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ON INTERACTIONS IN CONTINGENCY TABLES

Jiki ANDEL

(Received June 15, 1972)

The concept of a generalized logarithmic interaction is introduced. Sidak’s method
for multiple comparisons of the logarithmic interactions is considered. The proposed
procedures are applied to Simpson’s example. Finally, the logarithmic interactions
are proposed for comparing 2 x 2 contingency tables.

1. INTRODUCTION

Statistical methods based on contingency tables are frequently used in practice.
The classical y>-test and Fisher’s factorial test for independence have been for a long
time the main tools for detecting an association. In the present time the following
methods are used besides them:

(a) The method based on maximal likelihood (see {8]).

(b) The method based on the information theory (see [6]).

(c) The Bayes method (see [7]).

(d) The method based on logarithmic models (which uses the analysis of variance).

(e) The method based on interactions.

The concept of the interaction was introduced by Bartlett [1] in 1935. Fisher’s
paper [3] initiated the investigation of the statistical properties of the interactions.
Especially, Goodman’s papers play an important role in the development of the

theory of interactions during the last ten years. Some of them are the basis for the
present paper.

We shall investigate contingency tables where no marginal total are fixed. Let
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us explain the basic concepts on a two-dimensional contingency table

Ryy Byp ... Py, ny.
Nyy Ny ... Ny, n;.
N |
( ) R S R g n,,
ny N, ...N, n

where . . .
ngo= Y mg, By= YR, =Y R =Y R
i=1 i=1 i=1 Jj=1
In the sequel we shall assume that n;; > 0 for all i, j.

For r = ¢ = 2 we have a 2 x 2 table

Ny h

o) 11 M2 ’ )

( ) Ryy Ny [
The number

(3) b = ”11”22/”12”21

will be called the interaction in a 2 x 2 table (some authors call it “cross-product
ratio”). Edwards [2] proved that under reasonable assumptions any measure of
association in a 2 x 2 table must be a function of b. A good interpretation of the
interaction b is the ratio of chances (ny; : na¢)/(ny, : ny,).

r
Generally, let us have a matrix a = («;;);—; §-,, Where @ = 0, Y o;; = 0 for
i=1

M

J=1L2 e Yoy =0fori=12..,r
Define o

(4) dy, = }r:, i o;; In (ny[n)

and o

(5) b, = exp {d,} .

Obviously, d =3 ¥ «,;In n;;, which is more appropriate for calculations.
i=1 j=1
Then b, is the interaction (corresponding to the matrix ac) and d, the logarithmic
interaction. (We differ somewhat from the terminology used in [5].) The special

case for a 2 x 2 table arises, when
1 —1
a = .
-1 1
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Because the contingency table (1) is a sample of the size n from the multinomial
distribution with the probabilities

P11 Pi2--- P
D2y P22 --- P2c
Pri Pr2 -+ Pre

d, is an estimate for the theoretical logarithmic interaction

c
Z Inpy;
and b, is an estimate for the theoretical interaction

B. = exp {,} .

H'M -

2. GENERALIZED LOGARITHMIC INTERACTIONS

Let (n;, ;) be an /i-dimensional contingency table with positive elements, cor-
responding to the probabilities (p;, ;). where i;=1,2,.. k;; j=1,2,..,h
Denote n = Y, ... yn;, . ;- ket @ = (a;, ;) be such a system of real numbers that

i in

YooY =0, % Y| >0
if in

i in

Then

= Z Zui.”.i;, In iy in
i in

will be called the generalized logarithmic interaction and b, = exp {d,} the generalized
interaction. Analogously

o = z Z“;,A..ih Inpi, i
it in

will be the generalized theoretical logarithmic interaction and f, = exp l5} the
generalized theoretical interaction. If, in addition, Zoc =0forj=1,2,...,h,

Jin

then b,, B, are called (normal) interactions and d,, 6, (nmmal) logarithmic interactions
without the adjective “generalized”; b, and d, are the sample values, §, and J,
the theoretical ones.

Theorem 1. Let 32 be random variable having the chi-square distribution with t
degrees of freedom. For pe(0,1) define yX(p) by the formula

P(x} > x(p) = p-
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Put

Siz = Z Z(ail-nih)zlniguvih .
Then the probability that

(6) |d. — 8][4, < xp)

holds for all logarithmic interactions (or generglized logarithmic interactions)
simultaneously, converges to 1 — p for n — co. Here t = (k; — 1) {(k; — 1) ...
... (ky, = 1) for the logarithmic interactions and t = kik, ... k, — 1 for the general-
ized ones.

Proof. All possible tables a = («;, ;) form a linear space of the dimension ¢
(excluding the null-clement). Take a basis
ap = (o) %= (%)

and consider the corresponding J,,...,, and d|, ..., d,. Denote & = (6,,...,3,),
d=(dy....,dY). Put

atls = Z Za?l-v-{ha?l~v~ila/pi|'~-iiv >
iy in

A :(aqs)at[:l.::I E] An:(a;s,;=1i=1'

From the asymptotic normality of the multinomial distribution and theorem 6a.2 (TII)
in Rao’s book [8] it follows that the random vector n'/*(d — ) has asympto-
tically the normal distribution N,(0, A). Denote by F, the distribution function of
n'/}(d — §) and by H, that of the normal distribution N (0, A,). From the fact that

@) lim sup

RN X{...X¢

F,—H,J|=0

(see (6a.2.11) in [8]) we conclude that H, converges to the distribution function
of N0, A) and n(d — &)’ A, '(d — 5) has asymptotically the chi-square distribution
with ¢ degrees of freedom provided A, is regular. Now take v = (v(,...,0,) + 0
and denote

1
- q -
Loy = ZIUq“i....i,. , Oy = (ail...i;,)-
4=

Because a,, ..., &, is a basis and v # 0, we see that &, = 0. After elementary com-
putation we get

(3) VAV =nY (o o) ni 4 > 0.
Thus the matrix A, is positive definite and, therefore, regular.
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If v varies over the {-dimensional space (excluding the null-clement) then v'd
gives all logarithmic interactions (normal or generalized).

It is well known that the events

©) n(d — o) A7 (d — 8)/xi(p) = 1
and
(10) [vi(d — 8)] = vAy i(p)n forall v

are equivalent. A geometric proof is in [9], Appendix 111, but the equivalence can
be proved very ecasily and shortly using the Schwarz inequality. The probability
of (9) converges to 1 — p for n — oo according to our previous consideration.
As for (10), dy = v'd is a logarithmic interaction (normal or generalized) belonging
to @y, &, = v’ its theoretical value in the population and v'A,v/n = Sﬁo according
to (8). The proof is finished.

It happens that we consider a few logarithmic interactions only. Then the simult-
aneous bounds for their theoretical values given in (6) could be rather wide. For
such a case Goodman derived the following Theorem 2.

Theorem 2. Let @ denote the distribution function of N(0, 1) and u its inverse.
Then the probability that the intervals )

(11) (d; — u(l — p[2w) S;,, di + u(l — p[2w) S,)
cover &; for all i =1,2,...,w simultaneously, is asymptotically at least 1 — p.

Proof. See [5]. The proof is based on Tukey's theorem employing Bonferroni
inequality (see [11], 10.5(a)).

We give another theorem concerning this problem.
Theorem 3. Put

(12) ¢ = u(t + 4(1 = ).

Then the probability that the intervals

(13) (d; — ¢Sy d; + ¢Sy)

cover O; for all i =1,2,...,w simultaneously, is asymptotically at least 1 — p.
Proof. Denote & = (§,...,98,), d =(d,,...,d,). Let d, and &, correspond
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to o = (of ), k=1,2,...,w. Put
n o __ q s
a’qs =n Z cee Zail...ih“il...ip./nil..‘i,, >
1y ih

AT = (@)

n g=1s=1 "+

Denote by F; the distribution function of n'/>(d — &) and by Hj that of N (0, Ay).
Similarly as (7) in the proof of Theorem 1 we obtain that
(14) lim sup |Fy — H;| =0.

Let Y = (Y,, ..., Y,) have N (0, AY). Then, according to Sidék’s theorem [10]
P(|Vy| < cinoos V] <€) 2 P(JYy] < ¢1) .. P(|Y] < <)
holds. Denote varY; = o7, i = 1,2,..., w. {Obviously ¢? = nS;,) Then
P(|v,| < coy, ..., |V,| < c0,) 2 P(IYy| < cay) ... P(|Y,| < co,)=1—p.
But (14) implies that
P(ld, — 6,] < ¢S4y, ..y |dw — 8, < €S4) — P(Y| < coy, ..., [V,] < c0,,)

converges to zero for n — oo. This concludes the proof.

It is easy to see that Theorem 2 and Theorem 3 hold for generalized logarithmic
interactions, too. Moreover, both of them are valid even in the case when some
logarithmic interactions are evaluated from marginal contingency tables. It suffices
to notice that such a vector of logarithmic interactions has asymptotically a simul-
tanecus normal distribution.

It is evident that both of the methods described in Theorem 2 and 3 hold for
w = 1, too.

In view of
(15 uw(l-plw)zul+31-p"). 0<p<1, wz1,

we see that Theorem 3 always gives better results compared to Theorem 2 (although
the differences are small in practical cases). The inequality (15) can be proved either
by a direct calculation or from the fact that Theorem 2 is essentially based on the
Bonferroni inequality ’

P(|Yy| < eyn..n |V,

<e¢)2z1=-YPr|zc),

i=1
but clearly the same inequality holds also for P(|Y,| < ¢;) ... P(|Y,] < ¢,) so that
this last product of probabilities yields a closer lower bound for P(|Y,| > Cqyeee

s Y < e
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3. EXAMPLE

Let us analyse the following tables:

Male Female
' Treated i Untreated 1 i Treated { Untreated
. ||
| Alive | 800 400 l Alive 1200 200
| Dead i 500 300 ) Dead 1500 | 300
| i |

It is the classical Simpson’s example (see [2]), only the frequencies were multiplied
by 100. We have to do with 2 x 2 x 2 contingency table (suppose the case where
no marginal totals are fixed). The “natural” interaction (800.300)/(400.500) evaluated
from the first subtable using (3) appears to be the generalized interaction considered
in the whole table corresponding to

=(L 7)) (o)

It is the main reason why the generalized interactions were introduced. They make
it possible to consider all the interesting subtables separately. (Another application
of the generalized interactions consists in the possibility to test the hypothesis that
the probability that a treated male is living equals to 0.75, say.) Let us test the fol-
lowing hypotheses on the usual 59 level of significance:

(1) The survival of males does not depend on the treatment.

(2) The survival of females does not depend on the treatment.

(3) The survival of treated subjects does not depend on the sex.

(4) The survival of untreated subjects does not depend on the sex.

(5) The treatment of living subjects does not depend on the sex.

(6) The treatment of dead subjects does not depend on the sex.

Obviously, the answers may be based on the generalized logarithmic interactions.

We have
x7(0.05) = 3.755; u(l - 0.05/12) = 2.639 ;

u(} + 4.0.95Y6) = 2.633.
Thus, the method described in Theorem 3 is the most favourable and will be used.
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For each hypothesis we shall write a, d, confidence interval (c.i.) for § based on (13),
and y* calculated for the corresponding 2 x 2 table by the usual way. The values
of y* are mentioned for comparison only, they can’t be used for simultaneous testing.

(1) @ = 1“’], 00, d =0.1823,
—1 1 00

ci. (—0.0686,0.4332), ;> = 3.663.

2 a=<gg>, ( ;”i) d = 0.1823,

ci. (—0.0788,0.4434), 2 = 3.386.

3) a=( YO, (71O, 4 = o631,
~10 10

|

It

ci. (0.5116,0.8746) ¥* = 102.56 .

4) a= (" ! , 0 -1 , d = 0.6931,
0 —1 0 |

ci. (0.3797, 1.0065), x* = 34.29.

(5) a= ("7, (1Y, —1.0986,
0 0 00
ci. (—1.3564, —0.8408), 3% = 132.06.
0 0 00
6 a4 = 5 s
(©) (1 ~1) (—1 1)

ci. (—1.3530, ~0.8442), »* =135.42.

It

Il

—1.0986 .

Our generalized logarithmic interactions are chosen in the present example in such
a way that their theoretical values under independence are zeros. This always holds
for non-generalized logarithmic interactions but it is not the general property of the
generalized ones.

As for the given example, we see that the hypotheses (3), (4), (5) and (6) should
be rejected.

Somebody could prefer the following complex of hypotheses:

1) =0, @)=0@), )=0), @) =4,

(5') The treatment does not depend on the sex regardless to living.
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(6") The degree of the association (measured by interaction) between treatment
and living is the same for both male and female.

We use Theorem 3 again. The above results (1)—(4) hold for (1')--(4"), too.
The test of (5) is based on the marginal contingency table for which d = —1.07
and the confidence interval (13) is (— 1.25, —0.89). Under independence the theoretical
value equals to zero. Thus the hypothesis (5) is rejected.

Male } Female ‘
| |
| Treated 1300 2700 1
l Untreated 700 500 ,
- |

The test of (6) is based on the ratio of interactions the subtables

1500.200

aw =2

800.300 /1200.300
500.400

or on its logarithm. But (16) corresponds to

(L) )

and we get d = 0; the confidence interval is (—0.3621, 0.3621).

4. ON A METHOD FOR COMPARING 2 x 2 CONTINGENCY TABLES

Some methods for comparing contingency tables were considered in [4]. We
propose a method based on logarithmic interactions.

Let us have j contingency tables

ay by | i’;’bk
¢y dy 1T K d,

which can be considered as independent samples from k populations. We want to test
the hypothesis that all the populations have the same interaction which (a) is supposed
to be known and equal to J, (b) is not known. Denote d;, and §;, the logarithmic
interaction, and the theoretical logarithmic interaction in the i-th table, respectively.
The value Sj, is given in this special case by the formula S, = 1/a; + 1/b;, + 1/c; +
+ 1/d;.
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(a) Let k 2 1. From the asymptotic normality of d,, ..., d; (when a, + b, + ¢; +
+d; = oo for i = 1,2, ..., k) and their independence it follows that

=Y (d - oS,

has asymptotically the chi-square distribution with k degrees of freedom. Therefore,
if T> Xf(p), we reject the hypothesis. (The case § = 0 can often occur.)

(b) When 6 is not known, the test procedure is based on the following Theorem 4.

Theorem 4. Put

k k

d= (X 18i)7" ¥ disi,.

i=1 i=1
fé,=...=6.anda; + by +¢; +d; > oo fori=1,2,...,k, then the random
variable

VoS (d - 3PS

i=1
has asymptotically the chi-square distribution with k — 1 degrees of freedom.

Proof. Let X, ..., X be independent random variables, where X, has N(i, 67),
i=1,2,..., k. We assume that Jf, ...,a,f are known positive constants and u
is an unknown parameter. Remark that

-k

p= (3 10]) S o}

i i=1

i=

is the best linear unbiassed estimator for p. Applying theorem 3b.4(II) in [8] we can

prove that the random variable
k

ZI(X" — p)?*lo}
has the chi-square distribution with k — 1 degrees of freedom. The rest of the proof
follows from the asymptotic normality of the random variables d,, ..., d;.
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Souhrn

O INTERAKCICH V KONTINGENCNICH TABULKACH
Jiki ANDEL

Budiz (n;,. ;) h-rozmérna kontingen&ni tabulka s kladnymi &etnostmi a a =
= (a;,...;,) h-rozm&rna tabulka redlnych &isel takova, Ze plati

Z...Zail‘“i,‘ =0, Z"'Zlail---ihl > 0.
5% 14 iy in

Necht dana kontingenéni tabulka nema Zadné pevné marginalni Cetnosti, takze ji lze
povazovat za vybér z multinomického rozdéleni s kladnymi pravdépodobnostmi
(pi,...;,)- PoloZzme i

d, = Z Z“i....f,. Inp; s do= Z Zail...ih Inn; .,
i1 h i1 I

exp {3,}, b, =exp{d,}.

i

Ba

Pak b, a d, se nazyvaji zobecnéna interakce, resp. zobecn&na logaritmické interakce;
B, a d, jsou teoretickd zobecnéna interakce, resp. teoretickd zobecnéna logaritmicka
interakce. Simultanni intervaly spolehlivosti pro zobecnéné teoretické logaritmické
interakce Ize konstruovat pomoci metod uvedenych ve vétich 1, 2 a 3. Je uveden
\Simpsonﬁv priklad tykajici se tabulky 2 x 2 x 2, ktery je navrhovanymi metodami
podrobné vyhodnocen. Posledni ¢ast prace je vénovana testu hypotézy, Ze k ne-
zavisle pofizenych ¢tyfpolnich kontingenénich tabulek pochazi ze zdkladnich souboril
se stejnou interakci. P¥itom se rozliSuji dva pfipady. Prvni nastava tehdy, je-li tato
spole¢na interakce sou¢dsti hypotézy (je-li tedy dana), druhy piipad se tyka situace,
kdy tato hodnota neni dana. NavrZeny test je v obou pfipadech zaloZen na logarit-
mickych interakcich.
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