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In classical particle mechanics, it is well understood that while working with nonholono-

mic and nonideal constraints, one cannot expect that the constraint be workless. It is

curious that in continuum mechanics, however, the implications of the result in classical

mechanics have not been clearly understood. In this paper, we show that in dealing with

the response of dissipative systems, one cannot require that constraints do no work or

ignore the fact that the material response functions depend on the constraint reaction.

An example of this is the viscosity of a fluid depending on the pressure.

Copyright © 2006 K. R. Rajagopal and G. Saccomandi. This is an open access article dis-

tributed under the Creative Commons Attribution License, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is prop-

erly cited.

1. Introduction

Many of the theories that have been developed to describe the nonlinear response of con-

tinua had to take into consideration that the response of the body can be constrained. For

example, the body under consideration might be incompressible or inextensible. While

no real body is perfectly incompressible or inextensible, its response might be such that

it can be approximated as meeting such a constraint for a large class of processes. For ex-

ample, liquids or solids such as rubber, can, under normal operating conditions, be mod-

elled as incompressible bodies. Idealizing such bodies as incompressible bodies accords

a tremendous simplification in analyzing their thermomechanical response by virtue of

which one can establish analytical closed-form solutions for a large class of problems that

have scientific and technological relevance.

A variety of constraints can be enforced on a body. Here, we will consider purely me-

chanical constraints, in fact purely kinematical constraints such as incompressibility or

inextensibility. A constraint such as incompressibility belongs to the class of constraints

called elastic constraints (see [21]) which are defined through

ϕ(F)= 0, (1.1)
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where F is the deformation gradient. The special case of incompressibility takes the form

det(F)= 1. (1.2)

However, the same can be expressed as

div(v)= tr(D)= 0, (1.3)

provided that F is differentiable with respect to time. (Here v is the velocity field and D is

the symmetric part of the velocity gradient L= grad(v).) Now, the condition tr(D)= 0 is

a special case of

ψ(D)= 0. (1.4)

Because of (1.1) or (1.4), the stress in a body can no longer be specified only in terms of

the deformation, and a dynamical characterization of the constraint is needed; that is, it

is necessary to specify which kind of internal forces are needed to enforce the constraint.

For elastic constraints, it is usual to require that the such constraint forces do no work.

For general constraints such as (1.4), the situation is more complex and only recently, it

has been shown by Rajagopal and Srinivasa [18] that the usual procedure of requiring

that the constraint forces do no work, when the constraint is expressed in the form (1.1),

is not valid when general constraints of the form (1.4) are required.

Great care has to be exercised when requiring what one means by the constraint force

not doing work. For instance, if the constraint is that a block should move on a smooth

horizontal surface, the constraint reaction is restricted to the force normal to the surface

and this force does no work. However, if the constraint is that the block move on a plane

rough surface, then while the force normal to the surface does no work, the forces due

to friction that act tangential to the surface do work and we cannot forget the fact that

this frictional force is also a consequence of the constraint and is a manifestation of the

roughness of the surface. Also, we have to be more careful of what we require; whether we

require that the normal forces do no work (which is trivially met in our case) or whether

we should require that the constraint forces have no influence whatsoever on the work

done.

It is well known that in the field of classical dynamics of particles and rigid bodies, elas-

tic constraints correspond to holonomic constraints, whereas a constraint such as (1.4)

corresponds to a nonholonomic constraint. When we deal with nonlinear nonholonomic

constraints, in general, it is not possible to require that the constraints do no work. To be

more precise, when the constraints are acatastic [16]—that is, linear, but not integrable

equations in the time derivatives of the generalized coordinates—it is still possible to

speak of ideal (in the sense of workless) constraints. Therefore, in the acatastic case, it is

possible to generalize the usual Lagrange equations as has been done by several authors

[16]. On the other hand, in the case of general nonlinear nonholonomic constraints,

there has been, and there still is, a considerable amount of uncertainty and disagreement

concerning the choice of the reaction forces since it is not possible to speak of ideal con-

straints and it is not clear as to how the basic equations of motion can be obtained, that

is, the equations containing only the kinematical unknowns, in a systematic way. (See the
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book by Papastavridis [16] for a detailed bibliography on this issue). The status of non-

ideal constraints is so confused that the usual attitude is to bury one’s head in the sand.

For example, Goldstein [8] observes the following:

We now restrict ourselves to systems for which the net virtual work of forces of con-

straints is zero. We have seen that this condition holds true for rigid bodies and it

is valid for a large number of other constraints. Thus, if a particle is constrained to

move on a surface, the force of the constraint is perpendicular to the surface, while

the virtual displacement must be tangent to it, and hence the virtual work vanishes.

This is no longer true if sliding friction forces are present, and we must exclude such

systems from our formulation. The restriction is not usually happening since friction

is usually a macroscopic phenomenon.

Unfortunately, in many problems of interest, not only can the friction forces not be

neglected, they essentially determine the quintessential features of the response charac-

teristic of bodies, and thus one does not have the luxury of ignoring the work done due

to the frictional forces.

In 1829, Gauss [7] offered the following alternate requirement to the assumption that

constraint forces do no work:

The motion of a system of material points connected together in any manner whatso-

ever, whose motions are modified by any external restraints whatsoever, proceeds in

every instance in the greatest possible accordance with free motion, or under the least

possible constraint;

that is, the least possible force that is required to maintain the constraint is the desired

constraint force, according to Gauss. He however remains silent as to whether this lest

force that maintains the constraint does work or is workless. Thus, it is fully consistent

within such a requirement that constraint force do work. O’Reilly and Srinivasa [15] have

considered the consequences of Gauss’ criterion for a large class of constraints. They pro-

vide a geometric interpretation for the constraints with reaction force being normal to the

constraints surface. They also do not require that the constraints ought to be workless.

(About this point see also [23] for an alternative but related treatment).

When we consider a body, say a block, moving on a planar rough horizontal surface, it

is first necessary to decide what one understands by the constraint force. In this case, the

normal reaction force is denoted by N, and the horizontal force (the friction) by using

the classical dynamical Coulombs law is given by µN (where µ is the dynamic friction

coefficient). Both the forces N and µN are a consequence of the body being constrained

to move on a rough planar surface. To merely give N the status of the constraint reaction

and then to require that it do no work is a trivial requirement as the part of the constraint

reaction that is chosen is automatically normal to the constraint manifold, and thus can

do no work as the body moves on the constraint manifold. One cannot afford to forget

that the purpose of mathematics is to render with clarity and precision the ideas that are

expressed in terms of words, in the present case, the body is constrained to move on a rough

planar surface. Furthermore, even if one chooses to take the narrow viewpoint that N is

the only constraint force, we cannot fail to recognize that N influences the work that is

done. In fact, its magnitude determines precisely the work that is done.
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In their influential tome on nonlinear mechanics [22], Truesdell and Noll observe that

the stress T at time t is determined by the history F(t)(s) of the deformation gradient

only to within a stress N that does no work in any motion satisfying the constraints.

This seems to suggest with unmistakable clarity that for viscous fluids or non-New-

tonian fluids that have memory, we have to require that constraint forces, and this what-

ever the nature of the constraint, have to do no work in any admissible motion, that is, in

any motion satisfying the constraint itself. Truesdell and Noll [22] are neither stating that

only linear constraints in D will be considered, nor are they restricting their discussion

to elastic bodies though they discuss elastic constraints. They are very clearly considering

bodies whose stress is determined by the history of the deformation gradient and they ev-

idently include numerous classes of dissipative bodies. Our earlier discussion obviously

makes evident why such a position is too special when we consider dissipative materials.

While speaking of reactions forces (i.e., constraint forces), Truesdell and Noll [22] allow

that “more complicated systems of forces might be found” than the system that satisfies the

assumption of worklessness; however this workless system seem to be the “simplest imag-

inable to suffice to maintain the constraint.” There seems to be a clear connection being

made here that the simplest system of forces that is required to maintain the constraint

is workless. This is clearly incorrect for nonholonomic systems in particle and rigid body

dynamics and also with regard to the response of dissipative continua. Surprisingly, there

is no mention in Truesdell and Noll of Gauss’ important contribution to the theory of

constraints where the requirement of the least force necessary to maintain the constraint

was first articulated.

2. Constraints in dynamics

The simplest model of classical mechanics is the material point, here we will use this

simple model to clarify some trivial but often misunderstood fact about constraints and

reaction forces.

Let us consider a point mass E, at the point P ∈ R3 at time t, of mass m. If E is un-

constrained, to determine its motion in a given reference system we must know for any

instant t the vector OP(t) = x(t)i + y(t)j + z(t)k and to this end, we must use Newton’s

second law:

ma= f(OP,v, t). (2.1)

In classical mechanics, the assumption of determinism says that the Cauchy problem ob-

tained, considering (2.1) subject the initial conditions OP(0)=OP0 and v(0)= v0, must

have only one solution. This means that once the constitutive relation for the force law

is given and some basic smoothness assumptions are satisfied, it is possible at any t > 0

to determine the unique motion, OP(OP0,v0; t), of the element E. A priori there are no

restrictions about the constitutive equation for the force beside the smoothness require-

ments, therefore f is an arbitrary element of a vectorial space V.

Now, to simplify the discussion, let E be constrained by a single constraint that is

holonomic, that is, given by an equation ϕ(x, y,z; t)= 0. In this case the set of the possible

positions (i.e., compatible with the constraint) for E is a proper submanifold �t ⊂R
3. For
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any point P ∈�t and any time t, we may compute the tangent space �P,t of �t at P to

find the set �ir(P, t) of the virtual velocities of E. The set of the possible velocities is

denoted as �(P, t) and the elements of this set are the vectors

v = vt + vn(P, t), (2.2)

where vt is an arbitrary element of �P,t, whereas vn(P, t) is uniquely determined by P and

t and clearly vt⊥vn. Moreover we denote by �(P,v, t) the set of the admissible acceler-

ation vectors. For any P ∈ �t and v ∈ �(P, t), if a ∈�(P,v, t), again a decomposition

similar to (2.2) is possible, that is,

a= at + an(v,P, t), (2.3)

where at is an arbitrary element of �P,t, whereas an(v,P, t) is uniquely determined by v,

P, and t.

In this framework, the need to introduce a reaction force arises from a purely algebraic

stand point. Indeed, in the constrained case, the basic equation (2.1) cannot be verified

for any general constitutive relation for the forces (i.e., independent of the material point

and therefore of the constraint that has been introduced) because, generally speaking,

V��(P,v, t). The reaction force r is therefore introduced such that (2.1) is modified as

ma= f(OP,v, t) + r, (2.4)

and now f(OP,v, t) + r ∈�(P,v, t). Obviously there is an infinity of vectors r such that

(2.4) defines a vector a∈�(P,v, t) and this goes against the requirement of determinism.

There is no way out of this indeterminism if some restriction on r is not introduced (this

restriction is usually called the dynamical characterization of the constraint).

We observe that, to the best of our knowledge, many texts devoted to classical mechan-

ics give several explicit examples of dynamical characterizations of the constraints but do

not give a rigorous definition of such characterization. A possible definition, proposed by

Valente and Benevenuti [24], is the following one: given any value for P, v, t such that

P ∈�t and v ∈�(P, t), a set of vectors �(P,v, t)⊂V 3 is an admissible reaction force if

(i) for all f ∈ V 3, there exists a unique value of r(f)∈�(P,v, t) such that f+r(f)∈

�(P,v, t);

(ii) for all a∈�(P,v, t), there exists at least a force field f ∈V 3 such that f + r(f)= a.

It is important to point out that following this definition, the dynamical characteri-

zation of the constraint is a map that to any possible choice of P, v, t associates a set of

admissible constraints �(P,v, t). Once such a characterization is given, the property (i)

ensures that there exists one function r= r∗(P,v, t, f ) such that all the motions defined

by (2.4) are compatible with the constraint. Since f + r∗ ∈�(P,v, t) and r∗ is unique, the

requirement of determinism will hold (under suitable smoothness assumptions).

Now, that we have given a clear definition of what we mean for a dynamical charac-

terization, it is possible to use a very simple geometrical argument to understand in an
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intuitive way what is going on. Equation (2.4) may be always decomposed:

rt =mat−f t(P,v, t),

rn =man(P,v, t)− fn(P,v, t),
(2.5)

and it is therefore clear that once that the external force is assigned, the condition a ∈

�(P,v, t) does not impose any restrictions to rt, whereas it determines completely and

uniquely rn. In this framework, the choice rt = 0 and rn defined by the second formula

of (2.5) is the simplest choice that allows one to solve the nonuniqueness problem and

the determination of the reaction force. We point out again that the choice rt = 0 is here

introduced only on the basis of geometrical considerations without the introduction of a

dynamical characterization.

The simple geometrical characterization, presented in this section, allows us to clarify

two important points. First we clarify why ideal constraints are the simplest imaginable to

suffice to maintain the constraint. Then it is also clear why an ideal constraint may be very

far away from physical reality; they may be introduced on the basis of pure geometrical

reasons without any constitutive requirement.

On the other hand, from (2.5), it is also possible to understand why the classical theory

of friction proposed by Coulomb and Morin (see, e.g., [4]) is a basic one. Indeed it is

now clear that because the rn is completely and uniquely determined, the problem of any

theory of friction is to give a constitutive equation for rt. A constitutive equation must

determine only a unique value for any external force f and therefore this implies that

rt = ϕ(OP,v, t,rn). Because we know a priori from knowledge of the constraint in the

direction of rt, the Coulomb-Morin law |rt| = µD|rn| is the simplest linear relationship

that is in accord with the general principles introduced here.

It is important to note that our discussion may be easily extended to nonholonomic

nonlinear constraints. For example, a similar decomposition as in (2.5) is always possible,

but now we have a situation wherein the normal direction to the surface described by

the constraint is no more the normal to the velocities and immediately follows that the

minimal reaction forces, generally speaking, in this case do work.

We wish to point out that the geometric argument presented here also works in the

case of an N-degree of freedom. The extension to any degree of freedom of (2.5) has been

done, for example, by Udwadia and Kalaba [23] using a formalism based on the Moore-

Penrose pseudoinverse. We recall that the pseudoinverse is unique only in the sense of

quadratic minimization and therefore we go back to the idea introduced by Gauss.

3. Constraints in continua: incompressible bodies with pressure-dependent

material moduli

We now discuss the response of constrained bodies, continua, which undergo processes

wherein the constraint forces do work, as the processes under consideration are dissipa-

tive; while the constraint in itself is what is called by Truesdell [21] an elastic constraint as

it falls under the category delineated by (1.1). Here, as discussed in the introduction, we

have to take due care of what we mean by the constraint force (or constraint response).
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The constraint under consideration is the most commonly used one, namely that of in-

compressibility, that is, the constraint (1.2) which can be expressed as (1.3).

Our discussion here follows in large part that by Rajagopal and Srinivasa [18]. The

normal procedure that is used to determine the constraint response is (see [21]) to split

the Cauchy stress tensor T additively as

T= TC+TE, (3.1)

where TC is the constraint stress and TE is the extra stress that is constitutively deter-

mined. One can then assume that TE does not depend on the quantities that appear in

TC and requiring that TC does no work, that is, that

TC ·D= 0 whenever tr(D)= I ·D= 0. (3.2)

This immediately leads to

TC =−φI, (3.3)

and using the usual convention of labelling φ by −p, we find that

T=− pI + TE, (3.4)

where TE is not dependent on the Lagrange multiplier p. This procedure would however

fail if the constraint was nonlinear in D (see [18]). Antman [2] (see also [3]) recognized

that requiring that the extra stress TE does not depend on the Lagrange multiplier was

too restrictive. He however did not question the splitting of the stress as in (3.1) or the

appropriateness of the assumption that the constraint stress ought to be workless.

There is a considerable body of literature concerning fluids that could be approxi-

mated as incompressible while their material properties such as viscosity or relaxation

time could depend upon the pressure. Stokes [19] recognized that the viscosity of a fluid

could depend on the pressure. Andrade [1] gave an explicit form for the variation of the

viscosity with density temperature and pressure:

µ= µ̃(ρ,θ, p)=Aρ1/2 exp

[(
p+ ρ2

ν

) s
θ

]
, (3.5)

where A, ν, and s are positive constants. Extensive studies have been carried out to de-

termine the viscosity of liquids with pressure (an exhaustive documentation of the work

prior to 1930 can be found in the magisterial book by Bridgman [5]). More recent ex-

perimental results can be found in [6, 10, 12, 13]. While (3.5) indicates that the viscosity

depends on the density and pressure for many liquids, the variation of the density is of the

order of a few percent while the pressure changes by several orders of magnitude leading

to a corresponding variation in viscosity by several orders of magnitude. Thus, it would

be reasonable for such liquids to be considered incompressible with the viscosity depend-

ing on the pressure. In certain applications such as elastohydrodynamics, this is precisely

the situation. While the density varies ever so slightly, the fluids viscosity varies by sev-

eral orders of magnitude. The viscosity is in fact assumed to vary exponentially with the

pressure (see [20]).
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In continuum mechanics, there is a large body of literature concerning internal con-

straints but, to the best of our knowledge, only in the recent papers by Rajagopal and

coworkers has a more general theory than the one of workless internal constraints been

developed and have problems been solved in some detail. The main advantage of the the-

ory is the use of a direct geometrical approach in introducing internal constraints. Here,

we wish to point out that the basic construction of this theory follows from a parallel

argument from the ideas discussed in the previous section concerning classical dynamics.

Consider a body that occupies a configuration �t at a given time t. Let the mass density

be ρ(x, t) and let the position, velocity, and acceleration of the particle of the body be

x(X, t), v(x, t), a(x, t), respectively. The laws for the mechanical response of continua are

the balance of mass

dρ

dt
+ ρdiv(v)= 0, (3.6)

and the balance of linear momentum

ρa= div(T) + ρb, (3.7)

where d(·)/dt is the material time derivative and b is the specific body force. In the ab-

sence of body couples, the balance of angular momentum requires that the Cauchy stress

tensor is symmetric; that is, T= TT . The notation div(·) represent the divergence with

respect to spatial coordinates.

It is necessary to add to (3.6) and (3.7) a constitutive equation for the Cauchy stress

tensor, and it is typical that the stress tensor is specified as a function of the history of the

deformation gradient Ft(s)= F(t− s), (F= ∂x/∂X). For example, in elasticity, a constitu-

tive equation is a mapping:

T̃ : �−→	, T= T̃(F). (3.8)

In the case of unconstrained elastic bodies, � is the collection of second-order tensors

with positive determinants (a collection denoted with L in+).

The mathematical formulation of an internal constraint is usually an equation of the

form (1.1). Sometimes this definition is given in a more abstract setting concerning a

connected C1-manifold 
 ⊂ L in+ such that I ∈
, and requiring that 
 be invariant

under changes in frame, the usual objectivity requirement that may also be translated

into

ϕ̂(C)= 0, (3.9)

where C= FTF. Equation (3.9) introduces a restriction on the domain of the mapping

(3.8).

On the other hand, it is possible also to consider a constraint of the form (1.3). Beside

the usual incompressibility constraint, we note that Green et al. [9] have considered in-

ternal constraints that depend not only on the gradient of deformation but also on the
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stretching tensor, introducing the following relation:

A(C) ·D + a(C)= 0, (3.10)

where A is some tensor and a is some scalar. The functional form (3.10) is dictated by the

fact that only for a constraint linear in D is it possible to characterize the reaction stress

as workless. Equation (3.10) is the continuum mechanics counterpart of acatastic con-

straints. To the best of our knowledge, it is only in [18] that a full nonlinear anholonomic

constraint for continua has been considered.

It is clear that the constraint is not only a restriction on the domain � of the mapping

(3.8) but also on x(X, t) and all the kinematical quantities of interest. To investigate in

detail the situation, let us consider a general constraint of the form (1.3). First of all, by

differentiation of (1.4) with respect to time, we obtain

∂ψ

∂D
·
∂D

∂t
= 0. (3.11)

The nature of internal constraints such as (1.3) is clear only in an appropriate tensorial

space, and as the balance of linear momentum is a vectorial relationship, it is quite hard

to understand the restriction imposed by (3.11) on (3.7) within the context of a simple

geometrical picture. In order to gain some clarity concerning this situation, we take the

gradient of (3.7), thereby obtaining

∂L

∂t
+ grad(Lv)= grad

(
1

ρ
div(T) + b

)
. (3.12)

Now, it is clear that because T and b in (3.12) may be, in principle, arbitrary (obviously

the stress tensor has to satisfy some general requirements of invariance but here these

requirements are of no interest) and therefore treating this equation as a simple algebraic

relation, it is possible to choose the right-hand side of (3.12) in such a way that the left-

hand side does not satisfy the constraint. To see this we introduce N = ∂ψ/∂D and the

tensor M such that M ⊥ N. It follows from (3.12) on using (3.11) that

N·grad(Lv)=N·grad

(
1

ρ
div(T) + b

)
,

M ·
∂L

∂t
+ M · grad(Lv)=M · grad

(
1

ρ
div(T) + b

)
.

(3.13)

It is clear that the first formula of (3.13) cannot generally be satisfied for any choice of T

and b. Whereas the presence of the first time derivatives of the velocity field in the second

formula of (3.13) allows us to ensure that this equation may be satisfied for any choice of

T and b. Therefore, as we do in classical mechanics, we need to introduce a reaction stress

( in reality, we need a reaction force, but because we are considering internal forces, it is

natural to require that this force be related to a stress).

Once again let us restrict our attention to incompressibility, that is,

N= I, M=
{

D : trace(D)= 0
}
. (3.14)
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If we introduce the reaction stress as −pI, this is sufficient to meet (3.13). Indeed, in this

case, the equation reduces to

I·grad(Lv)=−I · grad
(

grad(p)
)

+ I·grad

(
1

ρ
div(T) + b

)
; (3.15)

a second-order linear differential equation for the pressure. Therefore, for the ideal inter-

nal constraint of incompressibility, it is sufficient to meet (3.7) such that for any choice

of T and b the acceleration a will always satisfy the prescription of the constraint. Here,

we have not appealed to the constraint to be workless, rather we have automatically in-

troduced a reaction stress that satisfies worklessness as a byproduct of geometrical con-

siderations. The idea is to merely ensure that (3.13) can be met and the assumption that

the reaction stress is −pI allows us to do this, that is, it is sufficient for meeting (3.13).

It is clear that when we have a full nonlinear constraint we will have difficulty in satis-

fying (3.13) with a workless constraint, but also in the special case of incompressibility, a

more general theory may be developed. Let us consider the model

T=−pI + 2µ(p)D. (3.16)

Recently, there have been several studies concerning such a fluid from both a numerical

and analytical perspectives (see [11, 14]). We are not interested in discussing these results

or the response characteristics of the fluid modelled by (3.16). The point that we are

interested in making is that what is usually regarded as the constraint, response, −pI,

while in itself does no work, determines the work done, that is, the work done is given by

T ·D= 2µ(p)D ·D. (3.17)

More importantly, for models such as (3.16) in analogy with the example discussed in our

introduction concerning the sliding block, we recognize that the shear stresses that would

be introduced in a simple shear flow are also part of the constraint. Let us consider the

simple shear flow between two parallel plates and let us suppose that the fluid is incom-

pressible and modelled by (3.16). Further, let us suppose that gravity acts normal to the

plates. Let us consider the counterpart of the classical Couette flow, and as is customary,

let us seek a solution for the velocity field of the form

v = u(y)i, (3.18)

where u is the component of the velocity in the x-coordinate direction. As we have gravity

acting along the y-coordinate direction, we will seek a pressure field of the form

p = p(y). (3.19)

It is trivial to show that

p = pa + ρg y, (3.20)

where pa is the atmospheric pressure. We will not be interested in solving any boundary

value problems here. It has been shown (see [17]) that pronounced boundary layers can
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develop due to the viscosity. Here, we are merely interested in clarifying what one means

by a constraint reaction and whether this reaction does or does not do any work.

We notice that at any plane y = constant, in addition to the normal force on the plane

that corresponds to the weight of the fluid above, the shear stresses acting on the layer at

y = constant depend on the pressure, that is,

Txy = µ(p)
du

dy
. (3.21)

Even if the viscosity of the fluid does not depend on the pressure, the shear stressTxy is not

zero, but in this case there is seemingly no connection between the constraint reaction and

the shear stress. However, when the viscosity depends on the pressure, we cannot clearly

define what is meant by the constraint response, the spherical part of the form −pI and

the extra stress +2µ(p)D are related. However, the extra stress having the specific form

2µ(p)D is a consequence of the constraint. Thus, it is not that simple to dismiss the term

as not being a part of the constraint response.

We hope that these examples are sufficient to explain why the theory of internal con-

straints as it stands in continuum mechanics needs to be reexamined carefully and a more

general theory put into place.
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