G An) n ^ 1} 

and 

lim^4n = {x G : limrf(x,An) = 0} 

= {x G X : xnk A x, xnfc G Ank, nx < n2 < . . . < nk < . . . } . 

It is clear from the above definitions that we always have 

l i m A n C l i m j 4 n 

and both sets are closed in X. We say that the An's converges in the Kuratowski 

sense to A (denoted by An —• A) if and only if l imAn = lim.An = A. 
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3 . EXISTENCE RESULTS 

Let T = [0,6] and X a separable Banach space. We will be studying the following 

integral inclusion of the Volterra type: 

(*) x(t) e p(t) + / K(t, s)F(s, x(s)) ds, teT 
Jo 

where p e C(T,X). By a solution of (*), we understand a function x() e C(T,X) 

s.t. x(t) = p(t) + /0* K(t, s)f(s) ds,teT with / e -?>(.,,(.)) (i.e., / E L\X), f(t) e 

F(t,x(t)) a.e.). 

We start with an existence result, for the case where the orientor field F(t,x) is 

con vex-valued. Our hypotheses on the data of (*) are following: 

H(F): F:T x X -+ Pfc(X) is a multifunction 5./. 

(1) (t, x) —• F(t, x) is measurable, 

(2) x —• F(t, x) is u.s.c. from X into Xw (where Xw denotes the Banach space 

X endoved with the weak topology), 

(3) \F(t,x)\ = sup{|M|: v e F(t,x)} <: a(t) + b(t)\\z\\ a.e., with <),&(•) 6 L\, 

(4) /?(F(*, 5 ) ) <: k(t)f3(B) a.e. for all 5 C X bounded and with *(•) e L\. 

R e m a r k . Note that hypothesis H(F)(4) implies that for alU eT\N, N being 

a Lebesgue-null subset of T, and for all x e X, we have F(t,x) e Pk(X). Just let 

B = {x} and recall that (3({x}) = 0 so that p(F(t, x)) = 0 for all (t,x) e (T\N)xX 

(see H (F)(4)) => F(*, x) G IMK) for all (*, *) G (T \ N) x X. 

H(K): K: A = {(t,s): 0 <: s <: t <: 6} —• 3£(X) is a strongly continuous kernel 

5.L IIK^', 5) - K(t, 8)\\se ^ c-^5p- for all (*, s), (f, s) e A, t' > t (here Sf(X) 

denotes the Banach space of all bounded, linear operators from X into itself, 

and "strong continuity", refers to continuity of K(-, •) into 3£(X) equiped with 

the strong operator topology). 

R e m a r k . Suppose that {A(t)}t^T is a family of closed, densely defined linear 

operators 5./. D(A(t)) = D (i.e., independent of t e T), R(\,A(t)) = (\I- A(t))~l 

exists for all t E T and all A G C with ReA <: 0 (i.e. for all teT, the resolvent set 

g(A(t)) contains the half-plane ReA <: 0), ||fl(A; -4(0)!l^f ^ T^AJ a n d f o r a11 ^ s € T' 

\\A(t)A(0)-x - A(s)A(0)~1\\^ <: c\t - sp 0 < 7 <: 1 (in fact this last condition is 

equivalent to saying that ||yl(<)A(r) - A(S)A(T)-1\\& <: c\t - s|7 for all t,s G T). 

Then this family of unbounded operators, generates a strongly continuous evolution 

operator (fundamental solution) K: A —• Sf(X), which satisfies hypothesis H(K). 

To see this, note that from the properties of the evolution operator K(t,s) (see 
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Tanabe [27], chapter 5) and the mean value theorem, for any x* £ X', any x € X 

and some r € [t, t'] t', t eT,t' >t, we have 

|(x*,K(t',a)x - K(t,s)x)\ ^ (f - t)\{x\ ^K(T,S)X)\ 

< ( « ' - 0 | ^ A - ( r , . ) | ^ | | a r | | | | « * | | . 

But from inequality 5.141, p. 149 in Tanabe [27] (see also Friedman [7], corollary, 

p. 127), we have 
d , , , Jl c c 

Thus we have 

m
к
ь*Ч*—.*t-. 

\\K(t',s)x-K(t,s)x\\^(t'-t)
C
M  =o  \\K(t',s)-K(t,s)\\^^

C
-^—11. 

t — s t — s 

Let H,  X  be  separable  Hilbert  spaces  s.t.  X  embeds  into  H  continuously  and 

densely.  Identifying  H  with  its  dua!  (pivot  space),  we  have X  <—•  H  <--• K*,  with  all 

embeddings  being  continuous  and  dense.  Such  a  triple of  spaces  is  usually  known 

in  the  literature  as  an  "evolution  triple"  (see  Zeidler  [31]),  A  typical  example  is 

H  =  L
2
(Z),  X  = H^(Z)  and  X*  =  H'

m
(Z)  with  m  G N and  Z  a bounded domain 

in  R
n
,  with  smooth  boundary. Let  A:  T  —•  J?(X,X*)  be  a  map s.L  J —•  A(t)x 

is  measurable  for  all  x  G K, (J4(<)£,X) ^ c||x||^, where (•,•) denotes the duality 

brackets for the pair (K, X*) and ||-4(*')x - A(t)x\\x. ^ /?|*' - *|||x||x, P > 0. Then 

{yl(^)}teT generates an evolution operator K: A —• S£(H) satisfying H(K). For 

details, we refer to Tanabe [27], chapter 5, section 4. 

Theorem 3.1. If hypotheses H(F) and H(K) hold and p G C(T,X), then (*) 

admits a solution. 

P r o o f . We start by deriving an a priori bound for the solutions of (*). So let 

x(-) G C(T,X) be such a solution. Then by definition, for some / G SL x,\) and 

for all t G T, we have 

*(0 = P(0+ / K(t,s)f(s)ds 
Jo 

-> lk(OII<INIoo+/ < | |A- ( . ,» ) lk - l l /WI |d« 
JO 

^ I H o o + ^ M t a W + ftWIIxWII)^ (A#= sup | |K(M)IUf). 
JO V (t,*)€A ' 
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Invoking Gronwall's inequality, we get M\ > 0 s.t. for all t G T and all solutions 

x(-) of (*), we have 

NOII^AfL 

Let F(*,x) = F(t,x) if ||x|| ^ Mi and F(t,x) = F(*, j£f) if ||x|| > Mu then 

F(t,x) = F(^,PMi(-c)), with pM! • K —• X being the Mi-radial retraction. Re-

calling that PMi() is Lipschitz continuous, we can easily see that (t,x) —> F(t,x) 

is measurable, x —• F(t,x) is «.5.c. form K into K^ and |F(<,x)| = sup{||v||: 

v G F(*,*)} ^ a(t) + b(t)Mx = p(t) a.e. with <p(-) G Lij.. Finally, if B C K is 

bounded since PM^(B) C conv(fl U {0}), we have using the properties of/?: 

0(F(t,B)) = p(F(t,pMl(B))) < k(t)0(PMl(B)) 

sj Jfc(0/?(conv(fl U {0})) ^ k(t)/3(B) a.e. 

Next let W C C(T, X) be defined by 

W = {ye C(T, X): y(0 = p(0 + J K(t, s)g(s) ds, t € T, \\g(t)\\ < <p(t) a.e.}. 

Clearly W is nonempty, closed, convex and bounded subset of C(T,X). We also 

claim that it is equicontinuous. To this end let t) t' G T, with t < t', tf = t + h. 

Mi') - 0(011 ̂  l,P(0 - P(0ll + J ^ * («', S)g(s) ds - / ' *(*, S)g(S) ds\\ 

^ \\p(t') ~ P(t)\\ + J h 2M<p(s) ds + \\J (K(f, s) - K(t, s))g(s) ds\\ 

< HP(0 - P(0ll + f ™<p(s) ds + f $£zH <p(s) ds. 

Jt-h jO t-8 

Note that * —• -fa belongs in L2[0,6]. So applying the Cauchy-Schwartz inequal-

ity, we get that 

Ґ  1  1І/2 
J-  f í*^^.) d. < cfcIMb [jT i  dr]J 

^  M
2
v(h)  (v(h) — 0 as h — 0+,  M2 >  0). 

Therefore  we  have 

||2/(ť) -  3,(011 s: \\p(ť) -  p(t)\\ + j  2M<p(s) ds + M
2
v(ť  -  0 
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for t ^ ft. For t < ft the estimation of \\y(tf) - y(*)|| is clear. Therefore W is indeed 

equicontinuous. 

Next let R: W -* Pfc(W) be defined by 

R(x) = {yeC(T)X):y(t)=p(t)+ f K(t,s)f(s)ds, teT, f G 5 ^ r ( . ) } } . 
«/ o 

Let 5 C VV be nonempty, closed. We have: 

(3(R(B)(t)) </?[ j f KtMM^d^tiGS^^, x G ^ ] . 

Note that for every z G X, rf(z,F(s,.B(«))) = inf d(z,F(s)v)), where £(s) = 

v£B(s) 

{x(s): x e B}. Clearly then 5 —> B(s) is a measurable multifunction, while 

(s,v) —• rf(z, F(s, v)) is measurable. Therefore theorem 6.1 of [13] tells us that 

s —• d(z, F(s, B(S))) is measurable. => s —• 1/(5) = F(s, -9(s)) is measurable. Then 

we can find functions ftn: T —> X n ^ 1 measurable s.L / /(s) = C*n(s)}n>1. We 

have: 

(3(R(B)(t)) ^p[J K(t,s)hn(s)ds: n>\ . 

Invoking proposition 1.6 of Monch [18], we get 

/ ? [ / K(t,s)hn(s)ds: n^ l] <$ / Mp(hn(s): n > l) ds ^ f Mk(s)p(B(s)) ds. 

Define ^(B) = sup[e" r/o *(*)d*/?(#(*))], for r > 0, P C VV. Since W is an 

equicontinuous, closed, convex and bounded subset of C(T,X) and exploiting the 

properties of /?(•), we can easily check that ^ (0 is a sublinear measure of noncom-

pactness in the sense of Banas-Goebel [2]. Then we have 

(3(R(B)(t)) <C I Mk(s)erKk^dTe-ri°k^dTp(B(s))ds 
Jo 

r 

=> V-(«(S)) ^ —1>(B). 
r 

So if we choose r > M, we get that R() is a ^-contradiction. 

Next we will show that GrR is closed in W x W. So let [xn,2/n] G GrR, n ^ 1 

and assume that xn —• x, yn —* t/ in C(T, K). We have 

Уn(t)  = p(í) +  / K(*, *)/
n
(«) d«,  ť б ľ 

Jo 
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with fn G S L , , v Since F(t, x) is for almost all t G T, Pkc(X)-valued and F(t, •) 
* ( • i * t t ( " ) j 

is W.5.C. from X into Kty, theorem 7.4.2, p . 90 of Klein-Thompson [14], tells us 
that conv \J F(t,xn(t)) G Pwkc(X) /i-a.e. Also because of the measurability of 

n > l 

F(-,), t -> G(t) = conv IJ F(*,xn(*)) is measurable and \G(t)\ ^ <p(t) a.e. Then 
n > l 

proposition 3.1 of [23] tells us that SQ is ty-compact in Ll(X). Since {/n}n^i C 5G> 

by passing to a subsequence if necessary, we may assume that fn —* / in L1(X), 

then / 0 K(*,s)/n(s)ds -^ fQ K(t,s)f(s)ds in X and from theorem 3.1 of [19], we 

get f(t) G conviv — lim{/n(/)}n^i C conviv - limF(<,xn(*)) C w — limF(*,x(*)) 

a.e. (the last inclusion following from the upper-semicontinuity of F(t, •) from X into 

Xw, from the convexity of the values of F(t,x) and from the fact that xn —• x in 

C(T, X)). Thus / G S L x()). Therefore in the limit as n -* oo, we get 

V(t) = P(0 + J K(t, s)f(s) ds, teT, / G 4(.,*(.)) 

=>[x,y]GGri? 

=t> iZ(-) has a closed graph W x W. 

Applying theorem 4.1 of Tarafdar-Vyborny [28] to get x G W s.t. x G R(x). Then 

x G C(T, X) solves the integral inclusion (*) with the orientor field F(t,x). But 

working as in the beginning of the proof and using the definition of F(t, x), we get 

via Gronwall's inequality that \\x(t)\\ ^ M\ and so F(t,x(t)) = F(t,x(t)) => x(-) G 

C(T, X) is the desired solution of (*). n 

We can weaken the measurability hypothesis on the orientor field F(t,x) if we 

assume that X* is separable. So our hypothesis on the orientor field F(t,x) is now 

the following: 

H(F)i: F: T x X — Pkc(X) is a multifunction s.t 

(1) (t, x) —• F(t, x) is weakly measurable, 

(2) x —• F(t,x) is u.s.c. from X into Xw, 

(3) \F(t,x)\ < a(0 + 6(t)||x|| a.e., with a(-),6(-) G L^, 

(4) /?(F(*, 5) ) <£ k(t)P(B) a.e. for all B C X bounded and with fc(-) G F^-

T h e o r e m 3.2. If X* is separable, hypotheses H(F)\ and H(K) hold and p ( ) G 

C(T,X), then (*) admits a solution. 

P r o o f . The proof is the same of theorem 3.L It only changes, when we prove 

the measurability of s —» convH(s) = convF(s, B(s)). Note that F(-, •) is weakly 

measurable, since F(-, •) is. Then for every x* G X*,we have 

<T(X*,H(S))= sup <T(X*,F(S,V)) 
v€B(s) 
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and from theorem 6.1 of [13], we have that s —• a(x*, H(s)) is measurable. Then note 

that if {xn}n^\ is dense in X*, since <r(., //(s)) is continuous (H(s) being bounded), 

we have 

Gr(convtf) = f | {(«,») € T x ^ : ( i ; , » ) ^ o(xn,H(S))} € jSf(T) x 5 (X ) , 

with Sf(T) being the Lebesgue Afield of T (i.e., the Lebesgue completion of B(T)). 

Hence t —> convH(t) is Lebesgue measurable, and so we can find hn: T —• X n ^ 1 

Lebesgue measurable functions 5./. convH(t) = {^n(0)n>i ^or a ^ * € T. Then 

we proceed as in the proof of theorem 3.L Note that in a similar way, we get 

t —> G(t) = conv (J F(;£,xn(<)) is weakly measurable and since G(t) G Pwkc(X), 

£ G T, it is measurable and the arguments in the proof of theorem 3.1 apply. • 

We can relax our hypothesis on the kernel K(t,s) if we strengthen further our 

growth hypothesis on the orientor field F(t}x). So our hypothesis on F(tyx) is now 

the following: 

H(F)2: F: T x X -> P/C(K) is a multifunction s.L hypotheses H(F)(l) (or 

/ / (F ) i ( l ) with X* separable) and //(F)(2) hold and 

(3) \F(t,x)\ ^ a(t) + 6(t)||x|| a.e., with a(.),6() e L\% 

(4) there exists Lebesgue-null set N C T 5.L for all S C X bounded F((T\ 

N), I?) is bounded, 

(5) f3(F(t,B)) ^ k(t)/3(B) a.e. for all 5 C X bounded and with jfc(-) G L\. 

R e m a r k . Note that hypothesis H(F)2 is satisfied if in //(F)2(3) a ( ) , 6 ( ) G 
TOO 

L+. 

The weakened hypothesis on the kernel K(t,s) is now the following: 

H(K)\: K: A —•• &(X) is a strongly continuous kernel. 

Theorem 3.3. If hypotheses H(F)2 and K(K) hold, then (*) admits a solution. 

P r o o f . As in the beginning of the proof of theorem 3.1, we get that if x G 

C(T,X) solves (*), then for all t G T, ||x(*)|| ^ Mu Mx > 0. Let BMl(0) = {x G X: 

\\x\\ ^ Mi} and V = F(T\ N, 5 M l (0 ) ) . Because of hypothesis / /(F)2(4), V C X is 

bounded. Let 

w = {y € C ( T X ) : y(t) = p(<) + J K(t, s)g(s) ds, t € T, y(s) €  čoňvv  a.e.}. 

Clearly  W  C  C(T, X)  is  nonempty,  closed,  convex  and  bounded.  We  claim  that 

it  is  also  equicontinuous. To  this  end,  note  that  for  all (t,s)  G A, s £ N C T (see 
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hypothesis #(F)2(4)) and all ||t/|| ^ Mi, we have 

K(t,8)F(8,y)eBM\v\(0) = B 

where #MW | (0) = {w 6 X: ||iv|| ^ M|V | } , |V| = sup{||v||: v E V} < oo (since V is 

bounded). Hence if t/ 6 VV, we have for t',teTyt
f>t and # E S'̂ onvv 

I M O - 2/(011 ^ I|P(0 - P(0ll + I / ' K(t', s)g(s) ds - f K(t, s)g(s) di 
11 Jo Jo 

Observe that by the "mean value theorem" for Bochner integrals (see Diestel-Uhl 

[5], corollary 8, p. 48), we have 

/ K(t\ s)g(s) ds e t'B and / K(t, s)g(s) ds £ tB. 
Jo Jo 

Therefore we get 

/ K(t\ s)g(s) ds- I K(t, s)g(s) ds e t'B -tB = (t' - t)B. 
Jo Jo 

Hence we finally have that 

\\y(t')-y(t)\\^\\p(t')-P(t)\\ + (t'-t)M\V\ 

which establishes the equicontinuity. 

The rest of the proof is the same as in theorem 3.1 (see also theorem 3.2 for the 

case where # ( F ) i ( l ) holds, with X* separable). • 

We can also have an existence result for the case where the orientor field F(t,x) 

is not necessarily con vex-valued. We will need the following hypothesis on F(t,x). 

# ( F ) 3 : F: T x X -> Pj(X) is a multifunction s.t. 

(1) (t, x) —• F(t, x) is measurable, 

(2) x - + F(t,x) is l.s.c, 

(3) |F(*,z) | <C a(t) + b(t)\\x\\ a.e., with < ) , 6(-) € L%, 

(4) f3(F(t,B)) <$ k(t)p(B) a.e. for all B C X nonempty bounded and with 

k(-)£L\. 

As in the "convex" case an alternative set of hypotheses on F(t, x) is the following: 

# ( F ) 3 : F: T x X — Pf(X) is a multifunction s.t. # ( F ) 3 holds and in addition 

(5)' there exist N C T Lebesgue-null s.t. for all B C X bounded F(T\ N, B) 

is bounded. 
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As before this hypothesis on the orientor field will correspond to a weaker hypoth-

esis on the kernel K(t,s). 

T h e o r e m 3.4. If hypotheses H(F)3 had H(K) (or H(F)'3 and H(K)X) hold, and 

p G C(T, X), then (*) admits a solution. 

P r o o f . Let F(t, x) and W C C(T,X) be as in the proof of theorem 3.1. Note 

that F(,) is measurable, F(t,) is is.c, \F(t,x)\ -$ <p(t) a.e. with <p() G L\ and 

p(F(t,B)) ^ k(t)/3(B) a.e. for all B C X bounded. Define L: W -> Pf(L
l(X)) by 

L(x) = Sp . From theorem 4.1 of [19], we have that L(-) is l.s.c. and clearly has 

decomposable values (i.e., if A G 5£(T) = Lebesgue cr-field of T and f\, / 2 G S\,( ( ., 

then / = XA/I +XAcf2 G S\,( ..). So we can apply theorem 3 of Bressan-Colombo 

[4] and get u: W —• Ll(X) continuous s.t. u(x) G L(x) for all x £ W. Then let v: 

KV —• W be defined by 

u(x)(0 = p(0+ / A'(<,0w(x)(0d5
5 ^ T -

Jo 

Clearly, because tz(-) is continuous, so is v(). Also as we did with the multifunction 

R(>) in the proof of theorem 3.1, we establish that v is a V'-contradiction. Applying 

the Sadovski-Darbo fixed point theorem, we get x G W s.t. v(x) = x. We can easily 

check that | |x(0| | ^ Mi => F(t,x(t)) = F(t,x(t)) => x ( ) solves (*). D 

4. T H E SOLUTION SET 

In the previous section, we obtained conditions on the data that guaranteed that 

the solution set of (*) is nonempty. In this section we examine the properties of this 

solution set. 

We start with a continuous dependence result that examines the changes in the 

solution set as we vary the function p(t) and the orientor field F(t,x). 

So let A be a compact metric space and consider the following of integral inclusions, 

parametrized by elements in A. 

(*)A *(0 G p(t, X) + / K(t, s)F(s, x(s), X) ds. 
Jo 

Denote the solution set of (*)A by 5(A). Our goal is to investigate the continuity 

properties of the multifunction A —• 5(A). 

For this we will need the following hypotheses: 

H(F)4: F: T x X x A -> Pkc(X) is a multifunction s.t. 
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(1) t —+ F(ty x, A) is measurable, 

(2) /i(F(*,x,A),F(*,x',A)) ^ ^(OHx-x'Ha.e.forallA G A and with r/() G L\, 

(3) A —> F(£, x, A) is /i-continuous, 

(4) |F(*,x,A)| <^ a(t) + b(t)\\x\\ a.e. for all A € A and with a ( ) .6 ( ) G L\, 

(5) 0(F(t, B, A)) <: k(t)(3(B) a.e. for all A G A and with *(•) G L\. 

H(p): A —• p(., A) is continuous from A into C(T, X). 

Theorem 4.1. If X is a separable, reflexive, strictly convex Banach space and 

hypotheses H(F)4, H(K) and H(p) hold, then S: A -* Pk(C(T,X)) is continuous 

and h-continuous. 

R e m a r k . From Asplund's renorming theorem, we know that every reflexive 

Banach space can be equivalently renormed so that both X and X* are strictly 

convex. 

P r o o f . First we will show that for every A G A, 5(A) G Pk(C(T,X)). The 

nonemptiness of 5(A) follows from theorem 3.L Also let {xn}n^i C 5(A). Then by 

definition we have 

*n(t) ep(ttA) + / K(t,s)fn(s)<u, teT 

Jo 

with fn G 5 L x (.\ xy Applying proposition 1.6 of Monch [18], we get 

f?({*n(0W) ^ I M(3({fn(s)}n>l)ds 
JO 

$ / Mk(s)(3({xn(s)}n>l)ds 
JO 

-=> (3({xn(t)}n^i) = 0 (Gronwall's inequality), 

=> ixn(t)}n>i is compact for every t G T. 

Also from the proof of theorem 3.1 we know that it is equicontinuous. Hence the 

Arzela-Ascoli theorem tells us that {-Cn()}n^i is relatively compact in 5(A) => 5(A) 

is relatively compact in C(T, X). So we may assume that xn —> x in C(T, X). Next 

note that ||/n(OII ^ a ( 0 + &(0^i = ¥>(*) a e - ar-d because X is reflexive, from 

Dunford's theorem (see Diestel-Uhl [5], theorem 1, p. 101), we have that {/n}n^i is 

relatively weakly compact in Ll(X). So by passing to a subsequence if necessary, we 

may assume that / n —> / in Ll(X). Then from hypothesis H(F)4 and theorem 3.1 

of [19] we get / G 5 L x,^ Xy Hence in the limit as n —• oo we have that 

x(t)  Є p(t,A)  +  / K(t,s)f(s)ds, teT 
jo 

704 



with  /  G SL
  r ( )  A )

. Thus  x()  G 5(A)  => 5(A)  is  closed,  hence  compact  in  C(T,X). 

Next  let  A
n
  —•  A in  A  and  take x  G limS(A

n
). Then  by  definition  and  by  denoting 

for  economy  in  the  notation,  subsequences  with  the  same  index  as  sequences,  we 

know  (see section  2),  that  we  can find  x
n
  G 5(A

n
)  s.t.  x

n
  -^ x  in  C(T

y
X). Then  by 

definition 

x
n
(t)=p(t,\

n
)+  j  K(t,s)f

n
(s)ds 

Jo 

for  all  t  G T  and  with  f
n
  G S

X

F(  ) X n (
.

}  Xn)
. 

Note  that  because of  hypothesis  H(F)+  and  since  x
n
  —•  s,  we  have  that 

Џ  F(t,x
n
(t),X

n
)  ЄP

k
(X)  a.e. 

n>ï 

(see Klein-Thompson [14], theorem 7.4.2, p. 90) 

=> H(t) = conv U F(t, xn(t), An) 6 Pke(X) 

n>\ 

(by Mazur's theorem; see Diestel-Uhl [5], theorem 12, p. 51). Also because of hypoth-

esis H(F)4(1), t —> F(^,xn(<),An) n ^ 1 is measurable => t —> (J F(*, xn(*), An) 
n"£l 

is measurable => * —• H(t) is measurable (see Himmelberg [10], theorem 9.1). 

Furthermore \H(t)\ <J a(t) + b(t)M = <px(t) a.e. ^i(-) G L\, with M > 0 be-

ing such that Halloo ^ M for all n ^ 1. Then proposition 3.1 of [23] tells us 

that Sl
H G Pwkc(Ll(X)). Observe that {/n}n^i C Sjj. So by passing to a sub-

sequence if necessary, we may assume that fn ^ f in Ll(X). Then for every 

v G L°°(X*) = Ll(X)*, we have 

(vjn)= I (v(t)Jn(t))dt^a(viS^tgnl.)tXn))= I <r(v(t),F(t,xn(t)y\n))dt. 

Jo Jo 

But note that because of hypothesis H(F)+y 

<r(v(t), F(t, xn(t), An)) - <r(v(t), F(t, x(t), A)). 

So in the limit as n —• oo, we get 

(v,f) = J (v(t),f(t)) dt^J <r(v(t),F(t,x(t),\))dt = <-(t,,S».( > t ( ) p A ) ) . 
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Since v e L°°(X*) was arbitrary, we deduce / 6 SL x(.\ X)- Also note that 

f0 K(t,s)fn(s)ds --* f0 #(<,s)/(s) ds in X. Hence in the limit as n —• oo, we get 

(T) x(t) = p(t) + J K(t, s)f(s) ds, teT, f € 5>(. i t( ))A) 

=> x € 5(A) 

=»hm5(An)Cs(A). 

Next let x € s(A). Then by definition, we have 

*(*) = P(t,A) + / #(.,-)/(«)ds, teT, fesLM.)iX). 
JO 

Set mn(t) = proj [/(*); F(<, x(t), Xn)] and un(*, z) = proj[mn(*); F(t, z, An)]. Since 

X is strictly convex, reflexive and F(, •, •) is convex valued, m n ( ) and wn(-, •) are 

both well-defined, single valued functions. Furthermore from theorem 4.2 of [11], we 

know that m n ( ) and un(.,z) are measurable functions, while from theorem 3.33, p. 

322 of Attouch [1], we have that txn(tf, •) is continuous. Then consider the following 

integral equation: 

xn(t) = p(*,An)+ / K(tis)un(s1xn(s))ds. 
Jo 

From theorem 3.1 we know that this has a solution xn(-) 6 C(T,X). Also we 

have: 

IM.)-*(.)II 

^ | | j #(M)M«, *„(«)) -/(*)] <-«| 

< / A/[ | | t . n(s ,x n(s))-m„(s) | |+ | |m n(s)- / (s) | | ]ds 
Jo 

^ / M[h(F(s,xn(s),\n),F(s,x(s),\n))+h(F(s,x(s),\n),F(s,x(s),\))]ds 
Jo 

^ f Mn(s) | |xn(s)-x(s) | |ds+ / Mh(F(s,x(s),An))F(s,x(s),A)ds. 
Jo Jo 

But by hypothesis H(F)4(3), h(F(s,x(s),\n),F(s,x(s),\)) -* 0 as n -+ oo. So 

given e > 0 for n >. 1 large enough, we will have: 

||x„(.) - x(<)|| ^e + M f n(s)||xn(s) - x(s)|| ds. 
Jo 
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Applying Gronwall's inequality, we get 

||*n--c||oo ^eexp(M||i j | | i ) 

for n ^ 1 large enough. So xn —• x in C(T,X). Note that xn G 5(An), n ^ 1. Thus 

we have that 

(2) 5(A)Cl im5(A n ) . 

From (1) and (2) above, we get that 

5(An) * 5(A) as n — oo. 

We claim that V = (J 5(An) is compact in K. Indeed let {xm}m^i C V. By 
n*£l 

definition, we have 

xm(t)=p(t)\n)+ K(t,s)fm(s)ds, fm e Sl
F()Xfn{.)fXrn)) m ^ l . 

Jo 

Set B(t) = {xm(t)}m^\. As before, we get 

0(B(t)) <$ J Mk(s)(3(B(s)) ds 
Jo 

=> p(B(t)) =0, teT. 

-=> B(t) is compact for all t G T. 

Furthermore since {xm()}m^\ is equicontinuous, from the Arzela-Ascoli theorem, 

we have that {x m } m ^i is relatively compact in C(T, X) =-> V is compact in C(Ty X). 

Then from (3) and since 5(An),5(A) C V, from Klein-Thompson [14] theorems 

7.1.10 and 7.1.16, we deduce that 5 ( ) is continuous in the Vietoris topology. Since 

5 ( ) is Pk(C(T,X))-valued, we then conclude that 5 ( ) is also /i-continuous (see 

section 2). • 

R e m a r k . The compactness of the values of 5 ( ) is true with X being only a 

separable Banach space. 

Next we ask the question of whether the solution set of (*) is connected (Kneser 

type theorem). We have a partial answer to this problem. Namely for a particular 

type of orientor fields, which appear in control problems, we have that property. So 

we will assume that F(t,x) has the following special form: F(t}x) = f(t,x)U(t), 
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t G T. We will need the following hypotheses. Assume that Y is another separable 

Banach space. In the context of control systems, this will be the control space. 

H(f): / : T x X — Sf(Y, X) is a map s.t. 

(1) t —• f(t, x)u is measurable for all u G Y, 

(2) \\f(t,x)u-f(t,y)u\\ ^ ri(t)\\x-y\\ for all t G T\N, X(N) = 0 and u G U(t), 

(3) ||/(t\.-)|U. ^ a(0||*|| a.e. with a ( ) G I^., 

(4) /3(f(t,B)U(t)) ^ k(t)p(B) a.e., for all B C X bounded and with *(•) G 

H(U): U —• PW;ibc(^/) is measurable multifunction s.L |E/(0I = sup{||ti||: u G 

U(t)} ^ N a.e. 

Theorem 4.2. If hypotheses H(f), H(U), H(K) hold and p G C(T,X) then 

the solution set S of(*) with F(t, x) = f(t, x)U(t), is nonempty, compact and path 

connected in C(T, X). 

P r o o f . The nonemptiness and compactness of S in C(T, X) follows from the-

orems 3.1 and 4.1 (see also the remark following that theorem). We only need to 

establish path connectedness. Let W C C(T,X) and R: W —• Pjc(W), be as in the 

proof of theorem 3.1. Let y G R(x). By definition we have 

y ( 0 = p ( 0 + / K(t,s)g(s)ds 
Jo 

for all t G T and g G Si, x(.))u(Y ^ simple application of Aumann's selection 

theorem (see Wagner [30], theorem 5.10), gives us u G S^ s.t. g(t) = f(t,x(t))u(t) 

a.e. Then let vx>y; C(T,X) -> C(T,X) be defined by 

vxy(z)(t) = p(t) + J K(t,s)f(s,z(s))u(s)ds. 
Jo 

We have: 

\\vxy(z')(t) - vty(z)(t)\\ ^ f M\\f(s, z'(s))u(s) - f(s, z(s))u(s)\\ ds 
Jo 

< [tMV(s)\\z'(s)-z(s)\\ds. 
Jo 

Introduce on C(T,X) the following equivalent norm (the Bielecki norm): 

||x||0 = sup [e~r Si k^d8x(t)], r > 0. 
t € T l J 
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Then we have 

\\vxy(z')(t) - vxy(z)(t)\\ ^ f Mk(syttWe-'K -(•)<"||2'(S) - 2 ( s ) | |d* 

JO 

=* \\vxv(z')(t) - vxy(z)(t)\\ < ||z' - *||0-£e-To *(«)«' 

M 

=> ll»-t»(*') - ^y(2)llo < —Ik' - *||o-
r 

So if we choose r > M, we have that vxy(-) is ||.||o-contractive. Also for all z G W, 

vxy(z) G IZ(-r) and vxy(x) = y. Thus, we can apply theorem 1.1 of Bogatyrev [3] and 

get that 5 = {x G C(T, X): x G I2(-c)} is path-connected by the theorem. • 

R e m a r k . Since every path-connected set is connected (see Dugundji [6], theo-

rem 5.3, p . 115), we see that the conclusion of our theorem is stronger than the usual 

Kneser-type theorems about differential and integral equations and inclusions. 

5. AN EXAMPLE 

In this section we present an example of a partial differential inclusion for which 

we can establish the existence of solutions using the results of this paper. 

So let T = [0,6] and let Z C R^ be a bounded domain with smooth boundary 

dZ = T. Let z = ( z i , . . . , ZN) and D{ = JJ-. By a multi-index a = ( a i , . . . , a # ) , we 

understand a tuple of nonnegative integers a i , . . . a^. The length of the multi-index 
N 

is defined by |a| = £ |a*|. Also we set D
a
u = D

ai
 . ..D^u. For a = 0, we set 

D°u = u. We consider the following partial differential inclusion: 

^ T - + £ (-l)
M

D
a
(aa0(t,z)D^x(t,z))eF(t,z,x(t,z))onTxZ 

\<*\,\0Krn 

Dll
x(t,z) = 0 on T x T , \y\ ^ m - 1 

(**) x(0, z) = x0(z) on Z. 

We will make the following hypotheses concerning the data on (**). 

H(a): aaP € L°°(TxZ), \aa0(t',z)-aaP(t,z)\ ^ 0(z)\t'-t\ a.e. with <?(•) £ L°° and 

£ aa/)(M)£a^>.c|KH2 

|«.|,|/?Km 

for all £ G RN
" (Nm = ^ $ £ ) and with c > 0. 
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H(F)5: F: T x Z x R — P/C(R) is defined by F(t, z, x) = conv{/n(*, z, x)}n^i, where 

for each n ^ 1 (*,z) —• /n(<,z,x) is measurable, sup \fn(t, z, x) | - / m (<, z ,x) | ^ 
n,m>l 

r/(*, z)|x' - x| a.e. with IJ(., •) eL°°(Tx Z) and \fn(t, z, x)| ^ a(t, z) + 6(*, z)|x| 

a.e. with a(-, •) G L2(T x Z) and &(•, •) G I°°(T x Z). 

Let X = Hr7(Z), H = L2(Z) and K* = Hm(Z)m = H~m(Z). Then from the 

Sobolev embedding theorem, we know that X <—• H <—• K*, with all embeddings 

being dense, continuous and compact. So (K, H, X*) is an evolution triple. Consider 

the time dependent Dirichlet form u:Tx H^(Z) x H^(Z) —> R defined by 

ti(t, x, y) = ^ / aft/,(*, z)D^x(z)Day(z) dz. 

Icrl.l/JKm-77 

Using the Cauchy-Schwartz inequality, we can easily get that 

| t i(*,x,y) | ^ c | |x | |^m ( z ) | |y | | f fm ( z ) 

for some c > 0. Also from the "strong ellipticity" condition (see hypothesis H(a)) 

and the Poincare inequality (see Zeidler [31]), we get 

u(t)x,x)^c1\\x\\
2

Hn,{z) 

with c\ > 0. Furthermore from hypothsis H(a) and the Cauchy-Schwartz inequality, 

we get 

|ti(*', x, y) - u(t, x, y)\ ^ Halloo |i' - <|| |x|| i /m (z ) | |y|| / f r (z). 

Let A: T — Jif (K, X*) be defined by 

(A(t)x,y) = ti(*,x,y) 

where (•, •) denotes the duality brackets for the pair (X,X*). 

Next let F: T x H -+ Pwkc(H) be defined by 

F(*,z) = {yG L2(Z): y(z) G conv{/n(<,z,x(z))}n^1 a.e.}. 

Note that for every v G L
2
(Z), we have 

<r(v, F(*, x)) = sup (v, y)L2(Z) = sup / v(z)fn (t, z, x(z)) dz 
yGP(M) n^lJZ 

=->*—• F(<, x) is measurable. 

710 



Next we claim that x —• F(t,x) is u.s.c. from H into Hw, where Hw denotes the 

Hilbert space H endowed with the weak topology. For this we will need the following 

lemma: 

Lemma 5.1. If X is a separable Banach space, F: X —• Pwkc(X) is a multifunc­

tion s.t. for every K £ Pwk(X), F\K is u.s.c. from X into Xw, then F(-) is u.s.c. 

from X into Xw. 

P r o o f . We know (see section 2), that F() will be u.s.c. from X into XWi if for 

every U C X weakly open V = {x £ X: F(x) C U} is open in X. This is equivalent 

to saying that for every D C X weakly closed, the set C = {x £ X: F(x) C\ D -̂  0} 

must be closed. So let K = {xn}n^i, xn —• x. By hypothesis Fl^ is u.s.c from X 

into Xw. Hence, since F(-) is Pwkc(X)-valued, we get that (J F(xn) £ Pwk(X). 
n ^ l 

So by passing to a subsequence if necessary, we may assume that yn —• y in X. Then 

since F\K is u.s.c. from X into XW) y £ F(x) and y £ I), since D is weakly closed. 

Therefore C is closed, establishing the desired upper semicontinuity of F(). • 

Continuing with the analysis of (**), let [xm,t/m] £ GrF(t, •) m ^ 1 and assume 

that xm —• x in L2(Z), while ym —• y in L2(Z). By a passing to a subsequence if 

necessary, we may assume that xm(z) —• x(z) a.e. Invoking theorem 3.1 of [19], we 

get that 

y(z) £conv lim {ym(z)}m>i C conv lim [ c o n T { / n ( * , z , x m ( ; ? ) ) } ] a.e. 
m-->oo ' m—>ooL "»m#i* 

But from proposition 3.1 and 4.1 of [19], we get 

J^[cmv{fn(t)z,xm(z))}n>1] Cc6nv{fn(tiz}x(z))}n^l a.e. 

So we get y(z) £ conv{/n(f, z, x(z)) } n > 1 a.e. =-> [x,y] £ GrF(t.,). Therefore for 

every B C L2(Z) bounded (hence relatively weakly compact), we have that F(t, ) \ ^ 

has a graph that is closed i n / Y x Hw, so theorem 7.1.16, p. 78 of Klein-Thompson 

[14], tells us that F(J, )|---- is u.s.c. from H into Hw. Finally using lemma 5.1 above, 

we conclude that F(t, •) is u.s.c. from H into Hw, as claimed. 

Now let fn: T x H —• H be the Nemitski (superposition) operator corresponding 

to function fn(t,zyx)1 n ^ 1; i.e., 

/n(<> *)(*) = fn (*, -?, x(^)) a.e. 

for every x £ L2(Z) and every n ^ 1. 
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Because of hypothesis H(f), we have that 

sup ||/„(*, *') - fm(t, x ) | | L . ( z ) ^ A/'Hi/Hooll*' - x\\L>(z) 

n.m^ l 

for all x1, x E L2(Z) and some M' > 0. 

Recalling the definitions of the multifunction F(t,x) and of the measure of non-

compactness /?(•), we get immediately for every B C L2(Z) bounded 

p(F(t, B)) ^ M/?(J9) a.e. with M > 0. 

Now rewrite (**) in the following equivalent evolution inclusion form: 

(**)' { i(t)+A(t)x(t)£F(t,x(t)) a.e. 

x(0) = x0(-)  Є  Һ
2
(Z). 

From proposition 5.5.1, p. 153 of Tanabe [27], we know that a solution x() € 

W(T) = { i £ L2(X): x 6 L2(X*)} C C(T, H) (see also Zeidler [31]), has the form 

e(t) = K(t,0)xo+ I K(t,s)f(s)ds 
jo 

with t G T, f € S^( M V Here K(t,s) is the evolution operator (fundamental 

solution), generated by {A(t)}t^T- From Tanabe [27], p. 149, relation 5.141, we have 

that K(',-) satisfies hypotesis H(K). 

So evolution inclusion (**)' (equivalently problem (**)), is equivalent to the fol-

lowing Volterra integral inclusion in H =• L2(Z) 

(**)" x(t) e p(t) + / K(t, s)F(s, x(s)) ds, teT 
Jo 

with p(t) = K(t, 0)z0, P() e C(T, H). 

We have already checked that the data of (**)" satisfy the hypotheses of theorem 

3.1. So using that result, together with theorem 23.A, p. 424 of Zeidler [31], we get: 

Theorem 5.2. If hypoheses H(a), H(f) hold and x0 G L2(Z)} then (**) has a 

solution x(-, ) G L2(T, H?(Z)) D C(T, L2(Z)), with 

d-±£L
2(T,H~™(Z)). 

Furthermore, the solution set of (**) is compact in C(T, L2(Z)). 
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R e m a r k . System (**) incorporates distributed parameter control systems. In-

deed, let Y = L2(Z) be the control space, U(t,z) = {u G R: \u\ -̂  r(t,z)}, with 

r ( - , ) G L°°(T x Z) is the control constraint set and f(t,z,x)u the control vector 

field. Assume that (J, z) —• /(<, z, x) measurable, sup \f(tf z, x'Jti — /(f, z, x)t;| ^ 
u,v€Ct(t,-r) 

?7(*, z) |x ' - x | a.e. with r)(-, •) E ^ T x Z), and \f(t, z, x)\ ^ a(t, z) + &(*, z) |x | a.e. 

w i t h a ( - , ) G L2(TxZ), &(•,•) G L°°(TxZ). Clearly [ / ( - , ) is measurable. So we can 

find un: Tx Z —• R, n ^ l measurable functions s.L 6r(t,z) = cl{tin(J, z ) } n ^ L Then 

f(t,z,x)U(t,z) = {hn(t,zyx)}n^1, with hn(t,z,x) = f(t,zyx)un(t,z). Then those 

functions /in(-, • , . , ) satisfy hypothesis H(f). Hence by theorem 5.2, the distributed 

parameter control system has a set of trajectories that is compact in C(T, L2(Z)). 

So if we are given to minimize a cost functinal <p(x(t, •)) where ip: C(T,L2(Z)) —• 

R = R U {4-co} is l.s.c, then the optimal control problem admits a solution. 
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