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ON INTENSITY LIMITATIONS IMPOSED BY TRANSVERSE SPACE-CHARGE EFFECTS

IN CIRCULAR PARTICLE ACCELERATORS

L. J. Laslett
Lawrence Radiation Laboratory

I. Introduction

The influence of space-charge forces on the frequency of betatron

oscillations has been recognized for many years as one mechanism which will

impose a limit on the number of particles that can be accommodated within a

1-3
act on an individual particle have been discussed in several early papers-
circular accelerator. The implications of the space-charge forces which

-
4

and in a recent report by Teng. Attention has also been directed by a

-

-

-

-
-
-

-

number of workers, in particular by members of the Midwestern Universities

Research Association staff, to the importance of image forces in this

5
phenomenon.

The intensity limit which arises because of the transverse space-charge

effect has provided a powerful argument for the use of high-energy injection,

since, because Of the almost complete cancellation of the electric and

magnetic forces when the effect of image fields may be neglected, the number

1. D.W. Kerst, Phys. Rev. 60, 47 (1941).

2. J.P. Blewett, Phys. Rev. 69, 87 (1946).

3. D.L. Judd, "A Study of the Injection Process in Betatrons and Synchro
trons", California Institute of Technology thesis (Pasadena, 1950).

4. L.C. Teng, "Transverse Space-Charge Effects", Argonne National Laboratory
Report ANLAD-S9 (Argonne, Illinois; February 1, 1963). The papers
presented on August 26 by Drs. Lloyd Smith and p. Lapostolle at the
1963 International Accelerator Conference at Dubna are of interest for
obtaining self-consistent solutions to the transverse space-charge
behavior of a particle beam.

S. See, for example, J. van B1ade1, "Image Forces in the Third MURA Model",
Midwestern Universities Research Association Report MURA-466
(Madison, Wisconsin; June 12, 1959).
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of particles which can be accepted is proportional to S2y3. As we shall

see, however, image forces can distort this energy dependence when the

ratio of the aperture to the transverse beam dimensions becomes comparable

to or less than Y, and the limit to the number of particles will become

proportional to Y at high energies. In seeking the attainment of high

intensity by means of high-energy injection, therefore, one must employ a

sufficiently large aperture to insure that image effects are suppressed or

inject at an energy considerably higher than would be required if image

effects were negligible. In practice, a careful optimization of the design

would be appropriate in order to achieve the best balance between aperture

and injection energy for achievement of the desired intensity.

In addition to the space-charge forces which act on an individual par

ticle in the beam, a second phenomenon, involving the transverse movement

of the beam as a whole, may be of importance. This latter effect, which

of course arises in i t ~ entirety from image forces, could lead to an insta

bility for coherent transverse motion of an intense beam. Because, as will

be indicated in greater detail below, the forces which could lead to single

particle or to coherent instability are not identical, it may prove to be

quite complicated to provide compensating fields which will suppress both

of these phenomena.

In the sections which follow we shall give a general discussion of the

transverse space-charge phenomena, as they may affect axial stability in a

circular accelerator; present some field coefficients that represent the

image effects in certain particular geometrical configurations that are

analyzed in the Appendices; and finally give some illustrative numerical

examples. The influence of space-charge neutralization is ignored in the

present report, in the supposition that the time required for complete

...

...

....
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neutralization of the beam normally is long compared to the duration of the

which the writer has enjoyed with staff of the Brookhaven National Laboratory,

-
-

injection process. The work reported here has benefited from discussions

-

-

the Lawrence Radiation Laboratory, the Midwestern Universities Research

Association, and the Stanford Linear Accelerator Center.

II. Transverse Space-Charge Effects -- Axial Stability Limit

A. Single-Particle Stability

1. The Assumed Fields

The electric and magnetic fields which arise from the collective action

of a uniform isolated beam of elliptical cross section have been evaluated

- 4
by Teng. In Gaussian units, the field strengths at a distance y above

the center of a beam with semi-major (radial) and semi-minor (axial) axes

denoted respectively by a and bare

"... .... y •E = /fA.
unbunched b(a + b) J

- .... y
H = -MS • (y < b)

unbunched b(a + b)
1

(la)

(lb)

for the transverse distribution of density assumed by Teng, where the linear

charge density (A) is related to the number of particles in the beam (N) and

to the orbit radius (R) by

(2)

-

The fields represented by Equations· (la) and (lb) will be modified by

the presence of nearby conducting or ferromagnetic material through the
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supplementary effect of so-called image fields. In addition, for a given ...
total number of particles, the peak fields, experienced by some of the par-

ticles in the beam, will be enhanced - and the maximum attainable i n t e ~ s i t y

correspondingly reduced - if the beam is bunched azimuthally by action of

the rf a c c e l e r ~ t i o n system or if significant fine structure is otherwise

present in the density distribution.

The beam distribution accordingly will be characterized by a

"bunching factor", B (B S;; 1) representing the ratio of the average to the

maximum linear charge or particle density.

isolated beam accordingly will be taken as

.... ....
E = Eunbunched X (lIB)

and
.... ....
H = Hunbunched X (lIB) ,

of which
.... ....
Hdc = Hunbunched

The relevant fields for an

(3a)

(3b)

(3b')

.... ....
Hac = Hunbunched X (lIB - 1) • (3b")

To each of these fields [(3a), (3b'), and (3b")] must be appended appro-

priate correction factors to account for the supplemental image fields.

-The electrostatic field, E, will be modified by the presence of a

vacuum chamber with conducting walls through the addition of terms which

insure that the chamber surface (most simply taken as formed by parallel

conducting planes, a distance 2h apart) be an equipotential. Likewise,

....
the dc component of the magnetic field, Hdc ' will be modified so as to

insure that, if possible, this field is directed perpendicular to the sur-

faces of ferromagnetic magnet poles (most simply taken as formed by parallel

pole surfaces, a distance 2g apart). The ac magnetic fields of the beam
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-
-
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will be influenced by skin-effect currents induced in the conducting walls

of the vacuum chamber, so as to result in a net ac field which is tangential

to this boundary, and the correction factor required in this case may be

expected to be identical to that applicable to the electrostatic field. For

a beam of reasonably small transverse dimensions, these various correction

fields may be considered as evaluated adequately without regard for the

cross-sectional size of the beam, and, for small displacements of the test

particle, will give rise to forces proportional to the displacement y.

The fields to be employed in analysis of single-particle stability

accordingly will be written

- E = itA [1 + 8 b(a + b) ]
B I h2

y
b(a + b) t =

,... 2 1 Ne [ b(a + b)J= rr B Ft 1 + 81 - h 2 -
y ..

b(a + b) J
(4a)

.....
-4A~ [1 - b(a + b)J Y t-H

dc
= 8

2 2 b(a + b) -
g

= - ~ e Ne [l - 8
b(a + b>l y A

TT R 2 2 J b(a + b)
1

g

(4b')

and
....

-4A~ (~ - 1) [1 +
b(a + b>J Y

b) tH 8
1

=
ac

h
2 b(a +

2 (1 - 1) e ~e [1 +
b(a + b)J Y

b) t , (4b" )- = - - 8
1TT B

h
2 b(a +

where 8
1

and 8
2

are numerical factors for which expressions applicable to

specific geometrical configurations of practical interest are given below

(sub-section 3) and where the lengths hand g respectively serve to charac-

terize conveniently the semi-apertures of the vacuum chamber and magnet gap.
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Because the effect of bunching has been explicitly taken into account in

writing Equations (4a-b"), the quantity A should be taken here as repre- ..
senting the average linear charge density, as given by Eq. (2). It m.ay

be remarked that in some configurations of possible practical interest the

dc component of the beam also gives rise to an axial magnetic field com-

ponent which effectively is independent of position; such a field component

is not considered to affect directly the frequency of axial betatron osci1-

lations, however, and is not included in Eq. (4b 1
) or in the equation of

motion which follows.

2. The Equation of Motion

The linear equation for the steady-state axial betatron oscillation of

a test particle in the'presence of a beam of N identical particles may be

written in the smooth approximation as

d
2
y +

de 2 (n + ~ + ~ + KS) y == 0 , (5)

where n is the effective field index of the applied magnetic field and

in which

2 1
Nr R

[1 + '1
b(a + b)JK

E = --- P
TT

B ~2.y b(a + b) h
2

2 Nr R [ b(a + b)J
~

P= - Y b(a + b) 1 - 12TT 2
g

2 (1 Nr R [ b(a +
b)J 'Kg

P
11= - 1) Y b(a + b) 1 +TT B

h
2

(6a)

(6b)

(6c) ...,

by use of Equations (4a), (4b'), and (4b"). The coefficients ~ , ~ , and
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Kg represent respectively the electrostatic effect of the bunched beam,

the effect of the magnetostatic dc component of the beam, and the magnetic

effect of the ac component of the beam as modified by the skin-effect

currents induced in the chamber surface.

cm for a proton (rest mass equivalent to 938 Mev).

"classical radius"

The quantity r denotes the
p

2
(_e_) 6 X -16for the particle, and may be taken as 1.53 10

Moc
2

The shift of betatron frequency which results from the space-charge

terms included in Eq. (5) is given by

-
(7)

and leads to the space-charge limit

-
,.. N

B !! b(a + b)
2 r R

p 1 + b(a +

h
2

-
11' h

2

= B"2 r R
p

\) 2 _ \) 2

Yo Y------------------y
h

2
h

2
1

8 2B g2 + b(a + b) ~ 2 y 2

(8b)

\) 2 _ 2

h
2

\)

11' Yo y

2 r R

8 1 [1 + 2
1 J h

2
h

2 Y ,
P 1

+ 8 2 2 +
BCy2 - 1) b(a + b)B(Y 1) g

in which \) refers to the frequency (oscillations per revolution) of the
y

(8c)

nearest axial betatron oscillation resonance, below the low-intensity value,

to which the oscillation may be shifted. The form of the Eq. (8a) is most
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suitable for indicating the correction factor,

F (9)

that must be applied to the usual formula for the space-charge limit of

an isolated beam, but the form of Eq. (Be) may be more convenient for com

putation (when h
2

/ab < By2) and indicates more clearly the following charac-

teristics of the transverse space-charge limit at high energy:

(i) The space-charge limited intensity becomes substantially propor-

tional to Y;

(ii) The aperture dimensions become more important, and the beam dimen-

sions correspondingly less so, in determining the space-charge limit; and

(iii) The bunching factor (B) becomes relatively less important [due to

the almost complete elimination of l/B from the sum of the coefficients K
E

and K
S

' given respectively by Equations (6a) and (6c), when ~ 2 is near

unity and by virtue of the identity of the image-force coefficients (e
l

)

that appear in these equationsJ.

3. The Image-Force Coefficients

The image-force coefficients, e
l

and e
Z

' which have been introduced

in Equations (6a-c), can be evaluated directly by the use of image charges

or currents in certain simple two-dimensional configurations, and in other

two-dimensional cases use may be made of conformal transformations to obtain

an equivalent problem for which the solution by image techniques or other

means is readily apparent.
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a. The electrostatic image coefficient, e
l

(1) Plane-parallel conducting surfaces

The simplest configuration for the electrostatic problem - and hence

also for the equivalent problem concerning the ac magnetic field, in which

the boundary conditions are satisfied by virtue of skin-effect currents

induced in the conducting surfaces - is evidently that of two infinite

parallel conducting planes, at elevations h above and below a line charge

The supplemental electric field at a point situated a distance y

effects produced by an infinite series of images, of alternating sign, or

directly above the line charge can be obtained immediately by summing the

-
- by use of a simple conformal transformation (Appendix B). The additional

electric field at this point is vertically directed, of amount

E.
1mage

(10)

and hence is in the same direction as the field 2A
l

/y which arises directly

,..

-
-

from a localized line charge.

Eq. (4a), is thus seen to be

The coefficient e
l

, which was introduced in

(11)

for the boundary surfaces considered here.

-
(2) Elliptical boundary

It has been pointed out by Dr. John P.
6

that use of a conduc-- Blewett

ting vacuum chamber with a circular cross section would provide the advantage

,...

6. J.P. Blewett, private conversation (July, 1963).

-
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of suppressing the coefficient e
l

which otherwise is of major importance

in determining the intensity limit which results from the requirement of

single-particle stability. Since use of a chamber with a strictly c i ~ -

cu1ar cross section may prove inconvenient because of other practical design

considerations, it is of interest to obtain the image-force coefficient for

a chamber of elliptical cross section. Unfortunately, as will be seen,

any substantial departure of the cross section from circularity results in

2
the coefficient e

1
assuming a value that is comparable to the value rr /48

for the plane-parallel case. As will be noted in Section B, moreover, the

image forces that arise from·a coherent transverse displacement of· the beam

as a whole clearly will not vanish for a chamber of circular cross section.

The rather lengthy analysis of the image effects for an elliptical

b o u n d a ~ y , of semi-axes w (radially) and h (axially), has been outlined

in Appendix D and leads to results expressible in terms of the complete

elliptic integral K(k) of the first kind and modulus k.

to be selected so that

The modulus k is

K'
K

= 2 tanh -1 11
TT w

(12)

where K' denotes K(k') = K(~ _ k
2
). In terms of this notation, the supp1e-

mental electric field at a distance y above a line charge at the center of

the ellipse is

E =
image

(13)

and the image-force coefficient accordingly is

1
(14)
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This result includes, as limiting cases, the results for the case of

parallel planes and for a circular cylinder; approximate values of the

coeffficient e
1

for certain special cases of the axis ratio are listed in

Table I below (see also Fig. 1).

TABLE I

Values of the electrostatic image coefficient e
1

for a cylinder of elliptical cross section

w/h k2
el

1 0 0

5/4 0.838 0.090

4/3 0.904 0.107

3/2 0.965
5

0.134

2/1 0.998 0.172

1
n Z .

0.2056200
48

=

b. The magnetostatic image c o e f f i c i e n ~ e
Z

(1) Plane-parallel magnet poles

For extended plane ferromagnetic poles, the magnetostatic image co-

efficient e
Z

can be obtained immediately by summing the effects produced

by an infinite set of current images of identical sign, or by use of a

- simple conformal transformation (Appendix C). The additional magnetic

-
field at a point y directly above a line current II is parallel to the

pole surface and is oppositely directed to the field 2I
l

/y (e.m.u.) which

arises from the line current alone. The strength of the supplemental
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FIG. 1.

Electrostatic image coefficients

for a cylinder of elliptical cross section
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-
field is

H.
1.mage

(15)

The image-force coefficient e
2

, which was first introduced in Eq. (4b'),

accordingly becomes

(16)

for the boundary surfaces considered here.

(2) Wedge-shaped magnet gap

Since in practice the magnet poles are commonly designed to provide a

*The

-

-

.-

-

magnetic field whose strength in the median plane is characterized by a

b . 1 d . ( f· ld . d R dH) . . f· ..su stant1.a gra 1.ent l.e l.n ex, n =- H dr ' 1.t 1.S 0 l.nterest to l.nvestl.-

gate whether the value of e
2

is markedly modified in such circumstances.

The detailed equations for the magnetic field generated by the beam may be

different in form for various geometrical arrangements of the ferromagnetic

material, and, in special cases, application of the usual boundary condition

H
t

= 0 may be incompatible with the necessary condition f Ii·dl = 4'IT EI.

In particular, it is found that, in addition to the expected radial compo-

nent of field above and below the beam, an axial field component which

effectively is independent of position may arise if the presence of the

magnet yoke or some other feature of the geometrical configuration produces

'1<

a lack of symmetry with respect to a vertical plane through the beam.

presence of a substantially constant magnetic field component, typically
TTl

given approximately by 1 j, may be noted in the work of van B1ade1
g

(£E. £!!.,5 Sect. III), wherein an image-field component of nj gauss is
shown in the neighborhood of a 50-amp beam (11 = 5 e.m.u.) when g = 5 cm.
In this same report van B1ade1 investigates, evidently successfully, means
of compensating the total image field in the median plane.
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A rather simple magnet configuration for the production of a non-

uniform field is that represented by a wedge-shaped gap, of half-angle a,

with the beam current situated a distance X from the vertex of the wedge.

The distance X may be identified with the reciprocal of the relative

field gradient,

n

H R
X = ----=-

dh/dr
(17a)

and a may be related to the half-gap at the beam location by the equation

-1 0'
a = tan ~ =

X
-1 ...lL

tan R/n (17b)

By an analysis outlined in Appendix E, one finds an image field given

by

Himage = Ii {(~ .- 1) ( ~ - 5) ix t + (g - 1) [1 + (~ - 5) :X ] t} (18a)

[
1 1 2

Jl
}+ 11 1 _ -(--&...) + _(.....L) - j

11 R/n 3 R/n g
* (18b)

Since the image coefficient 8
2

serves to characterize the horizontal com-

ponent of the image field at points directly above the beam, we obtain

• 11
2
[6 2 5 2J= 24 1 -TI(~) + ("3+ T T 2 ) ( ~ ) •

(19a)

(19b)

Typically g« R/n (a« 1) and the coefficient 8
2

then becomes sub

stantially TT
2
/24, in agreement with the result obtained in sub-section (1)

for plane-parallel magnet poles.

* TTI I ~
The presence of a constant field component approximately given by --- J

for g « R/n, of which mention was made in the footnote on g
p. 337, is evident from Eq. (18b).

....
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(3) Other pole configurations

Other idealized two-dimensional pole configurations also are suscep-

- tible to analysis. The results would be of interest in permitting a

comparison to be made between the image fields which arise in such cases

and those present in the wedge-shaped gap that was considered in the pre-

ceding sub-section. In order that the gradient will be substantially

,..

constant over a limited region in the neighborhood of the beam, it might

be, considered desirable to locate the beam at a point of inflection for the

median-plane magnetic field that is produced by the application of a magneto-

motive force between the poles. Poles formed by two parallel circular

r

-

,-

cylinders of ferromagnetic material afford the advantage of permitting one

to select independently both the semi-aperture (g) and the relative gradient

(n/R), while locating the beam at a point of inflection for the median-plane

field.
7

Such a pole system suffers, however, from the omission of a yoke

structure to connect the two cylinders, as would be desirable in any prac-

tical application of this arrangement, and detailed analysis of the image

fields for this case appears to require, moreover, a formidable amount of

algebraic work.

Another pole configuration of possible interest for checking the

results found for the wedge-shaped gap is that in which the pole surfaces

are described by the hyperbolic cylinders
2

Y

general case in which a line current is located at the point (X,y), it would,...
and by the vertical plane x = o. For determining the image fields for the

I
!

be convenient to average the results for the following two cases: (i) line

7. The magnetic field produced by a specified magnetomotance applied bet
ween the cylinders may be evaluated in a manner similar to that appro
priate for an analogous electrostatic problem discussed by Smythe:
W.R. Smythe, "Static and Dynamic Electricity" (McGraw-Hill Book Company,
Inc., New York, 1950) 2nd Ed., Sect. 4.17, pp. 80-82.
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currents 11 at (X,y) and at (X,-y); and (ii) a line current 11 at (X,y)

and -11 ·at (X, -y). Analysis of this problem again involves considerable

algebraic effort, but for the simplified case in which the beam and field

point are located in the median plane, at X + 51 and X + 6 respectively,

the image field can be shown to be

(20a)

for 6 and 6
1

small.
-.

Application of the condition VxH = 0 permits gener-

alization of Eq. (20a) to include the case in which the field point is

located a small distance, y, from the x-axis:

for Yl = O. In limiting cases, Eq. (20b) may be simplified to

-.
H.
~mage

yt + (6 + 61) jJ
2X '

for s »X (20b')

-.
H.

l.mage
for s « X • (20b")

The results expressed by Equations (20b') and (20b") are consistent with

those given for a wedge-shaped gap by Eq. (E.4a) of Appendix E, if in these

respective cases we set the half-angle a equal to rr/2 or rr/4, and if we

identify x with 5, xl with 51' and set Y1 equal to zero. The image-force

2
coefficient, e2, accordingly assumes the value - ~ in these limiting

cases, as follows from Eq. (19a) with the substitution of rr/2 or rr/4 for a;

in cases of practical importance, however, a would be taken as small

(g « R/n) and interest would be directed to the dominant term of Eq. (19b).

"-

..
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Stability with Respect to a Collective Transverse Displacement

-
,....

1. The Assumed Fields'

In examining the stability of the beam with respect to a transverse

displacement of the beam as a whole, it again is appropriate to consider

separately the electrostatic field, the dc component of the magnetic field,

and the ac magnetic field which occur in the presence of conducting or

ferromagnetic boundaries. We now require these components of the image

-

-

fields at a point x,y which coincides with the location of a displaced beam

We shall characterize these image fields by coefficients,

Sl and S2' which, for consistency with the notation of Section A, are de

fined as follows in terms of the axial component of electric field from a

line charge A
1

and the radial component of magnetic field from a dc current

-

H
x

2. The Equation of MOtion

(21a)

(21b)

-
-

In a manner analogous to the procedure followed in Section A2, especially

Equations (5) and (6a-c), we write the differential equation for axial

betatron oscillation of the beam centroid as

(22)

where

-
-

K'
E

(23a)
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KM=
2- -rr

N r R
p

~2 (23b)

N r R
K' =1 (1 - 1) P ~

S TT B Y h 2 1
(23c)

2'
By again identifying 6(v ) with K' + K' + K' one obtains the space-

y E -N S'

charge limit imposed by the requirement of axial stability for coherent

transverse motion:

y * (24)

The result expressed by Eq. (24) is clearly of the same form as Eq. (8e)

1 • h
2

when the self-field term is omitted from the denominator;
B(y2 _ 1) b(a + b)

as will be pointed out in the following sub-section, the numerical coeffi-

cients ~ l and ~ 2 will differ, however, from the coefficients e
1

and e
2

that

are employed in Eq. (8c). Nevertheless, to the extent that the coefficients

~ l ' ~ 2 and e
l

, e
2

are of a 'similar order of magnitude, the coherent and in

coherent space-charge limits that are respectively expressed by Equations

(24) and (8c) will be comparable when Y is large (BY 2 » h
2
/ab).

(2411
)

(24')v 2) Y (y 2 _ l)
y

the beam location (Y
l

) is flopping on successive revolutions rapidly
(in comparison to the leakage time for ac fields of such frequencies
through the metallic chamber wall), the Yl-term in the so-called dc
component of the magnetic field will be alternating also and would
be subject to the boundary conditions imposed b ~ the ~ r e s e n c e of the
vacuum chamber., In this case we may replace g by hand g2 by -Sl
in Eq. (24), with the result

TT h
2

B (v 2

N = "2 r
p

R Sl Yo

TT h
2

B (V 2 _ \> 2) ~ Z y 3
= 2' r

p
R Sl Yo y

*If

and note a consequent pronounced enhancement of the space-charge limit
for stability of collective transverse motion. We are indebted to
Dr. K.R. Symon for helpful discussion of this point.

fIIlIl __



3. The Image-Force Coefficients

a. The electrostatic image coefficient, Sl

(1) Plane-parallel conducting surfaces

The supplemental image field for a line charge Al situated in a gap

of height 2h between infinite parallel conducting planes can be derived

directly by summing the contributions from an infinite series of images or

by use of a simple conformal transformation. From the results of work

described in Appendix B, the supplemental electric field is

- E =
Y

(25a)

for a line charge (AI) displaced a distance YI from the median plane and

the field point located directly above the charge at a distance y from the

,...

- median plane. To obtain the image field at the center of the displaced

It is noted that the value of Sl given by Eq. (2Sb") is three times the

of e
l

given by Eq. (11) for the identical boundary configuration.

-

-

beam, we set YI = Y and find

so that [see Eq. (2la)J

Sl =

(25b'

(25b"

-

(2) Elliptical boundary

Similarly, with the notation introduced in sub-section A3a(2), the

results of Appendix D lead to the following expression for the electric

image field arising from small vertical displacements from the center of an

elliptical conducting cylinder:

[
E

Y
=
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Again setting Yl = Y, this becomes

E =
A1 [4K2

- lJ Yy w2 _ h2
17

2

and

Sl
1 [K2 1J=

(w/h)2 _ 1 n 2 -"4. •

(26b')

(26b" )

The result (26b') includes as a limiting case the image field which

arises from the displacement of a line charge within a circular cylinder

2A 2A

(
1 Q,: 1 ~ 1)E. = ---- Y, ~1 = -2 ' and also that for infinite parallel

1mage h2 /y - Y h2

TT 2
conducting planes (Sl = 16' as obtained previously). Approximate values

of the coefficient Sl for certain special cases of the axis ratio are listed

in Table II below:

Values of the electrostatic image coefficient ~ 1

for a cylinder of elliptical cross section

w/h k2
~l

1 0 0.5

5/4 0.838 0.553

4/3 0.904 0.559

3/2
...

0.965
5 0.575

2/1 0.998 0.599

TT
2

:!:: 0.6168500 1
16

A remarkably small variation of Sl is evident from the values given in

Table II and from the graph shown in Fig. 1.

TABLE II



derived immediately by summing the contributions from an infinite set of

The supplemental image field for a current II situated in a gap of

height 2g between infinite plane-parallel ferromagnetic slabs can be

,...

-

-

(1)
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b. The magnetostatic image coefficient, 52

Plane-parallel magnet poles

......
images or by use of a simple conformal transformation. From the results

of work described in Appendix C, the supplemental magnetic field is

(27a)

for a current (II) displaced a distance Y
l

from the median plane and the

field point located directly over this current at a height Y above the

median plane. To obtain the image field at the center of the displaced

-

-

beam, we set Y
l

= Y and find

so that [see Eq. (Zlb)]

H
x

(Z7b' )

(27b")

-

-
,.....

-

It is noted that the value of S2 given by Eq. (27b") is three-halves the

value of €z given by Eq. (16) for the identical pole configuration.

(2) Wedge-shaped magnet gap

With the same notation as employed in sub-section A3b(Z), the results

of Appendix E lead to the following expression for the image field arising

from small vertical displacements from the central plane of a wedge-shaped

magnet gap:
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.... II { n n
H. = -X (;:: - 1) (;::l.mage \,.(' w

[

1T 2
S)L t + (-)

6X Ct

(X + xl' Y1) and (X + x, y) with respect to the vertex of the wedge, X is

identified as R/n, and ~ = tan-
1

g/X = tan-
1 ~ [Equations (17a-b)J.

The terms of interest for determination of S2 are those which involve

(29a) ...

(29b)

(30a)

(28b)
n 2 [ 2 I . 2

J
xl

- - I + (- - -) (...A..) - 1
6 3 TT2 R/n g2 '

1T
2

[ . 6 2 5 2

J+ -- 1 - _(....8..) + (- + _)(....8....) 2L j
6 n R/n 3 n2 R/n g2

[
1 1 2

J
1

+- n 1 - -(--&-) + _(-L) - l'
n R/n 3 R/n . g

with Y1 set equal to y, we obtain

H
Ii [rr 2

- 4(~) + 4J y=- (-)
x 4X2 Ct

TT
2r 1 2 2

J:!: __1 [1 _ ~(...L) + 2(3" + 2")(R%) Y
4 g2 n R/n TT

1[rr
2

rr' 4]' (~)
2

S2 =-- (-) - 4(-) +
16 Ct Ct

and

y and Y1

where the coordinates of the current and field point are respectively

-
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-

-
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(30b)

The dominant term in Eq. (30b) is seen to be in agreement with the value

S2 = n
2
/l6 that is given by Eq. (27b") for plane-parallel poles ( ~ - + 0).

III. Examples

To illustrate the relative importance of energy and aperture in deter-

mining the transverse space-charge limit, numerical examples are presented

in Table III for a proton synchrotron of 120 meters radius (as might be

representative of an AGS designed for a final energy in the neighborhood

of 30 or 35 Bev). The bunching factor, which plays an important role only

of betatron oscillations is considered to be shifted by action of the space--
at the lower energies, is taken somewhat arbitrarily as 3/8. The frequency

charge forces from 8.75 oscillations per revolution to the half-integral

resonant value of 8.50. Beam dimensions such that
2

b(a + b) = 5.25 cm

are assumed, although these dimensions influence the results strongly only

as determined by single-particle stability were computed by use of Eq. (8c)-
when the energy is low or the gap relatively large. The space-charge limits

and the limits for the stability of coherent axial oscillation were evaluated

*by Eq. (24). In all cases, plane-parallel magnet poles were assumed, so

that e2 = rr
2

/24 and S2 = rr
2
/l6.

*Since the space-charge limits given in Table I for stability of coherent
beam displacement have been computed by use of Eq. (24), they may be
considered as more representative of limits imposed by proximity to an
integral resonance, for reasons indicated in the footnote to Eq. (24).
In addition, considerations which have been carried out by the CERN
group in regard to a multi-hundred Gev accelerator suggest that the
bunching factor (B) necessarily will differ from unity by a greater
amount than is the case in the example considered here.



B = 3/8,

TABLE III

Illustrative values of transverse space-charge limits, for protons
a

2 2 2 2
a = 2 em, b = 1.5 em, R = 12,000 em, v - vy = (8.75) - (8.50) =

Yo
[The limiting number of particles is given by the values in the Table times 1014.J

4.3125

Plane-Parallel Chamber 3:2 Chamber Aperture Circular Chamber Aperture

h = g:
w:

3 em
co

6 em
co

10 em
co

3 em
4.5 em

6 em
9 cm

10 em
15 em

3 em
3 em

6 em
6 em

10 em
10 em

el:
e2 :

Space-Charge Limit for Individual-Particle Stability

---- r r ~ / 4 8 = 0.20562 ----- I --------- 0.134 ---------- I ----------- 0 ------------
---- IT /24 = 0.41123 ----- -------- 0.41123 --------- -------- 0.41123 ---------

K.E· inj •

50 Mev

200 Mev
1. Bev
5' Bev

10 Bev

0.00735 0.00807 0.00824 0.00764 0.00815 0.00827 0.00826 0.00832 0.00833
0.0350 0.0396 0.0408 0.0365 0.0401 0.0409 0.0397 0.0410 0.0412 w
0.313 0.429 0.465 0.333 0.437 0.469 0.378 0.455 0.476 +'"

ex>

2.80 7.62 12.05 3.12 8.19 12.54 3.96 9.53 13.60
5.89 20.4 43.0 6.63 22.6 46.4 8.67 28.2 54.4

---------- 0.5 -----------
-------- 0.61685 ---------

--------- 0.575 ----------
-------- 0.61685 ---------

Space-Charge Limit for Stability of Coherent Beam Displacement
2

---- IT /16 = 0 61685 -----2 •
---- rr /16 = 0.61685 -----

~ 1:

S2:

K.E· inj •

50 Mev
200 Mev

1 Bev
5 Bev

10 Bev

0.0214 v.0857 0.238 0.0229 0.0917 0.255 0.0262 0.105 0.291
0.0850 0.340 0.945 0.0904 0.361 1.00 0.102 0.407 1.13
0.393 1.57 4.37 0.411 1.65 4.57 0.448 1.79 4.98
1.64 6.57 18.2 1.70 6.80 18.9 1.82 7.28 20.2
3.10 12.4 34.4 3.21 12.8 35.6 3.42 13.7 38.0

a -16
r p = 1.536 X 10 em, for protons of rest mass equivalent to 938 Mev.

For the injection energies cited, we take Y respectively as 1.053, 1.213, 2.066, 6.330, and 11.66.

l- l, l-. l l~. l._ L ... .. - L_ - l ..~
'"" ~

,-. l_ l._ l . ~ L . ~ _ L, l ~ _ L_.



,-

"..

-

-

,..

-

- 349 -

Several characteristic features of the space-charge phenomenon are

apparent from the entries in Table III:

(i) At low energy, or for large apertures, the more stringent limita

tion is imposed by the requirement of single-particle stability, since the

direct action of the beam fields on the particle is then dominant. At

higher energies, when the image fields are of greater significance, the

requirement for collective stability becomes the more important, since the

image-field coefficients are greater for this case.

(ii) The number of particles is effectively proportional to ~ Z y 3 only

at the lower energies, but this dependence is followed over a somewhat more

extended range of energy if the aperture is large. (Note, for example,

that the ratio of ~ 2 y 3 for 200 Mev and 50 Mev kinetic energy is 4.96.) At

high energies, the acceptable number of particles is substantially propor

tional to Y.

(iii) Similarly, the size of the aperture is of major importance at

high energies, where the number of particles may vary directly as h
2

• The

shape of the vacuum-chamber aperture, however, does not appear from the

examples considered (h = g) to be of great importance.
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APPENDIX A

APPLICATION OF CONFORMAL TRANSFORMATIONS

In two-dimensional electrostatic problems, the method of conformal

transformations employs a potential function that is the real or imaginary

part of an analytic function (W = U + iV) of the complex position vector

J

(z = x + iy). By virtue of the C a u c h y ~ R i e m a n n conditions, the potential

(U or V) satisfies the two-dimensional Laplace equation, and the magnitude

of the electric field strength is given by

(A. I)

If, for an isolated line charge of strength A (e.s.u. per cm), we take

W = -2A log z (where z denotes the position of the field point with res

*pect to the line charge), the potential function is

Potential = U = -2A log Izl

".... r
E = - grad U = 2A , and

r

IEI= 2A = IdW \.
r dz

(A.2a)

(A. 2b')

(A. 2b")

With steady line currents in a two-dimensional problem, the Cartesian

-+ A

magnetic-field components and the vector potential (A, with A = Ak) simi-

larly satisfy the two-dimensional Laplace equation. Again a complex ana-

.... -+ A

lytic function (W) may be employed, with H = curl A = k x (-grad A) and A

expressed by U or V. For an isolated line current of strength I (e.m.u.),

we may take W = 2 I log z, with

*We employ natural logarithms in this analysis.

..
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A = U = - 2 I log Izl

1\ 1\
.... A k x r
H = k x (-grad U) = 2 I r ,and

IHI= 2; = 1::1 oersted.

(A.3a)

(A.3b')

(A. 3b")

-
The usual boundary condition to be satisfied at the surface of ferromagnetic

material of high permeability is H
t

= 0, or oAjon = 0 and the orthogonal

abandoned, however, if its application would violate the basic equation

JlH.d1 = 4n EI, as would be the case for a current-carrying conductor

-
function remains constant along the boundary.

threading a tube of ferromagnetic material.

This requirement must be

The magnetic-field lines can

be visualized as a system orthogonal' to the flow lines in a current-flow or

heat-flow problem in which, with similar geometry, the line current becomes

a source and the ferromagnetic material assumes the property of very high

resistance to the flow of current or heat. The magnetic-field lines are

curves which then become, in this analogy, the electric or thermal equi-

potentials.

In the case of alternating currents, the phenomenon of skin effect

will prevent the ac magnetic field from penetrating into neighboring con-

ductors, and the magnetic field must be tangential at the surface of these

- conductors. The magnetic-field lines of a two-dimensional problem involving

-

-

alternating currents directed exclusively in the z-direction thus constitute

a system orthogonal to that given by the electric-field lines of the geo-

metrically similar electrostatic problem, and the magnitude of the magnetic

field will be just IIA times the value of I ~ ~ I for the corresponding electro

static case.

In all cases, determination of the complex function W may be aided by



- 352 -

use of intermediate conformal transformations in which the strength of

the sources remains unchanged. Electrostatic field lines which go to

infinity may, however, be interpreted as associated with a sink r e p r e ~

sented by a negative charge, and this charge will have to be included

whenever the point at infinity is transformed to within the finite region

of the next complex plane; an analogous situation in a magnetostatic

problem would involve transforming a return current at infinity so that

this current would fall in the finite region of the complex plane.

APPENDIX B

IMAGES IN INFINITE PARALLEL CONDUCTING PLANES

1. Application of Conformal Transformation

The transformation

z' = exp rr(z + ih)/2h (B.l)

is useful for transforming the boundaries of interest to the real axis of

the z'-plane and carries the region between the plates into the upper half

of this new complex plane.

z

00 + ih

ih

-00

-ih

00 - ih

z'

-00

-1

o

+1

+00
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With the line charge Al located at z = iYI and the field point at z = iYt

the electrostatic potential may be written directly by use of a single

= - 2A
l

log-
-

image (-A ) in the zl-plane:
1

exp iTT(y + h) /2h - exp irr(YI + h)/2h
U = - 2A

l
log

exp iTT(y + h)/2h - exp -irr(Y
I
+ h) /2h

sin TTy/2h - sin TTYI/2h\

1 + cos TT(y + y
l
)/2h

2 2

{
TT Iy - Y11 [ TT

2 Y + 4y Y1 + Y1 ]}
:!: - 2Ao 1 log '4 h 1 + 48 h 2

(B.2a)

(B.2b)

(B.2c)

- (B.2d)

The image-field t as derived from the image-dependent term in Eq. (B.2d), then

-
is

TT
2
A

~ 1 ~
E = ----2 (y + 2y

l
) J ,

image l2h
for x = xl • (B.3)

This result is employed in the body of the present report in writing Equa-

tions (10) and (25a).

2. Direct Summation of Image Fields

The result expressed by Eq. (B.3) can be derived directly by summing

-

the field contributions of an infinite series of images of alternating sign.

The following system of images applies:
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.J-

Charge Distance from Field Point ..
Original Al Yl - Y above .-j

-AI 2h - Y - Y above
1

-A 2h + Y
l

+ Y below
1 ~

+A
l 4h - Yl + Y below

+A
l

4h + Yl - Y above

-A 6h - Y above
,..

1 1 - Y

-A 6h + Yl + Y below
1

The upward-directed electric field due to the images alone then is:

(B.4b)... ]

Al f
~ ~ L[(Y1 + y) + (l/9)(Y

l
+ y) + (1/25)(Y

l
+ y) + ••• ]

h

+ [(1/4)(Y1 - y) + (1/16)(Y1 - y) +

A '." ,
1 [ ) (-2 -2 -2 . -2 -2 -2 ]= ~ (y

1
+y 1 + 3 + 5 + ••• ) + (1/4)(y

1
-y)(1 + 2 + 3 + ••• )

h

Al [ 2 rr~2= _ (y + y)'!3- + (y _ y)_
h 2 1 8 1 2

TT
2A

1
= ----2 (y + 2y

1
) ,

12h

in agreement with Eq. (B.3).

(B.4c)

(B.4d)

(B.4e)

(B.4f)
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APPENDIX C

IMAGES IN INFINITE PLANE-PARALLEL FERROMAGNETIC POLES

1. Application of Conformal Transformation

The field which arises from the images of a line current (II) in

infinite plane-parallel ferromagnetic poles can be computed readily by

aid of the transformation (B.l) that was introduced in Appendix B. The

single image (-AI)' which was employed in the zl-plane for the purpose of

the electrostatic computation, now becomes replaced by a positive line

current (+1
1
). In addition, however, a line current -1

1
/2 at x = -00 in

image (of like sign) in the xl-axis, constitute a current (-11) whose con

tribution to the potential must be included. [The significance of the

-
the z-plane is transformed to Zl = O. This current, together with its

-

line current -1
1

/2 at x = -00 may be appreciated most clearly by visualizing

the analogous problem of conduction current or heat flow, in which half the

flow lines emerging from the given source 11 pass to the left to terminate

on a "sink" (of source strength -1
1

/2) at x = -Q).]

With the line current II located at z = iYl and the field point at

z = iy, and with a pole separation of 2g, the potential function becomes

in this case:

A = U -2 1
1

log

[exp in(y + g) /2g - exp in(Y
l

+ g) /2g]

x [exp in(y + g) /2g - exp -in(Y
l

+ g) /2g]

exp irr(y + g)/2g
(C.la)

-

-

= -2 II log [2 Isin rry/2g - sin nYl/2glJ

2
n 2 Y + YY1 +

24 2
g

Iy - Y 1 TT
2

I 2 2
.L 2 I 1 (rr 1 ) + 1 (+ + )
- - 1 og g 12 g2 Y YYl Yl

(C.lb)

(C.lc)

(C.ld)
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The image field, as obtained by evaluation of ~ x ( - g r a d U) for the image-

dependent terms in Eq. (C.ld), is in the x-direction and of the amount

for x = (C.2)

This result is employed in the body of the report in writing Equations

(15) and (27a).

2. Direct Summation of Image Fields

As in the electrostatic problem for infinite plane-parallel conducting

plates, the magnetostatic problem to which Eq. (C.2) applies also can be

solved directly by summing the field contributions of an infinite series of

images. The locations. of the required image currents are the same as for

the line charges considered in Sect. 2 of Appendix B, but in the present

case the sign of each image is that of the original current (+1
1

) .

....
The horizontal magnetic field of the images (H = H t) is

x

H. = 21
1

[2 1
1mage g-Yl-y

1
6 1 + ...J(C.3a)

g+Yl+Y

~ I~ {[~Yl'+'y) + (1/9)(Y
1

+ y) + (1/25)(Y
1

+ y) + •.. J
g

- [(1/4)(Yl - y) + (1/16)(Y
l

- y) + ... J} (C.3c)

I
_ --l r( ) -2 -2 ~ 2 -2 -2 -2
- 2 L Yl + Y (1 + 3 + 5 + ••• ) - (1/4)(Y

l
- y)(l + 2 + 3 +

g

11 [ 2 ~2= - (y + y)!!...- - (y - y)!!-
2 1 8 1 2

g

... )]
(C. 3d)

(C.3e)

in agreement with Eq. (C.2). (C.3f)

..
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APPENDIX D

ELECTROSTATIC IMAGES IN AN ELLIPTICAL CONDUCTING CYLINDER

We are concerned here with the image fields which arise from an ellip-

tical conducting cylinder, of which the upper portion extends from the point

A (x = w) through B (y = h) to A
l

(x = -w). The center is at the origin

(0,0), and the foci F,F
l

are at x = ± Jw
2

- h
2

• Sufficient generality will

be obtained for the work of this report by locating the line charge (A
l

)

and the field point (F.P.) on the y-axis, at z = iYl and z = iy, respectively.

In order that specific boundary conditions may be applied along the

line AA
l

, despite the asymmetry introduced when Yl ~ 0, it is convenient to

consider the potential in the z-plane as the average of the potentials

which would result in the following two cases:

Case I: The entire boundary, OFABA1F10, of the region contained within

the upper half of the ellipse is at constant (zero) potential.

Case II: The elliptical boundary is at constant (zero) potential, but

the horizontal axis, AA
I

is a stream line.

These two cases would respectively arise if identical charges (A
l

)

were located at z = ±iy
l

, or if charges of equal magnitude and opposite sign

(±A
l

) were located at these two symmetrical p o i n t ~ . In either case, the

portions of the y-axis from Al to B and to ° are stream lines.
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The transformation

· -1 z
z I = m s ~n J-r=w=2==_=h==2 (D.l)

will transform the region within the upper half of the ellipse to that

in turn will transform this region to that above the x"-axis of the ·z"-plane.

The boundary point B lies at x" = ± 00, the points A and Al at ±p, and the

(D.2a l
)

(D.2a)

A second transformation,

(
2K

q sn n

2K z'
q sn(- - k)

n m'
z"

within a rectangle in the z'-plane.

points F and F
I

at ±q. In Equations (D.2a,a'), K denotes the complete

elliptic· integral of the second kind,

k == q/p , (D.2b)

and k is selected so that

K' = 1 tanh-l.h
K TT W

* (D.2c) ...

*K I denotes K(k'), where k' == Jl - k
2

• [For numerical values and helpful
relations concerning elliptic functions and integrals, see, for example,
E. Jahnke and F. Erode, "Tables of Functions (Funktionentafeln)"
(Dover Publications, New York, 1945), Chapters V and VI.]

....
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Point

o

F.P.

B

z

o

iy

ih

±w
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z'

o

-1 Y1
im sinh j w2 _ h 2

. -1 Y
im s ~ n h J = ~ : : : ; 2 ~ _ = h : : ; : ' 2

im tanh -1 .h
w

TT -1 h
m (~+ i tanh ;)

TT
±m 

2

z"

o

iy "
1

iy"

±ro

±p

±q

-
The location of the field point in the z"-p1ane is given by

" " ( 2iK . h -1 Y
z = iy = q sn n s~n j w2 2 ' k)

h

(D.3a)

. tn ( 2K sinh -1 Y , k'),
1q n Jw2 _h2

and a similar equation relates the coordinates Y1" and Y1 of the line

(D.3b)

charge. In Case I, for which the entire boundary, BA
1

0AB is at zero

potential, the required potential function can be written immediately in

terms of the coordinates in the z" -plane:

-
y" - y "

1
y" + y "

1
(D.4)

For Case II, in which the line segment A
l

F
1
0FA is.a stream line while the

remainder of the x"-axis is at zero potential, additional transformations.

-

are required. A possible systematic procedure employs the following:



- 360 -

(i) the transformation

(D.S)

i m [to bring the charge A
1

to the origin of the z -plane with the result that

the stream line from z" = iY1" to the origin of the z"-p1ane becomes a

portion (-t $ x
m

$ t) of that segment (AA
1

, between the points X
W =

±t j (p/Y1,,)f-;-'l) of the x'" -axis which constitutes a stream line]; an

image charge, A
1

, should also be imagined as located at the origin, an infi

nitesimal distance below the xm.axis, in order that the strength of the

original source A
1

be confined, as it should, to the upper half of the

III

z -plane;

(ii) the transformation

J

iv 2u .-1
z = 11 s~n

zllll t

J(;I;
,··__·_z,·, .

(ply If) + I
I

(D.6a)

2u
=-

.1T

I ,,2 + --~
" -1/ z Y1

S1n J 2 2
p + y "

I

(D.6b)

o III "
to fold upward by 90 the zero-potential portions of the x -ax~s; and

(iii) the transformation, analogous to that employed in Sect. I of Appen-

dix B,

[
IT iv ]

zv = v exp i 2" (l - Zu) , (D.7)

iv
to bring the vertical equipotentia1s that extend between ± i ~ at x = ±u

into coincidence with the entire xV-axis. By Eq. (0.7), the zV.coordinates

of the line charge (strength 2A
l

) and of the field point above it become

iT yiv
t " 1 v "v. d v = . v .respec ~ v e y zl = ~Y1 = ~v an z 1Y = 1V exp 2 u
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For Case II, therefore, the potential function may be written,

-
,..

TT iv
4A I log ctnh - L

4 u

= 4A
l

log ctnh ~ sinh-
l

(0.8a)

(0.8b)

(D. Be)

-
(D.Bd)

By averaging the potentials U
r

and Urr' given by Equations (0.4) and (D.Bd),

we obtain the result

y"Z) 21[y" + y " (lpz + y"Z + JpZ +
U = Al log y"

1
(0.9a)

y " I y"Z - "Z1 YI

which may be expressed in terms of the coordinates y and Y
I

in the original

z-plane as

-
Z(ZK . h- l ~ k') 1 jk'Z Z(ZK. h-1 Y1 k'} 1

tn I T s ~ n ./ Z 2' + + tn n s ~ n / 2 2' +
vw -h V w -h

(D.9b)
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*The potential expressed by Eq. (D.9b) may be expanded, noting that

j

U :!: -211. 1 {log ( ~

to give the result

~ = )
I 2 ;y

Vi W -h

and the vertical image field becomes

E.
1mage

(D.10)

as has been employed in writing Equations (13) and (26a) in the body of the

report.

The'results expressed by Eq. (D.10) may be checked. for two limiting

cases - that of parallel planes ( w ~ ~ ) , and that of a circular cylinder

(w ~ . h). In the first of these,

k ~ 1, K' .L TT
- 2' and

TT
2

w
K ef--

4 h'

* k
2

+ 1 u3 + k
4

+ 14 k
2
+ 1 5sn(u,k) :: u - u

6 120

as may be obtained by expanding the elliptic integral

sn u

=J
dt

u
J1 - t 2 11- - k2t 2

0

Then
4k

2
+

cn(u,k) 1
1 2 1 4

- - 2" u + 24
u

and

tn(u,k} • u -
k

2
- 2 3
6 u +

k4 _ 16 k
2 + 16 5

120 u

In expanding factors of the form y" - Y
l
", terms through third order

must be retained, in order that terms of second order will remain in
the expansion after y - Yl has been factored out.



- K'
in order that K equal

- 363 -

2 tanh -1 .h ~ 1 .h.
". W Trw

Then

in agreement with Eq. (B.3) or (B.4f) of Appendix B.

In the second limiting case,

k
2 ~ 8(w - h)/h,

Then

=

K' =:: 10g/
211

w-h '

4h(w - h) YI =

and

.-

-

as is directly obtainable from calculation of the image field which results

from an image charge situated a distance h
2

/Yl from the center of a cir

cular cylinder of radius h [see the discussion in the text following

Eq. (2Gb")] •

APPENDIX E

MAGNETIC I~GES FOR A WEDGE-SHAPED GAP

We consider here a wedge-shaped gap, of half-angle a, between ferro-

magnetic poles. The reference point, which serves as the origin of the

z-p1ane, is situated on the median plane of the gap a distance X from the

vertex. The current (II) and field point will be located with respect to

-

this reference point by coordinates, (x
l

,y
1

) or (x,y), which themselves are

small in comparison to the half-gap
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g = X tan Q' • (E.la)

Since the magnetostatic potential which would be generated by a pair of

magnet poles in this configuration is proportional to the angular coordinate

taken about the vertex as a center,8 the distance X would equal - dH~drlx

and we may set

I '

Rx=
n '

(E.lb)

where n is the so-called "field index" which measures the relative gradient .".;.

of the magnetic field. With this simple pole configuration, however, the

field gradient may not be as constant as would be desirable in practice, but

the arrangement described may serve as a useful model for the investigation

of image forces resulting from the presence of a line current in the magnet

gap.

The transformation

z' = ia' (E.2)

will transform the region between the ferromagnetic boundaries into the

upper half of the z'-plane, with the vertex of the wedge (z = -X) trans-

formed to z' = 0 and the reference point to z' = iy' = ia'.

function then may be written

The potential

-

8. See, for example, Sir James Jeans, "The Mathematical Theory of
Electricity and Magnetism" (Cambridge University Press,
Cambridge, 1948), Sect. 318.

..
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IOg/[(X'+iyf ) - (XI'+iY
I
')] [(Xf+iY') - (xl' -iyl')JI (E.3a)

I
IT/2Of +. rr/2Of

log {a,2 [(1 + x+iY) - (1 + x1x1
Y1) ]

-

-

2 2 2 2

{

TT x+x
1

. IT TT x +x
1

Y -Y1
- I (- - 1)-X- + (- - 1) (- - 5)

1 Of Of Of 12 X2

(E.3b)

(E.3c)

1\

By forming k x (-grad U), one obtains the supplementary image field

I { 2 Y-+ 1 IT TT ~Ii- TT 1/).
Himage = X (;;r - l)(;;r - 5) 6X 1. + [(;;r) + 2~ 1.

-

.!. {IT2
[ .2(-.&....) 2 5 2]

- 1 1 6' 1 - 11 R/o + ('3 + 2) (R7n) ~ t
IT g

(E.4a)

(E.4b)
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where in going from Eq. (E.4a) to (E.4b) we have made use of Equations

(E.la) and (E.lb) to identify X with Rln and Q'
-1 --&...

with tan Rln' and

have considered g small in comparison to R/n.

Equation (E.4a) may be checked in two limiting cases, of which the

first is that for which Q' ~ 0 and X ~ 00 so that Q'X ~ g. Physically this

corresponds to the magnet surfaces becoming the faces of plane-parallel
-

poles, with a yoke situated at a great distance to the left.

case the image field becomes

In this

2y + Yl ,,:}
2 1 •

g ...

In the limiting case that

In this result the horizontal field component agrees with Equations (C.2)

TT
2
1

and (C.3f) of Appendix C, the term 6 g~(X - xl)! is consistent with the

~ TTI I ~
condition ~ x H = 0, and the component --- J is the field expected from an

g

infinite set of current images in the yoke (images separated vertically by

2g and situated a large distance to the left).

TT
Q' ~ 2' the distance X represents the dis-

tance by which the reference point is located to the right of the face of

I-
...

an infinite plane slab of ferromagnetic material.

Eq. (E. 4a),

The field given by

[
Ix + xl

II (-X - ) J~
2 X

2
y - Yl ]

2
t ,

2 X -
is just the field to be expected at a point X+x to the right of the slab

by virtue of an image current (II) situated a distance X+x
I

to the left

of the slab when the difference in elevation is Y-Yl: -

....
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i ]

Y - Y1 ]
--2- t ,

2 X

as was obtained from Eq. (E.4a) for the case


