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Navier-Stokes 方程式の局所正則性判定条件

北大理 高橋秀慈 (Shuji Takahashi)

Part 1

ON INTERIOR REGULARITY CRITERIA FOR WEAK SOLUTIONS

OF THE NAVIER-STOKES EQUATIONS

We are concerned with the behavior of weak solutions of the Navier-Stokes equations

near possible singularities. We shall show that if a weak solution is in some Lebesgue

space or small in some Lorentz space locally, it does not blowup there. Our basic idea is

to estimate integral formulas for vorticity which satisfies parabolic equations.

1. Introduction

This paper studies local interior regularity criteria for weak solutions of the Navier-

Stokes equations:

(1.1) $u_{t}-\Delta u+(u\cdot\nabla)u+\nabla\phi=0$ in $Q$

(1.2) $\nabla\cdot u=0$ in $Q$

(1.3) $u|_{\partial\Omega}=0,$ $u(x, 0)=u_{0}$ ,

where $Q=\Omega\cross(O, T),$ $\Omega$ is a domain in $\mathbb{R}^{n}(n\geq 3)$ with smooth boundary, $0<T<\infty;u=$

$(u^{i})_{i=1}^{n}$ and $\phi$ denote, respectively, unknown velocity and pressure, while $u_{0}=(u_{0}^{i})_{i=1}^{n}$ is

a given initial velocity. Here external force is assumed to be zero for simplicity. For every
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$u_{0}\in L^{2}(\Omega)$ satisfying conpatibility conditions, a global weak solution was constructed by

Leray [Le] (when $\Omega=\mathbb{R}^{3}$ ) and Hopf [Ho]. Their solutions are known to satisfy

(1.4) $u\in L^{2,\infty}(Q)$ and $\nabla u\in L^{2,2}(Q)$

where

$L^{p,q}(Q)=L^{q}(0, T;L^{p}(\Omega))$ .

However, the regularity of their weak solutions is not known unless $n=2$ although some

partial regularity is proved for $n=3$ (see [CKN] and references therein).

Serrin [Se] gave a nice local interior regularity criterion (cf. [Oh]). Let us recall

his result. He proved among other results, that a weak solution $u$ satisfying (1.4) is in

$L^{\infty,\infty}(Q_{R/2})$ and regular in space variables provided that $u$ satisfies $u\in L^{p,q}(Q_{R})$ with

(1.5) $n/p+2/q<1,$ $n<p<\infty$ .

Here $Q_{R}=Q_{R}(x_{0}, t_{0})$ is a parabolic ball centered at $(x_{0}, t_{0})\in Q$ :

$Q_{R}(x_{0}, t_{0})=\{(x, t)\in \mathbb{R}^{n}\cross \mathbb{R};x\in B_{R}(x_{0}), -R^{2}<t-t_{0}<0\}$

such that $Q_{R}\subset Q$ where $B_{R}(x_{0})=\{x\in \mathbb{R}^{n} ; |x-x_{0}|<R\}$ .

Recently Struwe [St] refined Serrin’s result allowing the case

(1.6) $n/p+2/q=1,$ $n<p\leq\infty$ .

The global version is known by Sohr [So] and Giga [Gi] when $p<\infty$ . Indeed, if $u\in L^{p,q}(Q)$

solves the initial-boundary problem of the Navier-Stokes equations $(1.1)-(1.3)$ with (1.5)

or (1.6), $u$ is regular in space-time up to the boundary.

Our goal is to give a new interior regularity criterion for $(1.1)-(1.2)$ . We prove among

other results, that there is $\epsilon>0$ such that

(1.7) $\sup$
$|u(x, t)|\leq\epsilon(t_{0}-t)^{-1/2}$ for $-R^{2}+t_{0}<t<t_{0}$

$x\in B_{R}(x_{O})$
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implies $u\in L^{\infty,\infty}(Q_{R/2})$ . Here $\epsilon$ is independent of $u,$ $R$ and $(x_{0}, t_{0})$ . In other words $(x_{0}, t_{0})$

can not be a blowup point if (1.7) holds. Similar results are known for a semilinear heat

equation

$u_{t}-\Delta u-|u|^{p-1}u=0$ for $p>1$

by Giga-Kohn [GK]. Our basic idea is estimating integral formulas for vorticity $\omega=curlu$ .

This idea goes back to Serrin [Se] while Struwe’s proof is based on an energy method. We

will show that our method also recovers Struwe’s interior regularity criterion. In [St, p.440]

Struwe observed that his results may be obtained by a simple extention of Serrin’s original

method but the details are not explained there. We take this opportunity to present

Serrin’s approach to get Struwe’s result since it is obtained in parallel with our main new

regularity criterion (1.7). Since we avoid to use traces in Sobolev spaces of minus exponents

which appear in [St], our proof simplifies that of [St] in this respect.

The crucial part of our argument is regularity of solutions of a parabolic system

(1.8) $\omega_{t}-\Delta\omega+\nabla b\omega=0$ in $Q$

with nonregular coefficient $b$ . We state our main results on (1.8) in Section 2 and results

on Navier-Stokes equations in Section 3 including (1.7) where we use Lorentz spaces.

2. Interior Regularity for Parabolic Equations

We consider a parabolic system

(2.1) $\omega_{t}-\Delta\omega+\nabla b\omega=0$

in $Q=\Omega\cross(0, T)$ , where $\Omega$ is a domain in $\mathbb{R}^{n}$ with smooth boundary and $0<T<\infty$ .

Here

$\omega=(\omega^{1}, \ldots, \omega^{d})$ with $\omega^{i}=\omega^{i}(x,t)$ $(i=1, \ldots, d)$ ,

$b(x,t)=(b_{jk}^{i}(x,t))$ for $1\leq i,$ $k\leq d$ and $1\leq j\leq n$ , and
(2.2)

$\nabla b\omega=(\sum_{j=1}^{n}\sum_{k=1}^{d}\frac{\partial}{\partial x_{j}}b_{jk}^{i}(x, t)\omega^{k}(x,t))_{i=1}^{d}$ .
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We shall study a regularity of $\omega$ under minimal regularity assumptions on $b$ . Let

$L^{p,q}(Q)$ denote the space of $L^{p}.(\Omega)$ -valued $L^{q}$ functions on $(0, T)$ . The space $L^{p,q}(Q)$ is

equipped with the norm

$||u||_{L^{p,q}(Q)}=$ $[ ||u||_{L^{p}(\Omega)}(t)]_{L^{q}(0,T)}= \{\int_{0}^{T}(\int_{\Omega}|u(x, t)|^{p}dx)^{q/p}dt\}^{1/q}$ .

Here $||\cdot||_{L^{p}(\Omega)}$ denotes the space $L^{p}$-norm, and $[$ . $]_{L^{q}(0,T)}$ denotes the time $L^{q}$-norm.

We do not distinguish the spaces of vector and scalar valued functions.

We say $\omega\in L^{2,2}(Q)$ is a weak solution of (2.1) in $Q$ , if it holds

$\int\int_{Q}(\varphi_{t}+\Delta\varphi+b\nabla\varphi)\omega dxdt=0$

for any $\varphi\in C_{0}^{\infty}(Q)$ where $C_{o}^{\infty}(Q)$ is the space of smooth functions with compact support

in $Q$ . Here $\varphi=(\varphi^{:})_{i=1}^{d}$ and

$b\nabla\varphi=(:$ .

We now state our main results on interior regularity of weak solutions of (2.1).

THEOREM 2.1. Assume that $1\leq p,$ $q\leq\infty$ satisfies $n/p+2/q=1$ .

(i) Suppose that $b\in L^{p,q}(Q_{R})$ where QR is given in Section 1. Assume that $\omega\in L^{2,2}(Q_{R})$

is a we$ak$ sol $u$ tion of (2.1) in $Q_{R}$ . Then there is a positive $c$onstant $\epsilon<1$ such that

$||b||_{L^{p,q}(Q_{R})}<\epsilon$ implies

$(a)\omega\in L^{\infty,\beta}(Q_{R/2})$ for all $2\leq\beta<\infty$ when $p>n$ .

$(b)\omega\in L^{\alpha,\beta}(Q_{R/2})$ for all $2\leq\alpha,$ $\beta<\infty$ when $p=n$ .

Here $\epsilon=\epsilon(n, d,p, \beta)$ if $p>n$ an $d\epsilon=\epsilon(n, d, \alpha, \beta)$ if$p=n’$

(ii) Let $\omega\in L^{2,2}(Q)$ be a weak solu tion of (2.1) in $Q$ .

$(a)$ If$p>n$ and $b\in L^{p,q}(Q)$ , then $\omega\in L^{\infty,\beta}(Q’)$ for all $\beta\geq 2$ with $Q’=\Omega’\cross(\sigma, T)$ ,

$w\Lambda ere\overline{\Omega’}$ is compact in $\Omega$ and $\sigma>0$ .

$(b)$ If $b\in L^{n,\infty}(Q)$ and $||b||_{L^{n,\infty}(Q)}$ is $su$fHciently small, then $\omega\in L^{\alpha,\beta}(Q’)$ for all

$2\leq\alpha,$ $\beta<\infty$ .
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REMARK: If $n/p+2/q<1$ , Ladyzenskaya, Ural’ceva and Solonnikov [LUS] showed

$\omega\in L^{\infty,\infty}$ under more regularity assumptions on $\omega$ than those in Theorem 2.1, where we

only need $\omega\in L^{2,2}(Q_{R})$ (cf. [LUS] Chap.5, \S 2).

We recall Lorentz spaces $L^{(q)}$ for $1<q<\infty$ :

$L^{(q)}(0, T)=\{f\in L^{1}(0, T))[f]_{L^{(q)}(0,T)}<\infty\}$ ,

where

$[f|_{L^{(q)}(0,T)}= \sup s(\mu\{t\in(0,T);|f(t)|>s\})^{1/q}$ .
$s>0$

Here $\mu$ denotes the Lebesgue measure on R. Although $[f]_{L^{(q)}(0,T)}$ is not a norm (the

triangle inequality fails to satisfy), there is an equivalent “norm” in $L^{(q)}(0, T)$ provided

that $1<q<\infty$ and $L^{(q)}(0, T)$ is a Banach space equipped with this norm (cf. [BL]). It

thus holds

(2.3) $[f+g]_{L^{(q)}(0,T)}\leq C([f]_{L^{(q)}(0,T)}+[g]_{L^{(q)}(0,T)})$.

When $0<T<\infty$ , we see

(2.4) $C_{e}[f]_{L^{p-e}(0,T)}\leq[f]_{L^{(p)}(0,T)}\leq[f]_{L^{p}(0,T)}$

for any $\epsilon>0$ , and that $t^{-1/p}\in L^{(p)}(0, T)$ . We now write

$f(x,t)\in L^{p,(q)}(Q)$ if $||f||_{L^{p,(q)}(Q)}=[||f||_{L^{p}(\Omega)}(t)]_{L^{(q)}(0,T)}<\infty$.

THEOREM 2.2. Assume that $1\leq p,$ $q\leq\infty$ satisfies $n/p+2/q=1$ and $p>n$ . Suppose

that $\omega\in L^{2,2}(Q_{R})$ is a weak solution of (2.1) in $Q_{R}$ . Then there exists a positive constant

$\epsilon<1$ such that

$||b||_{L^{p,(q)}(Q_{R})}<\epsilon$

implies

$\omega\in L^{\infty,\beta}(Q_{R/2})$ for all $\beta>2$ .

5
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Here $\epsilon=\epsilon(n, d, p, \beta)$ .

3. Interior Regularity for the Navier-Stokes Equations

As applications of Theorems 2.1 and 2.2, we derive some interior regularity results for

weak solutions of the Navier-Stokes equations. Our results extend those of Serrin [Se] and

Struwe [St].

We say $u\in L^{2,\infty}(Q)$ with $\nabla u\in L^{2,2}(Q)$ is a weak solution of

(3.1) $\{\begin{array}{l}u_{t}-\Delta u+(u\cdot\nabla)u+\nabla\phi=0\nabla\cdot u=0\end{array}$ in $Q$

if

(3.2) $\{\begin{array}{l}\int\int_{Q}(\varphi_{t}+\Delta\varphi+(u\cdot\nabla)\varphi)udxdt=0\int\int_{Q}(u\cdot\nabla)\eta dxdt=0\end{array}$

for any $\varphi=(\varphi^{i})_{i=1}^{n}\in C_{0}^{\infty}(Q)$ with $\nabla\cdot\varphi=0$ and $\eta\in C_{0}^{\infty}(Q)$ .

REMARK: If $u$ is a weak solution of (3.1), we see the vorticity $\omega=$ curl $u$ is a weak

solution of (2.1) with $d=n(n-1)/2$ where $b_{jk}^{i}$ is a linear combination of $u^{i}$ . For example,

if $n=3$ , applying the operator “curl” to (3.1) yields

(3.3) $\omega_{t}-\Delta\omega+\nabla b\omega=0$ with $b_{jk}^{i}=u^{j}\delta_{ik}-u^{i}\delta_{jk}$ .

THEOREM 3.1. If $u$ is a weak solution of (3.1) in $Q$ with

$u\in L^{2,\infty}(Q),$ $\nabla u\in L^{2,2}(Q)$ and

$\{_{or||u||_{L^{n,\infty}(Q)}^{q(Q)}issufficientlysmall}||u||_{L^{p}},<\infty forsomep,$

$qsuch$ that $n/p+2/q=1,$ $n<p\leq\infty$

then

$u\in L^{\infty,\infty}(Q’)$ and curl $u\in L^{\infty,\infty}(Q’)$

where $Q’$ is as in Theorem 2.1.

(By Serrin’s results in [Se], this theorem yields that $u$ is $C^{\infty}$ in space variables.)

6
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THEOREM 3.2. Assume that $u$ is a weak solution of (3.1) in QR such that

$u\in L^{2,\infty}(Q_{R})$ and $\nabla u\in L^{2,2}(Q_{R})$ .

Suppose that $1\leq p,$ $q\leq\infty$ satisfies $n/p+2/q=1$ an$dp>n$ . Then ther$e$ exists a positive

constant $\epsilon=\epsilon(n, p)<1$ such that

(3.4) $||u||_{L^{p.(q)}(Q_{R})}\leq\epsilon$

implies

$u\in L^{\infty,\infty}(Q_{R/4})$ and curl $u\in L^{\infty,\infty}(Q_{R/4})$ .

REMARK: The condition (3.4) is fulfilled if, for example,

$||u(t)||_{L^{p}(B_{R}(xo))} \leq\frac{\epsilon}{(t_{0}-t)^{1/q}}$ for $t\in(-R^{2}+t_{0}, t_{0})$ .

PROOF THAT THEOREM 2.1 IMPLIES THEOREM 3.1: Applying Theorem 2.1(ii) to (3.3)

we see $\omega\in L^{\infty,\beta}(Q’)$ for any $\beta>2$ . Since $u\in L^{2,\infty}(Q)and-\Delta u=curl\omega$ in $Q$ , we obtain

$u\in L^{\infty,\beta}(Q^{2})$ for any $\beta>2$ by a standard argument (cf. Serrin [Se], P193, Step II). As in

Serrin [Se], the remark to Theorem 2.1 yields $\omega\in L^{\infty,\infty}(Q^{3})$ , which implies $u\in L^{\infty,\infty}(Q^{4})$ .

Here $Q^{i}=\Omega^{i}\cross(\sigma_{i}, T),$ $\Omega^{i+1}\Subset\Omega^{i},$
$\sigma_{i+1}>\sigma_{i}$ for $1\leq i\leq 4$ and $Q^{1}=Q’$ . El

PROOF THAT THEOREM 2.2 IMPLIES THEOREM 3.2: If $\epsilon$ is sufficiently small, applying

Theorem 2.2 with $\omega$ $:=curlu$ yields

$\omega\in L^{\infty,\beta}(Q_{R/2})$ for any $\beta>2$ .

The proof of Theorem 3.1 now yields

$u\in L^{\infty,\infty}(Q_{R/4})$ and curl $u\in L^{\infty,\infty}(Q_{R/4})$ . I

7
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Part 2

ON A REGULARITY CRITERION UP TO THE BOUNDARY

FOR WEAK SOLUTIONS

OF THE NAVIER-STOKES EQUATIONS

Abstract. We are concerned with the behavior of weak solutions of the Navier-Stokes

system around possible singularities on the boundary. We show that a weak solution

locally belonging to some Lebesgue space can not blowup.

1. Introduction

We consider the Navier-Stokes equations:

(1.1) $\{\begin{array}{l}u_{t}-\Delta u+(u\cdot\nabla)u+\nabla\phi=0\nabla\cdot u=0u(x,-T)=u_{0}(x)u|_{\partial\Omega}=0\end{array}$

$on\Omega inQinQ=\Omega\cross(-T, 0)$

,

where $\Omega$ is a domain in $\mathbb{R}^{n}(n\geq 3)$ with smooth boundary $\partial\Omega,$ $0<T<\infty;u=(u^{i})_{i=1}^{n}$

and $\phi$ denote the unknown velocity and pressure, respectively, while $u_{0}=(u_{0}^{i})_{i1}^{n_{=}}$ is a

given initial velocity. Here external force is assumed to be zero for simplicity. Leray [Le]

and Hopf [Ho] constructed global weak solutions in the class

(1.2) $u\in L^{2,\infty}(Q)$ and $\nabla u\in L^{2,2}(Q)$

for $u_{0}\in L^{2}(\Omega)$ where $L^{p,q}(Q)=L^{q}(-T, 0;L^{p}(\Omega))$ . It is also known that there exist weak

solutions moreover in the class

(1.3) $\nabla u,$
$\phi\in L^{r_{0},r_{O}’}(Q)$

for all $1<r_{0},$ $r_{0}’<\infty$ such that $n/r_{0}+2/r_{0}’=n$ for some smooth initial data (cf. Giga and

Sohr [GS], Sohr and von Wahl [SW]). Serrin [Se] gave a local interior regularity criterion

8
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and Struwe [St] extended Serrin’s result (cf. Takahashi [Ta]). They proved that the weak

solution $u$ in the class (1.2) is in $L^{\infty,\infty}(Q’)$ and regular in the space variables provided

that $u\in L^{p,q}(Q)$ for some $p,$ $q$ such that

(1.4) $n/p+2/q\leq 1$ , $n<p\leq\infty$ ,

where $Q’=\Omega’\cross(-T, 0),$ $\Omega’$ is relatively compact in $\Omega$ and $T’<T$ . When $\Omega=\mathbb{R}^{n}$ , this

was proved by Fabes, Jones and Riviere [FJR] (See also von Wahl [Wa]).

Although global versions of Serrin-Struwe’s results are available (cf. Giga [Gi], Sohr

[So]), there seems no literature on a local version up to the boundary. Our goal is to give a

local regularity criterion up to the boundary of Serrin-Struwe type. For simplicity we first

assume that the boundary $\partial\Omega$ is flat near a possible blowup point $x_{0}\in\partial\Omega$ . By changing

variables we may assume that $x_{0}=0$ . We take $R$ so small that $\partial\Omega\cap B_{R}(0)$ is flat. Here

$B_{R}(0)$ denotes the ball centered at $0$ with redius $R$ . We prove among other results in this

paper that the weak solution $u$ in the class (1.2) and (1.3) satisfying $u\in L^{p,q}(Q\cap Q_{R})$

with

(1.5) $n/p+2/q=1$ , $n<p\leq\infty$

implies

$u\in L^{\infty,\infty}(Q\cap Q_{R’})$ ,

where $Q_{R}=B_{R}(0)\cross(-R^{2},0),$ $R^{2}\leq T$ and $R’<R$ . However, we are not sure whether

the boundedness of $u$ in space-time would imply the smoothness of $u$ up to the boundary

in the space variables, while it is true on the interior probrem (cf. [Se]). Concerning the

interior regularity problem, the vorticity equation has been fully used (cf. Serrin [Se],

Struwe [St] and Takahashi [Ta]). In our case, such a equation is not available, because

we can not specify the boundary value of the vorticity $\omega=curlu$ locally. Hence we here

analize (1.1) directly. When we localize the velocity, there arises also such a problem that

the localized velocity is no longer solenoidal. We recover this difficulty with a variant of

Bogovski’s lemma which gives a solution of $\nabla\cdot v=f$ with zero boundary condition (cf.

Bogovski [Bol],[Bo2] and Borchers and Sohr [BS]).

9
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2. Main theorem

We denote $Q_{R}^{+}=B_{R}^{+}\cross(-R^{2},0),$ $B_{R}^{+}=\{x\in \mathbb{R}^{n}||x|<R, x_{n}>0\}$ and $L^{p,q}(Q_{R}^{+})=$

$L^{q}(-R^{2},0;L^{p}(B_{R}^{+}))$ .

We say $(u, \phi)$ in the class

(2.1) $\{\begin{array}{l}u\in L^{2,\infty}(Q_{R}^{+}),\nabla u\in L^{22}(Q_{R}^{+})s\end{array}$

is a weak solution of

(2.2)

$u(\cdot, t)|_{x_{n}=0}\{\begin{array}{l}u_{t}-\Delta u+(u\cdot\nabla)u+\nabla\phi=0\prime\nabla\cdot u=0u|_{x_{n}=}o=0\end{array}$

foralmost every $t\in(-R^{2},0)$ ,

in $Q_{R}^{+}$ ,

if it holds

(23) $\{\int_{\int^{Q_{R}^{+}}(u\cdot\nabla)\eta dxdt=0^{\nabla)\varphi)\cdot u-(\phi\nabla\cdot\varphi)\}dxdt=0}’}\int^{\int_{Q_{R}^{+}}\{(\varphi_{t}+\Delta\varphi+(u}$

for all $\varphi=(\varphi^{i})_{i=1}^{n}\in C_{0}^{\infty}(Q_{R}^{+})$ , and for all $\eta\in C_{0}^{\infty}(Q_{R}^{+})$ . Here $C_{0}^{\infty}(Q)$ is the space of

smooth functions with compact support in $Q$ .

We do not distinguish the spaces of vector and scalar valued functions unless it causes

confusion. We now state our main result.

$\backslash THEOREM2.1$ . Suppose that $(u, \phi)$ is a weak solution of (2.2) in the class (2.1) and

(2.4) $\nabla u,$
$\phi\in L^{r_{0},r_{O}’}(Q_{R}^{+})$ for all $1<r_{0},$ $r_{0}’<\infty$ with $\frac{n}{r_{0}}+\frac{2}{r_{0}’}=n$ .

(a) Assume that $1\leq p,$ $q\leq\infty$ satisfies $n/p+2/q=1$ and $p>n$ . If $u\in L^{p,q}(Q_{R}^{+})$ , then

$u\in L^{\infty,\infty}(Q_{R/8}^{+})$ ,

$\nabla u,$ $\phi\in L^{\alpha,\alpha’}(Q_{R/4}^{+})$ for $aIl2\leq\alpha,$ $\alpha’<\infty$ .

(b) There exists a positive constant $\epsilon=\epsilon(n)<1$ such that $||u||_{L^{n,\infty}(Q_{R}^{+})}<\epsilon$ implies that

$u\in L^{\infty,\infty}(Q_{R/8}^{+})$ ,

$\nabla u,$ $\phi\in L^{\alpha,\alpha’}(Q_{R/4}^{+})$ for all $2\leq\alpha$ , of $<\infty$ .

10



49

3. Localization

We denote $\overline{B_{R}^{+}}=\{x\in \mathbb{R}^{n}||x|<R, x_{n}\geq 0\}$ . We first assume that $R=1$ . We cut off

a weak solution $(u, \phi)$ of (2.2) on $Q_{1/2}^{+}$ to obtain higher regularity in $Q_{1/2}^{+}$ . We set

$\sim u=u\psi$ and $\rho=\phi\psi$

where $\psi\in C_{0}^{\infty}(\overline{B_{1}^{+}}\cross(-1,0$]) satisfies

$\psi=1$ in $\overline{B_{1/2}^{+}}\cross(-1/4,0$].

Then $(u\sim, \rho)$ satisfies

(3.1) $\{\begin{array}{l}\sim_{t}u-\Delta u\sim+(u\cdot\nabla)u\sim+\nabla\rho=\phi\nabla\psi+\zeta(u,\psi),inQ_{1}^{+}\nabla\cdot u\sim=u\cdot\nabla\psi,inQ_{1}^{+}\sim u(x,-1)=0,onB_{1}^{+}\sim u|_{x_{n}=0}=0\end{array}$

where

$\zeta(u, \psi)=\psi_{t}u+u\Delta\psi-2’\nabla(u\nabla\psi)+(u\cdot\nabla\psi)u$.

However a may not satisfy the incompressibility condition $\nabla\cdot u\sim=0$ . We recover this

condition with a variant of Bogovski’s lemma. To state it we prepare some function spaces:

Let $D$ be a bounded domain in $R^{n}$ . Let $H^{j}{}^{t}(D)$ be the completion of $C^{\infty}(\overline{D})$ with

respect to the norm $|\cdot|_{jr}$

)
where

$|f|_{j,r}^{r}= \sum_{|\alpha|\leq j}||\nabla^{\alpha}f||_{r}^{r}$
. Here we denote

$\nabla^{\alpha}=(\frac{\partial}{\partial x_{1}})^{\alpha_{1}}\cdots(\frac{\partial}{\partial x_{n}}I^{\alpha_{n}}$ ,

for a multi-index $\alpha=(\alpha_{1}, \cdots)\alpha_{n}),$ $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $||f||_{r}^{r}= \int_{D}|f|^{r}dx$ . $H_{\Gamma}^{j,r}(D)$

is the completion of $C_{0}^{\infty}(D\cup\Gamma)$ with respect to $|\cdot|_{j,r}$ where $\Gamma$ is a closed set on $\partial D$ . We

denote the support of $f$ by $suppf$ and denote $H_{\Gamma^{)}}^{jr}(D)$ by $H_{0}^{j,r}(D)$ if $\Gamma$ is empty. We write

$\nabla_{i}=\frac{\partial}{\partial x_{i}}$ .

REMARK: $H^{j,r}(D)$ coincides with the usual Sobolev space $W^{j}$“ $(D)$ for such a wider class

of domains $D$ as have Lipschitz continuous boundaries. (See [GT, Section 7.6] and [Ad,

3.18]).
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LEMMA 3.1. Assume that $D$ is a bounded Lipsch $itz$ domain in $\mathbb{R}^{n},$
$\Gamma$ is a closed subset

on $\partial D$ with smooth boundary $\partial\Gamma$ and $\partial D$ is smooth on $\Gamma$ . For any $j=0,1,2,$ $\cdots$ ,

and an$yr\in(1, \infty)$ , there exist a bounded linear operator $K=K_{j,r}$ : $H_{\Gamma}^{j,r}(D)arrow$

$H_{\Gamma}^{j+1,r}(D)^{n}\cap H_{0}^{1,r}(D)^{n}$ and positive $con$stants $C=C(n,j, r, D)$ and $C’=C’(n, r, D)$ with

th $e$ following properties:

(a) $\nabla\cdot Kf=f$ for all $f\in H_{\Gamma}^{j,r}(D)$ with $\int_{D}fdx=0$ ,

(b) $||\nabla^{j+1}Kf||_{r}\leq C|f|_{j,r}$ for all $f\in H_{\Gamma}^{j,r}(D)$ ,

(c) if the $n-1$ dimensional Hausdorff meas$ure$ of $\partial D\backslash \Gamma$ is positive,

$||\nabla^{j+1}Kf||_{r}\leq C||\nabla^{j}f||_{r}$ for all $f\in H_{\Gamma}^{j,r}(D)$ ,

(d) $suppKf\subset D\cup\Gamma$ if $suppf\subset D\cup\Gamma$ ,

(e) for $f\in L^{r}(D)$ , we can define $K(\nabla_{i}f)\in L^{r}(D)$ ( $i=1,$ $\cdots$ , n) such that $\nabla\cdot K(\nabla_{i}f)=$

$\nabla_{i}f$ for $f\in H^{1,r}(D)$ and that

$||K(\nabla_{i}f)||_{f}\leq C’||f||_{r}$ for $\partial illf\in L^{r}(D)$ .

REFERENCES

$|$

[Ad] R. A. Adams, (Sobolev Spaces,” Academic Press Inc., New York-San Francisco-

London, 1975.

[BL] J. Bergh and J. L\"ofstr\"om, “Interpolation Spaces,” Spriger-Verlag, Berlin-

Heidelberg-New York, 1976.

[Bol] M. E. Bogovski, Solution of the first boundary value problem for the equation of
continuity of an incompressible medium, Soviet Math. Dokl. 20 (1979), 1094-1098.

[Bo2] –, Solution of some vector analysis problems connected with $div$ and $grad$ , in

Russian, Trudy Seminar S. L. Sobolev No.180 (1980), 5-40. Akademia Nauk SSSR,

Sibirskoe Otdelenie Mathematiki Nowosibirsk

[BS] W. Borchers and H. Sohr, On the equations rot $v=g$ and $divu=f$ with zero

boundary conditions, Hokkaido Math. J. 19 (1990), 55-66.

12



51

[CKN] L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solu-

tions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35, 771-831 (1982).

[FJR] E. B. Fabes, B. F. Jones and N. M. Riviere, The initial value problem for the

Navier-Stokes equations with data in $L^{p}$ , Arch. Rational Mech. Anal. 45 (1972),

222-240.

[Gi] –, Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak

solutions of the Navier-Stokes system, J. Differential Equations 62 (1986), 186-212.

[GK] Y. Giga and R. Kohn, Nondegeneracy of blowup for semilinear heat equations,

Comm. Pure Appl. Math. 42, 845-884 (1989).

[GS] Y. Giga and H. Sohr, Abstract $L^{p}$ estimates for the Cauchy problem with applica-

tions to the Navier-Stokes equations in exterior domains, Hokkaido Univ. Preprint

Series 60 (1989). (to appear in J. Funct. Anal.)

[GT] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second

Order,” Springer-Verlag, Berlin-Heidelberg-New York, 1983.

[Ho] E. Hopf, Uber die anfangswertaufgabe fur die hydrodynamischen grundgleichungen,

Math. Nachr. 4 (1951), 213-231.

[LUS] O. Ladyzenskaya, N. Ural’ceva and V. Solonnikov, (Linear and Quasi-Linear

Equations of Parabolic Type,” Amer. Math. Soc., Providence RI, 1968.

[Le] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.

63 (1934), 193-248.

[Oh] T. Ohyama, Interior regulari $ty$ of weak solutions of the time-dependent Navier-

Stokes equation, Proc. Japan Acad. 36, 273-277 (1960).

[Se] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,

Arch. Rational Mech. Anal. 9 (1962), 187-195.

[So] H. Sohr, Zur regularitatstheorie der instantionaren Gleichungen von Navier-Stokes,

Math. Z. 184 (1983), 359-375.

[SW] H. Sohr and W. von Wahl, On the regularity of the pressure of weak solutions of
Navier-Stokes equations, Arch. Math. 46 (1986), 428-439.

[St] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm.

Pure Appl. Math. 41 (1988), 437-458.

13



52

[Ta] S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes

equations, Manuscripta Math. (to appear).

[Wa] W. von Wahl, “The Equations of Navier-Stokes and Abstract Parabolic Equations,”

14


