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ABSTRACT
The main purpose of event-based control, if compared to periodic
control, is to minimize data transfer or processing power in net-
worked control systems. Current methods have an (implicit) de-
pendency between triggering the events and the control algorithm.
To decouple these two, we introduce an event-based state estimator
in between the sensor and the controller. The event-based estimator
is used to obtain a state estimate with a bounded covariance matrix
in the estimation error at every synchronous time instant, under the
assumption that the set in the measurement-space that is used for
event generation is bounded. The estimation error is then trans-
lated into explicit polytopic bounds that are fed into a robust MPC
algorithm. We prove that the resulting MPC closed-loop system is
input-to-state stable (ISS) to the estimation error. Moreover, when-
ever the network requirements are satisfied, the controller could
explicitly request for an additional measurement in case there is a
desire for a better disturbance rejection.

Categories and Subject Descriptors
G.1.0 [Numerical analysis]: General—Stability (and instability)

General Terms
Theory

Keywords
Event-based estimation, Event-based control, Predictive control,
Robust control, Networked control systems

1. INTRODUCTION
Event-based control has emerged recently as a viable alternative

to classical, periodic control, with many relevant applications in
networked control systems (NCS). A recent overview of the main
pros and cons of event-based control can be found in [1]. The main
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motivations for event-based control are the limitations imposed by
NCS, such as limited bandwidth and computational power, which
led to the objective of reducing data transfer or energy consump-
tion. Basically, it was proposed that measurements should be sent
to the controller only when an event occurs, of which “Send-on-
Delta” (or Lebesque sampling) [2, 3] and “Integral sampling” [4]
are some examples. Subsequent studies on control that are based
on the event sampling method “Send-on-Delta” were presented in
[5–10]. The conclusion that can be drawn from these works is that
when measurements are sent only at event instants, i.e. dictated by
NCS requirements such as minimizing data transfer, it is difficult
to guarantee (practical) stability of the closed-loop system.
The natural solution that emerged for solving this problem was to

include the controller in the event-triggering decision process. Var-
ious alternatives are presented in [5, 9, 11–14] and the references
therein. The generic procedure within this framework is to define a
specific criterion for triggering events as a function of the state vec-
tor. This function can either be related to guaranteeing closed-loop
robust stability, see, e.g., [13], or to improving disturbance rejec-
tion, see, e.g., [14]. One of the concerns regarding this framework
is that data transfer or energy consumption might be compromised.
Another relevant aspect is the fact that controllers are designed for
a specific type of event sampling method or, the sampling method
is designed specifically for the controller. This implies that both
functionalities, i.e. event sampling and control, of the process de-
pend heavily on each other and changing one requires a re-design
of the other to guarantee the same properties for the closed-loop
system.

Figure 1: Schematic representation of the feedback loop.

In this paper we investigate the possibility of designing an event-
based control system where closed-loop robust stability is decou-
pled from event generation. To that extent, an event-based state
estimator (EBSE) is introduced in the feedback loop, as depicted
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in Figure 1. The purpose of the EBSE is to deliver a state estima-
tion to the controller synchronously in time, while it receives mea-
surements only at events. Such an EBSE with a synchronous up-
date was recently developed in [15] for autonomous systems. The
first contribution of this work is to extend the estimation algorithm
of [15] to systems with control inputs. It is shown that under certain
assumptions, the EBSE has a bounded covariance matrix. This is
possible because the state is updated both when an event occurs, at
which a measurement sample is received, as well as at sampling in-
stants synchronous in time, without receiving a measurement sam-
ple. In the latter case the update is based on the knowledge that the
monitored variable, i.e., the measurement, is within a bounded set
that is used to define the event.
The controller that uses the state estimate is based on a new ro-

bust MPC algorithm, which forms the second contribution of this
paper. This MPC scheme achieves input-to-state stability with re-
spect to the estimation error. Moreover, the MPC algorithm of-
fers the possibility to optimize on-line the closed-loop trajectory-
dependent ISS gain, which enhances disturbance rejection. The
controller is chosen to run synchronously in time. Therefore, this
setup provides most benefits in situations where the sensors are
connected to the controller via a (wireless) network link but the
controller itself is wired to the actuator/plant. Such a setup is of-
ten seen in applications where there are more limitations regarding
sensing as to actuation. To integrate the EBSE and MPC in a feed-
back loop, we develop an efficient method for translating, at each
synchronous time instant, the bounds on the covariance matrix of
the EBSE into a polytope where the estimation error lies. The latter
bound is then fed to the MPC algorithm that uses it to optimize the
closed-loop ISS gain. Obviously, if the EBSE receives more real
measurements, the resulting bounds on the estimation error will be
smaller, which will ultimately improve the trade-off between event
generation and closed-loop performance.
The remainder of the paper is structured as follows. Prelimi-

naries are presented in Section 2, while the EBSE is described in
Section 3. Section 4 presents the MPC algorithm. Section 5 dis-
cusses several issues related to integration of the EBSE and the ro-
bust MPC controller in a feedback loop. An example illustrates the
effectiveness of the proposed event-based control scheme in Sec-
tion 6. Conclusions are summarized in Section 7.

2. PRELIMINARIES
Let R, R+, Z and Z+ denote the field of real numbers, the set of

non-negative reals, the set of integers and the set of non-negative
integers, respectively. For any C ⊂ R, let ZC := {c ∈ Z|c ∈ C }.
For a set S ⊆ R

n, we denote by ∂S the boundary, by int(S ) the
interior and by cl(S ) the closure ofS . For two arbitrary setsS ⊆
R
n andP ⊆R

n, letS ⊕P := {x+y | x∈S ,y∈P} denote their
Minkowski sum. A polyhedron (or a polyhedral set) in R

n is a set
obtained as the intersection of a finite number of open and/or closed
half-spaces. Given (n+1) affinely independent points (θ0, . . . ,θn)
of R

n, i.e. (1 θ�
0 )�, . . . ,(1 θ�

n )� are linearly independent in R
n+1,

we define the corresponding simplex S as

S := Co(θ0, . . . ,θn) :=
{
x ∈ R

n
∣∣∣∣x=

n
∑
l=0

μlθl ,
n
∑
l=0

μl = 1

μl ∈ R+ for l ∈ Z[0,n]

}
,

where Co(·) denotes the convex hull.
The notation 0 is used to denote either the null-vector or the null-

matrix. Its size will be clear from the context. The transpose, in-
verse, determinant and trace of a matrix A ∈ R

n×n are denoted as

A�, A−1, |A| and tr(A), respectively. The ith, minimum and maxi-
mum eigenvalue of a square matrix A are denoted as λi(A), λmin(A)
and λmax(A), respectively. The Hölder p-norm of a vector x ∈ R

n

is defined as ‖x‖p := (|[x]1|p+ . . . + |[x]n|p)
1
p for p ∈ Z[1,∞) and

‖x‖∞ := maxi=1,...,n |[x]i|, where [x]i, i ∈ Z[1,n], is the i-th element
of x. For brevity, let ‖ · ‖ denote an arbitrary p-norm. For a matrix
Z ∈R

m×n let ‖Z‖ := supx �=0 ‖Zx‖
‖x‖ denote its corresponding induced

matrix norm. It is well known that ‖Z‖∞ =max1≤i≤m∑nj=1 |Z{i j}|,
where Z{i j} is the ij-th entry of Z. Let z := {z(l)}l∈Z+

with z(l) ∈
R
o for all l ∈ Z+ denote an arbitrary sequence. Define ‖z‖ :=
sup{‖z(l)‖ | l ∈ Z+} and z[k] := {z(l)}l∈Z[0,k] .
The Gaussian function (shortly noted as Gaussian) is defined as

G : Rn×R
n×R

n×n → R+,

G(x,μ ,P) =
1√

(2π)n|P|e
(x−μ)T P−1(x−μ)

. (1)

By definition it follows that if x ∈ R
n is a random variable with

a probability density function (PDF) p(x) = G(x,μ ,P), then the
expectation and covariance of x are given by E[x] = μ and cov(x) =
P, respectively.
For a bounded Borel set [16] Y ⊂ R

n, the set PDF is defined as
ΛY :Rn→{0,ν}, with ν ∈R the Lebesque measure [17] of Y , i.e.,

ΛY (x) =

{
0 if x �∈ Y,

ν−1 if x ∈ Y. (2)

A function ϕ :R+ → R+ belongs to classK if it is continuous,
strictly increasing and ϕ(0) = 0. A function β : R+ ×R+ → R+

belongs to class K L if for each fixed k ∈ R+, β (·,k) ∈ K and
for each fixed s ∈ R+, β (s, ·) is decreasing and limk→∞ β (s,k) = 0.
Considered the following discrete time system,

x(tk+1) ∈ Φ(x(tk),w(tk)), tk = kτs, (3)

where x(tk) is the state and w(tk) ∈ R
n is the unknown disturbance

at time instant tk = kτs, k ∈ Z+ and for some τs ∈ R+. The map-
ping Φ : R

n ×R
n ↪→ R

n is an arbitrary compact and non-empty
set-valued function. For zero input in (3) we assume that Φ(0,0) =
{0}. Suppose w(tk) takes a value in a bounded set W ⊂ R

n for all
tk ∈ R+.

Definition 2.1 We call a set P ⊆ R
n robustly positively invariant

(RPI) for system (3) with respect toW if for all x ∈ P it holds that
Φ(x,w) ⊆ P for all w ∈ W.

Definition 2.2 Let X with 0 ∈ int(X) andW be subsets of R
n. We

call system (3) ISS in X for inputs in W if there exist a K L -
function β (·, ·) and aK -function γ(·) such that, for each x(t0) ∈ X

and all w = {w(tl)}l∈Z+
with w(tl) ∈ W for all l ∈ Z+, it holds

that all corresponding state trajectories of (3) satisfy the following
inequality: ‖x(tk)‖ ≤ β (‖x(t0)‖,k)+ γ(‖w[tk−1]‖), ∀k ∈ Z≥1.

We call γ(·) an ISS gain of system (3).

Theorem 2.3 LetW be a subset ofRn and letX be a RPI set for (3)
with respect toW, with 0 ∈ int(X). Furthermore, let α1(s) := asδ ,
α2(s) := bsδ , α3(s) := csδ for some a,b,c,δ ∈ R>0, σ ∈ K and
let V : Rn → R+ be a function such that:

α1(‖x‖) ≤V (x) ≤ α2(‖x‖), (4a)

V (x+)−V (x) ≤−α3(‖x‖)+σ(‖w‖) (4b)
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for all x ∈ X, w ∈ W and all x+ ∈ Φ(x,w). Then the system (3) is
ISS in X for inputs inW with

β (s,k) := α−1
1 (2ρkα2(s)), γ(s) := α−1

1

(
2σ(s)
1−ρ

)
,

ρ := 1− c
b
∈ [0,1). (5)

The proof of Theorem 2.3 can be found in [18]. We call a func-
tion V (·) that satisfies the hypothesis of Theorem 2.3 an ISS Lya-
punov function.

3. EVENT-BASED STATE-ESTIMATION
In this section we will present the extension of the EBSE, as re-

cently developed in [15], to systems with control inputs. Therefore,
let us assume that a dynamical system with state vector x∈R

n, con-
trol input u∈R

m, process noise q∈R
n, measurement vector y∈R

l

and measurement noise v ∈ R
l is given. This process is described

by a generic discrete-time state-space model, i.e.,

x(t) = Aτx(t− τ)+Bτu(t− τ)+q(t,τ), (6a)
y(t) =Cx(t)+Du(t)+ v(t). (6b)

with Aτ ∈ R
n×n and Bτ ∈ R

n×m, for all τ ∈ R+,C ∈ R
l×n and D ∈

R
l×m. It is assumed that u(s) remains constant for all t−τ ≤ s< t.
Basically, the above system description (6a) could be perceived as a
discretized version of a continuous-time plant ẋ(t) = Ax(t)+Bu(t).
In this case the matrices Aτ and Bτ would then be defined with the
time difference τ of two sequential sample instants, i.e.,

Aτ := eAτ and Bτ :=
∫ τ

0
eAηdηB.

However, we allow for the more general description (6). We as-
sume that the process- as well as the measurement-noise have Gaus-
sian PDFs with zero mean, for some Qτ ∈ R

n×n, τ ∈ R+ and Rv ∈
R
l×l , i.e.,

p(q(t,τ)) := G(q(t,τ),0,Qτ ) and p(v(t)) := G(v(t),0,Rv).

The sensor uses an event sampling method which is based on y. Its
sample instants are indexed by r, i.e. y(tr) denotes a measurement
taken at the event instant tr. As proposed in [15], Hr ⊂ R

l+1 is a
set, determined at the event instant tr−1, in the time-measurement-
space that induces the event instants. An example of this set, in case
the measurement-space is 2D, is graphically depicted in Figure 2.
To be precise, given that tr−1 was the latest event instant, the next
event instant tr is defined as:

tr := inf
{
t ∈ R+ | t > tr−1 and

(
y(t)
t

)
�∈ Hr

}
. (7)

To prevent that more than one sample action occurs at tr−1, it should
hold that (y�(tr−1), tr−1)� ∈ int(Hr).
To illustrate the event triggering, let us present two examples of

how to choose the set Hr. In the first example the events are trig-
gered by applying the sampling method “Send-on-Delta” [2, 3]. A
newmeasurement sample y(tr) is generated when |y(t)−y(tr−1)|>
Δ. Notice that this is equivalent with (7) in case

Hr := {(y�, t)�
∣∣ |y− y(tr−1)| ≤ Δ}.

The second example of a method for triggering the events is taken
from [14, 19]. Therein, a sampling method is described which is
similar to “Send-on-Delta”, although y(tr−1) is replaced with the
current predicted measurementCx̂(t). Notice that in this caseHr :=
{(y�, t)�

∣∣ |y−Cx̂(t)| ≤ Δ}.

As the sensor uses an event-sampling method on y(t), the EBSE
receives y(tr) to perform a state-update. However, typically the
event instants tr do not occur at the same time as the synchronous
instants at which the controller needs to calculate a new control-
input. Hence, the EBSE has to keep track of the state at both the
event instants as well as the synchronous instants. Let us define
Tr(t) and Tc(t) as the set of time instants that correspond to all
event instants and synchronous instants, respectively. Therefore, if
τs ∈ R+ denotes the controller’s sampling time, we have that

Tr := {tr | r ∈ Z+} and Tc := {kτs | k ∈ Z+},
where the event instants tr are generated by (7). Notice that it
could happen that an event instant coincides with a synchronous
instant. Therefore Tr ∩Tc might be non-empty. The EBSE calcu-
lates an estimate of the state-vector and an error-covariance matrix
at each sample instant t ∈ T, with T := Tr ∪Tc. At an event in-
stant, i.e. t ∈ Tr, the EBSE receives a new measurement y(tr) with
which a state-update can be performed. At the synchronous in-
stants t ∈ Tc\Tr, the EBSE does not receive a measurement. Stan-
dard estimators would perform a state-prediction using the process-
model. However, from (7) we observe that if no measurement y
was received at t > tr−1, still it is known that (y(t)�, t)� ∈ Hr.
The estimator can exploit this information to perform a state-update
not only at the event instants but also at the synchronous instants
t ∈ Tc\Tr. Next, we describe how this is implemented. Let us de-
fine Hr|t ⊂ R

l as a section of Hr at the time instant t ∈ (tr−1, tr),
which is graphically depicted in Figure 2, and formally defined as:

Hr|t :=
{
y ∈ R

l
∣∣∣(yt

)
∈ Hr

}
.

Therefore, the following two conditions hold for any t ∈ T:

y(t) ∈
{
{y(t)} if t ∈ Tr,

Hr|t if t ∈ Tc\Tr.
(8)

Figure 2: An example of Hr defining a set in the time-
measurement-space and Hr|t defining a section in the measure-
ment-space at a certain time-instant t ∈ (tr−1, tr).

The estimator must first determine a PDF of the measurement
y(t). Therefore if δ (·) denotes the Dirac-pulse and ΛY (·) denotes
the set PDF as defined in (2), then from equation (8) it follows that:

p(y(t)) =

{
δ (y(t)) if t ∈ Tr,

ΛHr|t (y(t)) if t ∈ Tc\Tr.
(9)

In [20] is was shown that any PDF can be approximated as a sum of
Gaussians. Therefore, let us assume that p(y(t)) of (9) is approx-
imated by ∑Ni=1

1
NG(y(t), ŷi(t),RH(t)), for some N ∈ Z+, RH(t) ∈

R
l×l and ŷi(t) ∈ R

l for all i ∈ Z[1,N]. Notice that in case t ∈ Tr it
follows that N = 1, ŷ1(t) = y(t) and RH(t) can be taken arbitrary
small to approximate the Dirac pulse. Let x̂(t) denote the estimated
state-vector of the EBSE and let P(t) denote the error-covariance
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matrix both at t ∈ T. Furthermore, let R(t) := Rv+RH(t). Then,
the set of equations of the EBSE, in standard Kalman filter form,
yields:

Step 1: prediction

x̂−(t) = Aτ x̂(t− τ)+Bτu(t− τ),

P−(t) = AτP(t− τ)A�τ +Qτ ,
(10a)

Step 2: measurement-update, ∀i ∈ Z[1,N]

K(t) = P−(t)C�(CP−(t)C� +R(t))−1C,

Pi(t) = (I−K(t)C)P−(t),

x̂i(t) = x̂−(t)+K(t)(ŷi(t)−Du(t)−Cx̂−(t)),

βi(t) = G(yi(t),Cx̂−(t)+Du(t),CP−(t)C� +R(t)),

(10b)

Step 3: state-approximation

x̂(t) =
N
∑
i=1

βi(t)
∑Ni=1 βi(t)

x̂i(t), (10c)

P(t) =
N
∑
i=1

βi(t)
∑Ni=1 βi(t)

(
Pi(t)+(x̂(t)− x̂i(t))(x̂(t)− x̂i(t))�

)
.

The main reason for the approximation of (10c) is to limit the
amount of processing demand of the EBSE. Next, we present a
brief account of the numerical complexity of the proposed EBSE
in comparison with the original Kalman filter [21], i.e.,

• Prediction: O((m+1)n)+O(2n2)+O(2n3);

• Update: O(l3)+O(l2(1+2n))+O(n2(2l+ 1))+O(2n3)+
O(nm+ l(n+1))+O(N(2l2+3l+nl+n));

• Approximation: O(n+(2+3n)N)+O((4N+1)n2).

For clarity, let us neglect terms that are of second order or less.
Then the computational complexity of the EBSE is

O(4n3+ l3+2l2n+2ln2+N(2l2+nl+4n2),

which is still proportional to the complexity of the original Kalman
filter, i.e., O(4n3+ l3+2l2n+2ln2).

Remark 3.1 The set of equations of the EBSE is based on a Sum-
of-Gaussians approach. The main reason for choosing the Sum-
of-Gaussians approach is that it enables an asymptotic bound on
P(t). This property is important as it enables a guarantee, in a
probabilistic sense, that the estimation error is bounded. �

Next, we recall the main result of [15, 22], where it was proven
that all the eigenvalues of P(t), i.e. λi(P(t)), are asymptotically
bounded. To that extent, let us define H̄ ⊂R

l as a bounded set such
that Hr|t ⊆ H̄ for all t ∈ T. This further implies that each set Hr|t
is bounded for all t ∈ T. With the set H̄ we can now determine a
covariance-matrix R ∈ R

l×l , such that R � R(t) for all t ∈ T. No-
tice that R= Rv+RH̄ , in which RH̄ can be derived from ΛH̄(y) by
approximating this PDF as a single Gaussian. Similarly, there exist
a ω ∈ R+, such that the Euclidean distance between any two ele-
ments of Hr|t is less than (ω +1)λ−1

min(R(t)), for all t ∈ Tc\Tr. The
next preliminary result [23] states the standard conditions for the
existence of a bounded asymptotic covariance matrix Σ∞ ∈ R

n×n
for a scaled synchronous Kalman filter. The update of the covari-
ance matrix for this type of Kalman filter, denoted with Σ[k]∈R

n×n
at the synchronous instant t = kτs, yields:

Σ[k] = ω
(
(AτsΣ([k−1]Aτs +Qτs)

−1+C�R−1C
)−1

, ∀k ∈ Z+.

Proposition 3.2 [23] Let Σ∞ be defined as the solution of Σ−1
∞ =(

ωAτsΣ∞A�τs +Qτs
)−1

+C�R−1C. If Σ∞ exists, (Aτs ,C) is an ob-
servable pair and λi(Ā)≤ 1, for all i∈Z[1,n], where Ā :=

√
ω

(
Aτs−

Aτs Σ̄C� (
CΣ̄C� +R

)−1C)
and Σ̄ := AτsΣ∞A�τs +Qτs , then it holds

that limk→∞ Σ[k] = Σ∞.

Now we can state the main result on the asymptotic bound of P(t).

Theorem 3.3 Let the scalars aτs and bτs be defined as follows:
aτs := supτ∈[0,τs] σmax(Aτ ) and bτs := supτ∈[0,τs] σmax(Bτ ). If the
hypothesis of Proposition 3.2 holds, then we have that

lim
t→∞

λmax (P(t)) ≤ a2τsλmax (P∞)+b2τsλmax(Qτs).

This result guarantees a bound on the covariance of the estimation
error at all time instants. The proof of the above theorem is ob-
tained mutatis mutandis from the proof given in [15, 22] for the
case of an autonomous process. Indeed, the difference in the EBSE
algorithm (10) corresponding to the system with a control input
versus the autonomous system is given by the term Bτu(t − τ) in
(10a). However, as this additional term is present in both x̂i(t) and
x̂(t), it cancels out in x̂(t)− x̂i(t) and therefore, it is not present in
the expression of P(t). As such, the proof given in [15, 22] applies
to a system with control input as well.
In Section 5 we will show how P(t) is used to determine, with

a certain probability, a bound on the estimation error at every syn-
chronous instant. Knowledge of this bound is used to design the
robust MPC algorithm, as it is explained in the next section.

4. ROBUST MPC ALGORITHM
In this section we start from the fact that a state estimate x̂(tk),

provided by the EBSE at each time instant tk = kτs, k∈Z+, is avail-
able for the controller at all synchronous instants. Moreover, we as-
sume that the corresponding estimation error w(tk) := x̂(tk)− x(tk)
satisfies w(tk) ∈ W(tk) at all tk, where W(tk) is a known polytope
(closed and bounded polyhedron). An efficient procedure for deter-
miningW(tk) from P(tk), k ∈ Z+, will be presented in Section 5.
As the controller samples synchronously in time, the process-

model of (6) can be rewritten from an asynchronous model into
a synchronous one. Hence, consider the following discrete-time
model of the system used for controller synthesis:

x(tk+1) := Ax(tk)+Bu(x̂(tk))
= Ax(tk)+Bu(x(tk)+w(tk)), k ∈ Z+,

(11)

where x(tk) ∈ X ⊆ R
n is the real state, x̂(tk) ∈ X ⊆ R

n is the es-
timated state, u(tk) ∈ U ⊆ R

m is the control action and w(tk) ∈
W(tk) ⊂ R

n is an unknown estimation error at the discrete-time
instant tk. The matrices A= Aτs and B= Bτs correspond to the dis-
cretized model of system (6). From the above equations it can be
seen that at any synchronous time instant tk there exists a w(tk) ∈
W(tk) such that x(tk) = x̂(tk)−w(tk) ∈ {x̂(tk)}⊕W(tk) and, any
w(tk) can be obtained as a convex combination of the vertices of
W(tk). We assume that 0 ∈ int(X) and 0 ∈ int(U) and indicate that
0 ∈ int(W(tk)) for all k ∈ Z+, as it will be shown in Section 5. For
simplicity and clarity of exposition, the index tk is omitted through-
out a part of this section, i.e. x̂, x, W, etc. will denote x̂(tk), x(tk),
W(tk) and so on.
Our goal is now to design a control algorithm that finds a control

action u(x̂) ∈ U such that for all w ∈ W

V (Ax+Bu(x̂))−V (x)+α3(‖x‖)−σ(‖w‖) ≤ 0. (12)
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Figure 3: An example of the setW.

Satisfaction of the above inequality for some σ ∈K would guaran-
tee ISS of the corresponding closed-loop system, see Theorem 2.3.
Moreover, to improve disturbance rejection, we will adopt the idea
of optimizing the closed-loop ISS gain by minimizing the gain of
the function σ , which was recently proposed in [24]. Therein, the
case of additive disturbances was considered. In what follows we
extend the results of [24] to estimation errors, which act as a dis-
turbance on the measurement that is fed to the controller.
The first relevant observation is that an optimization problem

based directly on the constraint (12) is not finite dimensional in
w. However, we demonstrate that by considering continuous and
convex1 Lyapunov functions and bounded polyhedral sets X,U,W

(with non-empty interiors containing the origin) a solution to in-
equality (12) can be obtained via a finite set of inequalities that
only depend on the vertices ofW.
Let we, e = 1, ...,E, be the vertices of W (notice that E > n, as

W is assumed to have a non-empty interior). Next, consider a finite
set of simplices S1, . . . ,SM with each simplex Si equal to the convex
hull of a subset of the vertices of W and the origin, and such that
∪Mi=1Si = W, int(Si)∩ int(S j) = /0 for i �= j, int(Si) �= /0 for all i.
More precisely, Si = Co{0,wei,1 , . . . ,wei,l} and

{wei,1 , . . . ,wei,l} ⊆ {w1, . . . ,wE}
(i.e. {ei,1, . . . ,ei,l} ⊆ {1, . . . ,E}) with wei,1 , . . . ,wei,l linearly inde-
pendent. For an illustrative example see Figure 3: the polyhedron
W consists of S1,S2, . . . ,S5, where, for instance, the simplex S3 is
generated by 0,we3,1 ,we3,2 , with e3,1 = 2 and e3,2 = 3. For each
simplex Si we define the matrixWi := [wei,1 . . . wei,l ]∈R

l×l , which
is invertible. Let γe ∈ R+ be variables associated with each vertex
we, which are both depending on the time instant tk.
Next, suppose that both x and x̂ are known. Notice that the as-

sumption that x is known is only used here to show how one can
transform (12) into a finite dimensional problem. The dependence
on x will be removed later, leading to a main stability result and an
MPC algorithm that only use the estimated state x̂, see Problem 4.2.
Let α3 ∈ K∞ and consider the following set of constraints:

V (Ax̂+Bu(x̂))−V (x)+α3(‖x‖) ≤ 0, (13a)
V (A(x̂−we)+Bu(x̂))−V (x)+α3(‖x‖)− γe ≤ 0 (13b)

for all e= 1, . . . ,E.

Theorem 4.1 Let V be a continuous and convex Lyapunov func-
tion. If for α3 ∈K∞, x̂ and x there exist u(x̂) and {γe}e=1,...,E , such
1This includes quadratic functions, V (x) = x�Px with P � 0, and
functions based on norms, V (x) = ‖Px‖ with P a full-column rank
matrix.

that (13a) and (13b) hold, then (12) holds for the same u(x̂), with
σ(s) := ηs and

η := max
i=1,...,M

‖γ̄iW−1
i ‖, (14)

where γ̄i := [γei,1 . . . γei,l ] ∈ R
1×l and ‖ · ‖ is the corresponding in-

duced matrix norm.

Proof: For any w∈W =
⋃M
i=1 Si there exists an i such that w∈ Si =

Co{0,wei,1 , . . . ,wei,l}, which means that there exist non-negative
μ0,μ1, . . . ,μl with ∑ j=0,1,...,l μ j = 1 such that

w= ∑
j=1,...,l

μ jwei, j + μ00= ∑
j=1,...,l

μ jwei, j .

In matrix notation we have that w=Wi[μ1 . . . μl ]� and thus

[μ1 . . . μl ]� =W−1
i w.

By multiplying each inequality in (13b) corresponding to the index
ei, j and the inequality (13a) with μ j ≥ 0, j = 0,1, . . . , l, summing
up and using ∑ j=0,1,...,l μ j = 1 yields:

μ0V (Ax̂+Bu(x̂))+ ∑
j=1,...,l

μ jV (A(x̂−wei, j )+Bu(x̂))

−V (x)+α3(‖x‖)− ∑
j=1,...,l

μ jγei, j ≤ 0.

Furthermore, using ∑ j=0,1,...,l μ j = 1 and convexity of V yields

V (A(x̂− ∑
j=1,...,l

μ jwei, j )+Bu(x̂))−V (x)

+α3(‖x‖)− ∑
j=1,...,l

μ jγei, j ≤ 0,

or equivalently

V (A(x̂−w)+Bu(x̂))−V (x)+α3(‖x‖)− γ̄i[μ1 . . . μl ]� ≤ 0.
Using that [μ1 . . . μl ]� =W−1

i w and x = x̂−w we obtain (12) for
σ(s) = ηs and η ≥ 0 as in (14). �

Based on the result of Theorem 4.1 we are now able to formulate
a finite dimensional optimization problem that results in closed-
loop ISS with respect to the estimation error w(tk) and moreover,
in optimization of the closed-loop ISS gain. This will be achieved
only based on the estimate x̂(tk) and the setW(tk).
Let γ̄ := [γ1, . . . ,γE ]� and let J : RE → R+ be a function that

satisfies α4(‖γ̄‖)≤ J(γ1, . . . ,γE)≤α5(‖γ̄‖) for some α4,α5 ∈K∞.
Define next:

Vmin(tk) := min
x∈{x̂(tk)}⊕W(tk)

V (x) (15)

and

α3,max(tk) := max
x∈{x̂(tk)}⊕W(tk)

α3(‖x‖). (16)

Problem 4.2 Let α3 ∈ K∞, a cost J and a Lyapunov function V be
given. At time k ∈ Z+ let an estimate of the state x̂(tk) be known
andminimize J(γ1(tk), . . . ,γE(tk)) over u(tk),γ1(tk), . . . ,γE(tk), sub-
ject to the constraints

u(tk) ∈ U, γe(tk) ≥ 0 (17a)
Az+Bu(tk) ∈ X,∀z ∈ {x̂(tk)}⊕W(tk) (17b)
V (Ax̂(tk)+Bu(tk))−Vmin(tk)+α3,max(tk) ≤ 0, (17c)
V (A(x̂(tk)−we(tk))+Bu(tk))−Vmin(tk)

+α3,max(tk)− γe(tk) ≤ 0
(17d)

for all e= 1, . . . ,E. �
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Let π(x̂(tk)) := {u(tk) ∈ R
m | (17) holds} and let

x(tk+1) ∈ φcl(x(tk),π(x̂(tk))) := {Ax(tk)+Bu | u ∈ π(x̂(tk))}
denote the difference inclusion corresponding to system (11) in
“closed-loop” with the set of feasible solutions obtained by solv-
ing Problem 4.2 at each k ∈ Z+.

Theorem 4.3 Let α1,α2,α3 ∈ K∞ of the form specified in Theo-
rem 2.3, a continuous and convex Lyapunov function V and a cost
J be given. Let W be a bounded set such that W(tk) ⊆ W for all
tk. Suppose that Problem 4.2 is feasible for all states x̂ in X⊕W.
Then the difference inclusion

x(tk+1) ∈ φcl(x(tk),π(x̂(tk))), k ∈ Z+ (18)

is ISS in X for inputs inW.

Proof: As x(tk) ∈ {x̂(tk)}⊕W(tk) for all k ∈ Z+ we have from
(17b) that x(tk+1) = Ax(tk) + Bu(tk) ∈ X, i.e. the real state sat-
isfies state constraints and, x̂(tk+1) ∈ X⊕W(tk+1) ⊆ X⊕W, i.e.
Problem 4.2 remains feasible at k+1 and X is an RPI set w.r.t. the
estimation error. Then, from the definitions (15) and (16), and from
(17c), (17d) we have that

V (Ax̂(tk)+Bu(tk))−V (x(tk))+α3(‖x(tk)‖) ≤ 0,
V (A(x̂(tk)−we(tk))+Bu(tk))−V (x(tk))

+α3(‖x(tk)‖)− γe(tk) ≤ 0,
for all x(tk) ∈ {x̂(tk)} ⊕ W(tk), as V (x(tk)) ≥ Vmin(tk) and also
α3(‖x(tk)‖) ≤ α3,max(tk). Then, from Theorem 4.1 we have that
(4b) holds with σ(s) := η(tk)s and η(tk) as in (14), i.e.

V (Ax(tk)+Bu(tk))−V (x(tk))+α3(‖x(tk)‖)−σ(‖w(tk)‖) ≤ 0,
for all x(tk) ∈ {x̂(tk)}⊕W(tk). Next let

γ∗ := max
x∈cl(X),u∈cl(U)

{V (Ax+Bu)−V (x)+α3(‖x‖)}.

SinceX,U andW are assumed to be bounded sets, γ∗ exists, and in-
equality (17d) is always satisfied for γe(tk) = γ∗ for all e= 1, . . . ,E,
k ∈ Z+, irrespective of x, u and the vertices of W(tk) ⊆ W. This
in turn, via (14) ensures the existence of a positive η∗ such that
η(tk) ≤ η∗ for all tk and for all w(tk) ∈ W. Hence, we proved that
inequality (12) holds, and thus, the continuous and convex Lya-
punov function V is a ISS Lyapunov function. Then, due to RPI of
X, ISS in X for inputs inW follows directly from Theorem 2.3. �

Note that in Theorem 4.3 we used a worst case evaluation of
γe(k) to prove ISS, which corresponds to a worst case evaluation of
the setW(tk). However, in reality the gain η(tk) of the function σ
can be much smaller for k≥ k0, for some k0 ∈Z+. This is achieved
via the minimization of the cost J(·), which produces small values
of γe(tk), e = 1, . . . ,E. This in turn, via (14), will result in a small
η(tk). Furthermore, this will ultimately yield a smaller ISS gain
for the closed-loop system, due to the relation (5). Hence, Prob-
lem 4.2, although it inherently guarantees a constant ISS gain, as
shown in the proof of Theorem 4.3, it provides freedom to optimize
the ISS gain of the closed-loop system, by minimizing the variables
γ1(tk), . . . ,γE(tk) via the cost J(·).

Remark 4.4 The relations (5) and (14) yield an explicit expression
of the gain of γ at every time instant. This can be used to set-
up an event triggering mechanism as follows: at every k ∈ Z+,
if NCS requirements allow event generation and η(tk) ≥ ηbound
trigger event. In this way, a healthy trade-off between minimization
of data transmission and performance can be achieved. �

A cost on the future states can be added to Problem 4.2. As
ISS is guaranteed for any feasible solution, optimization of the cost
can still be used to improve performance, without requiring that the
global optimum is attained in real-time. An example of such a cost
will be given next.
In what follows, we will indicate certain ingredients which allow

the implementation of Problem 4.2 via linear programming. For
this, we restrict our attention to Lyapunov functions defined using
the infinity norm, i.e.,

V (x) = ‖PV x‖∞, (19)

where PV ∈ R
p×n is a full-column rank matrix. Note that this type

of function satisfies (4a), for α1(s) :=
ν(PV )√p s (where ν(PV ) > 0 is

the smallest singular value of PV ) and for α2(s) := ‖PV ‖∞s. Let-
ting α3(s) := cs for some c ∈ R+ we directly obtain from (16) that
α3,max(tk) is equal to the maximum of α3 over the vertices of the
set {x̂(tk)}⊕W(tk). Similarly, it is sufficient to impose (17b) only
for the vertices of {x̂(tk)}⊕W(tk), i.e., for {we(tk)+ x̂(tk)}e∈Z[1,E]

.
By definition of the infinity norm, for ‖x‖∞ ≤ c to be satisfied

for some vector x ∈ R
n and constant c ∈ R+, it is necessary and

sufficient to require that ± [x]i ≤ c for all i ∈ Z[1,n]. So, for (17c)-
(17d) to be satisfied, it is necessary and sufficient to require that

± [PV (Ax̂(tk)+Bu(tk))]i−Vmin(tk)+α3,max(tk) ≤ 0,
± [PV (A(x̂(tk)−we(tk))+Bu(tk))]i−Vmin(tk)

+α3,max(tk)− γe(tk) ≤ 0 (20)

for all i ∈ Z[1,p] and e ∈ Z[1,E]. Moreover, by choosing an infinity-
norm based cost function

J(x(tk),u(tk),γi(tk)) := ‖PJ(A(x̂(tk)−w(tk))+Bu(tk))‖∞

+‖QJ(x̂(tk)−w(tk))‖∞ +‖RJu(tk)‖∞ +
E
∑
i=1

‖Γiγi(tk)‖∞, (21)

with full-column rank matrices PJ ∈R
p j×n,QJ ∈R

q j×n, RJ ∈R
r j×m

and Γi ∈R+, we can reformulate the optimization of the cost J sub-
ject to the constraints (17) as the linear program

min
u(tk),γ1(tk),...,γE (tk),ε1,ε2

ε1+ ε2+
E
∑
i=1

Γiγi(tk) (22)

subject to (17a), (17b), (20) and

A(we(tk)+ x̂(tk))+Bu(tk) ∈ X, ∀e ∈ Z[1,E],

± [PJ(A(x̂(tk)−we1(tk))+Bu(tk))]i+‖QJ(x̂(tk)−we2(tk))‖∞ ≤ ε1
∀(e1,e2) ∈ Z[1,E] ×Z[1,E], ∀i ∈ Z[1,p j ],

± [RJu(tk)]i ≤ ε2, ∀i ∈ Z[1,r j ].

The only thing left for implementing Problem 4.2 is to compute
Vmin(k). Using the same reasoning as above, it can be shown that
the optimization problem (15) can be formulated as a linear pro-
gram. As such, finding a solution to Problem 4.2 amounts to solv-
ing 2 linear programs and calculating the maximum over a finite set
of real numbers, which can be performed efficiently.
This completes the design procedure of the robust MPC and we

continue with the integration of the EBSE and MPC.

5. INTEGRATION OF EBSE AND MPC
In this section we provide a method for designing a set W(tk)

based on P(tk). To that extent, we will use the fact that P(tk) is
a model for cov(x(tk)− x̂(tk)), i.e., the covariance matrix of w(tk).
Hence, G(w(tk),0,P(tk)) is a model for the true PDF p(w(tk)). The
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first step in this design is defining ellipsoidal sets that are based on
P(tk). Each ellipsoidal set represents a model of the probability
that the true estimation-error, i.e., w(tk), is within that set. The
second step is to define W(tk) as an over-approximation of a cer-
tain ellipsoidal set that can be computed efficiently and such that
w(tk)∈W(tk) has a high probability. As all variables of this section
are at the time-instant tk, we will omit tk from every time-dependent
variable, i.e. w(tk) and P(tk) become w and P, respectively. Let us
start by describing the sub-level-sets of a Gaussian. For any Gaus-
sian G(w,0,P) one can define the sub-level set ε(P,c) ⊂ R

n, for
some c ∈ R+, as follows:

ε(P,c) :=
{
w ∈ R

n
∣∣∣w�P−1w≤ c

}
. (23)

The shape of this sub-level-set is an ellipsoid, or an ellipse in the
2D case as it is graphically depicted in Figure 4 (for c = 1). This
figure illustrates the relation of the ellipsoid with the eigenvalues
of the corresponding covariance matrix P. In this case the relation
between eigenvalues of P yields λ1(P) > λ2(P).

Figure 4: Graphical representation of the Gaussian G(w,0,P)
as the sub-level-set ε(P,1). The direction of each arrow is de-
fined as the eigenvector of the corresponding eigenvalue λi(P).

Applying some basics of probability theory one can calculate
the probability, depending on c, that the random vector w is within
the set ε(w,P,c). Some examples of this probability, denoted with
Pr(·), for different values of c are:

Pr (w ∈ ε(P,1)) ≈ 0.68,
Pr (w ∈ ε(P,4)) ≈ 0.95,
Pr (w ∈ ε(P,9)) ≈ 0.997.

Notice that ε(P,c) defines an ellipsoid. As such, to use the MPC
law as proposed in the previous section, we need to obtain a poly-
topic over-approximation of this set. This over-approximated set
can then be used as the setWwhere the estimation error is bounded.
Recall that the vertices ofW are used in the controller to determine
the control action. There is no optimal method to calculate this set,
as it amounts to the ancient problem of “squaring the circle”. See
for example the recent results in [25] and the references therein.
What can be stated is that a trade-off should be made between the
size of the set W on the one hand, indicating the worst case esti-
mation error bound, and the computational complexity of obtaining
W on the other hand, which should be kept reasonable for on-line
calculation.
If for example one chooses that Pr(w ∈ W) = 0.95, then W

can be taken as a tight over-approximation of ε(P,4), as illustrated
in Figure 5(a). However, to obtain this tight over-approximation,
knowledge of all the eigenvalues of P and vertex computation is re-
quired, which is computationally expensive. If the real-time proper-
ties of the resulting algorithm allow this tight over-approximation,
then Figure 5(a) can be considered. However, here we want to have
the least processing-time, i.e. computational complexity. There-
fore, we aim at describing the vertices of W by a single parameter
that depends on the maximum eigenvalue of P. An example of such

a set is shown in Figure 5(b). Therein,W is fully determined by the
scalar d =

√
cλmax(P) = 2

√
λmax(P), which represents an upper

bound on the infinity norm of w.

(a) Accurate over-approximate. (b) Fast over-approximation.

Figure 5: Examples of over-approximating ε(P,4) byW.

Notice that the vertices ofW as shown in Figure 5(b) are explic-
itly defined as all possible realizations of the vectors (w1, . . . ,wE)�
when [wi] j ∈ {−d,d} for all j ∈ Z[1,n] and i ∈ Z[1,E]. The next re-
sult provides an expression for d ∈ R+, which is calculated at each
synchronous sample instant tk, such that ε(P,c) ⊆ W, for a given
c ∈ R+.

Lemma 5.1 Suppose a random vector w ∈ R
n is given of which

its PDF is a Gaussian with zero mean and a covariance-matrix P ∈
R
n×n. Let us defineW := {w | ‖w‖∞ ≤ d}with d := √

c∗λmax(P).
Then for any c ∈ R+, it holds that ε(P,c) ⊂ W.

PROOF. Let w ∈ ε(P,c). Then it holds that

λmin(P−1)‖w‖2∞ ≤ λmin(P−1)‖w‖22 ≤ w�P−1w≤ c,
from which ‖w‖∞ ≤

√
c(λmin(P−1))−1 follows. Applying the fact

that λmin(P−1) = (λmax(P))−1 gives that

‖w‖∞ ≤
√
c∗λmax(P).

Hence, w ∈ W and as w ∈ ε(P,c) was arbitrary, the proof is com-
plete.

The above results shows that in order to compute the vertices
of the set W at each tk, one only needs to calculate the current
λmax(P). The computational efficiency of the procedure for obtain-
ing the setW can be further improved by using the known fact that
λmax(P)≤ tr(P), at the cost of a more conservative error bound. To
increase the probability that w(tk)∈W(tk), one can use Lemma 5.1
to observe that:

Pr (w(tk) ∈ ε(P(tk),c)) ≤ Pr (w(tk) ∈ W(tk)) .

Therefore, by choosing c= 9 yields:

0.997≈ Pr (w(tk) ∈ ε(P(tk),9))
≤ Pr (w(tk) ∈ W(tk)) .

(24)

Remark 5.2 As the covariance matrix P(t) is bounded for all t ∈T,
shown in [15, 22], it follows that λmax(P(t)) is also bounded for
all t ∈ T. Then, by the definition of the set W(tk), it holds that
W(tk) ⊆ W for all tk and

W :=
{
w ∈ R

n | ‖w‖∞ ≤ sup
t

√
cλmax(P(t))

}
.

�
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This completes the overall design of the feedback loop that con-
sists of (i) the EBSE algorithm, which provides an estimate of the
state x̂(tk) at all tk, (ii) the algorithm for computation of the vertices
ofW(tk) at all tk such that w(tk) = x̂(tk)−x(tk) ∈ W(tk) has a high
probability and (iii) the robust MPC algorithm, which provides in-
herent ISS w.r.t. to estimation errors w(tk) and optimized ISS w.r.t.
to w(tk) ∈ W(tk).
The only aspect left to be treated is concerned with the fact that

the EBSE is a stochastic estimator, while the robust MPC algorithm
is a deterministic controller. Due to the stochastic nature of the es-
timator, one does not have a guarantee that w(tk) ∈ W(tk) for all
tk and, as such, that the real state is bounded. Instead, one has the
information that w(tk) ∈ W(tk) for all tk only with a certain (high)
probability, which implies that the ISS property of theMPC scheme
applies to the overall integrated closed-loop system in a probabilis-
tic sense only. If for some tk ∈ R+, w(tk) �∈ W(tk) but it is still
bounded, it would be desirable to still have an ISS guarantee (i.e.,
independent of the bound on w(tk)) for the closed-loop system. A
possible solution could be to use a uniformly continuous control
Lyapunov function to establish inherent ISS to the estimation error,
which forms the object of future research.

6. ILLUSTRATIVE EXAMPLE
In this section we illustrate the effectiveness of the developed

EBSE and robust MPC scheme. The case study is a 1D object-
tracking system. The states x(t) of the object are position and
speed while the measurement-vector y(t) is position. The control
input u(t) is defined as the object’s acceleration. The states and
control input are subject to the constraints x(t) ∈ X = [−5,5]×
[−5,5] and u(t) ∈ U = [−2,2]. Both the process-noise as well as
the measurement-noise are chosen to have a zero-mean Gaussian
PDF with Qτ = 3τ · 10−4I and Rv = 1 · 10−4. As the process is a
double integrator, the process model becomes:

x(t+ τ) =

(
1 τ
0 1

)
x(t)+

(
τ2
2
τ

)
u(t)+q(t,τ),

y(t) =
(
1 0

)
x(t)+ v(t).

(25)

The sampling time of the controller is τs = 0.7[s]. For simplicity,
we use “Send-on-Delta” as the sampling method with Δ = 0.1[m].
This means that in case the object drove an additional 0.1 meter
with respect to its last sampled position, a new measurement of the
position is taken. Therefore, the set which defines event sampling
becomes Hr|t = [y(tr−1)−Δ,y(tr−1)+Δ]. The PDF ΛHr|t (y(t)), for
all t ∈ T, of the EBSE is approximated as a sum of 5 Gaussians
that are equidistantly distributed along [y(tr−1)− Δ,y(tr−1) + Δ].
Therefore, we set

N = 5, yi(t) = y(tr−1)−
(
N−2(i−1)−1

N

)
Δ, ∀i ∈ Z[1,N],

RH(t) =

(
2Δ
N

)2(
0.25−0.05e− 4(N−1)

15 −0.08e− 4(N−1)
180

)
.

Next, let us design the parameters of the robust MPC. The tech-
nique of [24] was used to compute the weight PV ∈ R

2×2 of the
Lyapunov function V (x) = ‖PV x‖∞ for α3(s) := 0.01s, yielding

PV =

(
2.7429 0.7121
0.1989 4.0173

)
.

Following the procedure described in Section 5, the set W(tk)
will have 4 vertices at all k∈Z+. As such, to optimize robustness, 4
optimization variables γ1(tk), · · · ,γ4(tk) were introduced, each one
assigned to a vertex of the setW(tk). The MPC cost was chosen as

J(x(tk),u(tk),γ1(tk), . . . ,γ4(tk))with PJ = 0.4I,QJ = 0.2I, RJ = 0.1
and Γi = 4 for all i ∈ Z[1,4]. The resulting linear program has 11
optimization variables and 108 constraints. In this cost-function,
the variable Vmin(tk) of equation (15) is used. Its value is also cal-
culated via solving a linear program with 3 optimization variables
and 5 constraints. During the simulations, the worst case computa-
tional time required by the CPU over 100 runs was 20 [ms] for the
controller and 5 [ms] for the EBSE, which shows the potential for
controlling fast linear systems.
In the simulation scenario we tested the closed-loop system re-

sponse for x(t0) = [3,1]� with the origin as reference. The initial
state estimates of the EBSE were chosen as x̂(t0) = [3.5,1.2]� and
P(t0) = I. The evolution of the true state is graphically depicted in
Figure 6. Figure 7 presents the control input u(tk). The evolution
of the different values for γ1(tk), · · · ,γ4(tk) is shown in Figure 8.
Figure 9 presents the absolute error between the estimated and true
state, i.e. position |[w(tk)]1| and speed |[w(tk)]2|, and the modeled
error bound which is chosen to be d =

√
9λmax(P(tk)) and defines

W(tk).
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Figure 6: Evolution of the true state: position, i.e. x1(tk) and
speed, i.e. x2(tk).

The symbols “×” in the plot of the true object position of Fig-
ure 6 denote the instants when an event occurs, i.e., whenever the
object drove an additional 0.1 [m] with respect to its previous sam-
pled position measurement. Notice that the number of events in-
creases when position is changing fast. Therefore, a large amount
of samples are generated in the first 5 seconds. After 20 seconds,
both the position and speed of the true state are zero and no event
occurs anymore.
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Figure 7: Evolution of the the control input u(tk) .

Figure 7 shows that the input constraints are fulfilled at all times,
and sometime they are active.
Notice that when the state is close to zero, due to the optimization
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Figure 8: Evolution of the 4 optimization variables γi(tk) .

of the cost J, this pushes the control input to zero. As such, the
optimization variables γi(tk) of Figure 8 must satisfy V (we(tk))−
γe(tk) ≤ 0, e = 1, . . . ,E. This explains the non-zero value of γi(tk)
when the state reaches the equilibrium, for example in between 20
and 30 seconds.
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Figure 9: Evolution of the true estimation error compared to
the bounds on the modeled one.

Figure 9 shows that the true estimation-error remained within the
limits of the modeled one at almost all sample instances. Further-
more, after 20 seconds no new measurement is received anymore
for some longer time period. Standard state-estimators would pre-
dict the state in that case, causing λmax(P(tk)) to diverge. Due to
the EBSE, which makes use of the bounded set Hr|t , λmax(P(tk))
converges to a constant, although no events are generated anymore.
This confirms that boundedness of the covariance matrix of the
EBSE is independent of the number of events for a bounded set
Hr|t , although the actual value of the bound is influenced by the
choice of Hr|t . Notice the variety in the modeled estimation-error
at 33, 41, 49 and 60 seconds. This is caused by the fact that an
event occurs at these instances. Hence, the state-update is based on
a received measurement rather then a bounded set, which reduces
its uncertainty. A final remark is to be made on the fact that at
around 10 seconds the true estimation-error exceeds the modeled
one. This means that at this time instant w(tk) �∈ W(tk). Neverthe-
less, the trajectory of the closed-loop system remains bounded with
reasonable robust performance, which encourages us to further an-
alyze the ISS of the integrated closed-loop system. In light of the
solution proposed at the end of the previous section, it is worth to
mention that the CLF used in the example is globally Lipschitz.
For future research it would also be interesting to compare the

results obtained with the developed robust MPC scheme with a
stochastic MPC set-up, such as the algorithm presented in [26].

7. CONCLUSIONS
In this paper an event-based control system was designed with

the property that control actions can take place synchronously in
time but data transfer between the plant and the controller is kept
low. This was achieved by introducing an event-based state esti-
mator in the feedback loop. The event-based estimator was used
to obtain a state estimate with a bounded covariance matrix in the
estimation error at every synchronous time instant, under the as-
sumption that the set used for event generation is bounded in the
measurement-space. This covariance matrix was then used to es-
timate explicit polytopic bounds on the estimation-error that were
fed into a robust MPC algorithm. We proved that the resultingMPC
controller achieves ISS to the estimation error and, moreover, it
optimizes the closed-loop trajectory-dependent ISS gain. We pro-
vided justification of our main ideas on all the parts of the over-
all "output-based controller" (e.g., a bounded covariance matrix of
ESBE-plant interconnection and ISS of MPC-plant loop) that show
that in principle such an event-based controller should work. Sev-
eral aspects of the integration of the stochastic event-based esti-
mator and the deterministic MPC algorithm were discussed. The
formal proof of closed-loop properties of the EBSE-MPC-plant in-
terconnection or its variations is a topic of future research, although
simulations provide convincing and promising evidence of the po-
tential of the proposed methods.
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