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Abstract

In this paper, we study the power of external contextual grammars with selection
languages from subfamilies of the family of regular languages. If we consider
families Fn which are obtained by restriction to n states or nonterminals or
productions or symbols to accept or to generate regular languages, we obtain
four infinite hierarchies of the corresponding families of languages generated
by external contextual grammars with selection languages in Fn. Moreover,
we give some results on the power of external contextual grammars with regu-
lar commutative, regular circular, definite, suffix-free, ordered, combinational,
nilpotent, and union-free selection languages.
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1. Introduction

Contextual grammars were introduced by S. Marcus in [15] as a formal model
that might be used in the generation of natural languages. The derivation steps
consist of adding contexts to given well formed sentences, starting from an
initial finite basis. Formally, a context is given by a pair (u, v) of words and
the external adding to a word x gives the word uxv whereas an internal adding
gives all words x1ux2vx3 when x = x1x2x3. Obviously, by linguistic motivation,
a context can only be added if the words x or x2 satisfy some given conditions.
Thus, it is natural to define contextual grammars with selection in a certain
family F of languages, where it is required that x or x2 have to belong to a
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set of F which is associated with the context. Mostly, the family F is taken
from the families of the Chomsky hierarchy (see [12, 17, 16] and the references
therein).

In [4], the study of external contextual grammars with selection in spe-
cial regular sets was started. Finite, combinational, definite, nilpotent, regular
suffix-closed, regular commutative languages and languages of the form V ∗ for
some alphabet V were considered. In this paper, we continue this line of re-
search. More precisely, we obtain some new results on the effect of regular
commutative, regular circular, definite, regular suffix-closed, ordered, combina-
tional, nilpotent, and union-free selection languages on the generative power of
external contextual grammars.

Moreover, we consider families of regular languages which are defined by
restrictions on the resources used to generate or to accept them. As measures
we consider the number of states necessary to accept the regular languages and
the number of nonterminals, productions, or symbols needed to generate the
regular languages. We prove that in all cases infinite hierarchies are obtained.

Our research is part of the study of problems and processes connected with
regular sets. In the last years, many papers were published in which the effect
of going from arbitrary regular sets to special regular sets was studied. Some of
these topics are the following:

– Any nondeterministic finite automaton with n states can be transformed
into a deterministic one with 2n states which accepts the same language.
This exponential blow-up with respect to the number of states is necessary
in the worst cases. In [1], this problem is studied if one restricts to the
case that the automata accept special regular languages only. It is shown,
that the situation does not change for suffix-closed and star-free regular
languages; however, for some classes of definite languages, the size of the
deterministic automaton is bounded by 2n−1 + 1.

– A number α between some number n and 2n is called magic with respect
to n if there is no nondeterministic finite automaton with n states such
that the equivalent minimal deterministic finite automaton has α states.
It is known that no magic numbers exist if n ≥ 3. This situation changes
if one considers subregular families of languages. For instance, only the
values α with n + 1 ≤ α ≤ 2n−1 + 1 are possible for prefix-free regular
languages (see [11]).

– For languages obtained by certain operations from other languages, upper
bounds for the state complexity (the number of states that are needed for
a minimal finite automaton to accept the language) have been determined
depending on the state complexities of the other languages. Those upper
bounds are tight. It has been shown that the upper bounds are smaller if
one restricts to special regular languages (see [9], [10], [2], and [13]).

– In order to enlarge the generative power, some mechanisms connected
with regular languages were introduced, which control the derivations in
context-free grammars. For instance, the sequence of applied rules in a
regularly controlled grammar, the current sentential form in a conditional
grammar, and the levels of the derivation tree in a tree controlled grammar
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have to belong to given regular languages. In the papers [3], [6], [5], and [8],
the change in the generative power, if one restricts to special regular sets,
is investigated.

– Networks of evolutionary processors with regular filters are computation-
ally complete in that sense that they can generate or accept every re-
cursively enumerable language. In [14] and [7], it was shown that such
networks are still computational complete if the filters are taken from sev-
eral subclasses of regular languages but, for other subclasses, they are not
computational complete.

The present paper follows this direction with results on the influence of subreg-
ularity in the selection of contextual grammars.

2. Definitions

Throughout the paper, we assume that the reader is familiar with the basic
concepts of the theory of automata and formal languages. For details we refer
to [17]. Here we only recall some notation and the definition of contextual
grammars with selection which form the central notion of the paper.

Given an alphabet V , we denote by V ∗ and V + the set of all words and the
set of all non-empty words over V , respectively. The empty word is denoted
by λ. For a word w ∈ V ∗ and a letter a ∈ V , by |w| and #a(w) we denote
the length of w and the number of occurrences of a in w, respectively. The
cardinality of a set A is denoted by #(A).

For a language L over V , we set

Comm(L) = { aπ(1)aπ(2) . . . aπ(n) | ai ∈ V for 1 ≤ i ≤ n, a1a2 . . . an ∈ L,
π is a permutation of {1, 2, . . . , n} },

Circ(L) = { yx | xy ∈ L for some x, y ∈ V ∗ } ,
Suf (L) = { y | xy ∈ L for some x ∈ V ∗ } .

It is known that Suf (L) and Circ(L) are regular for a regular language L,
whereas Comm does not preserve regularity.

Let V be an alphabet. We say that a language L over V is
– combinational iff it can be represented in the form L = V ∗A for some

finite non-empty subset A ⊆ V ∪ {λ},
– definite iff it can be represented in the form L = A∪V ∗B where A and B

are finite subsets of V ∗,
– nilpotent iff L is finite or V ∗ \ L is finite,
– commutative iff Comm(L) = L,
– circular iff Circ(L) = L,
– suffix-closed (or fully initial or a multiple-entry language) iff Suf (L) = L,
– ordered iff L is accepted by some finite automaton A = (V,Z, z0, F, δ)

where the set Z of states is totally ordered with respect to a relation � and,
for any a ∈ V , the relation z � z′ implies the relation δ(z, a) � δ(z′, a),
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– union-free iff L can be described by a regular expression which is only
built by product and star.

It is obvious that combinational, definite, nilpotent, ordered, and union-free
languages are regular, whereas non-regular languages of the other three types
exist.

We denote by REG the class of regular languages. By FIN , COMB , DEF ,
NIL, COMM , CIRC , SUF , ORD , and UF we denote the families of all finite,
combinational, definite, nilpotent, regular commutative, regular circular, regular
suffix-closed, ordered, and union-free languages, respectively.

Let G = (N,T, P, S) be a regular grammar (specified by finite sets N and T
of nonterminals and terminals, respectively, a finite set of productions of the
form A → wB or A → w with A,B ∈ N and w ∈ T ∗ as well as S ∈ N).
Further, let A = (X,Z, z0, F, δ) be a deterministic finite automaton (specified
by sets X and Z of input symbols and states, respectively, an initial state z0,
a set F of accepting states, and a transition function δ) and L be a regular
language. Then we define

State(A) = #(Z),Var(G) = #(N),Prod(G) = #(P ),

Symb(G) =
∑

A→w∈P
(|w|+ 2),

State(L) = min { State(A) | A is a det. finite automaton accepting L } ,
Var(L) = min {Var(G) | G is a regular grammar generating L } ,

Prod(L) = min { Prod(G) | G is a regular grammar generating L } ,
Symb(L) = min { Symb(G) | G is a regular grammar generating L } ,

and, for K ∈ {State,Var ,Prod }, we set

REGK
n = { L | L is a regular language with K(L) ≤ n } .

Remark. We note that if we restricted ourselves to rules of the form A→ aB
and A→ λ with A,B ∈ N and a ∈ T , then we would have State(L) = Var(L).

We now introduce the central notion of this paper.
Let F be a family of languages. A contextual grammar with selection in F

is a construct
G = (V, (P1, C1), (P2, C2), . . . , (Pn, Cn), B)

where
– V is an alphabet,
– for 1 ≤ i ≤ n, Pi is a language over V in F and Ci is a finite set of pairs

(u, v) with u ∈ V ∗, v ∈ V ∗,
– B is a finite subset of V ∗.
The set V is called the basic alphabet; the languages Pi and the sets Ci,

1 ≤ i ≤ n, are called the selection languages and the sets of contexts of G,
respectively; the elements of B are called axioms.

We now define the external derivation for contextual grammars with selec-
tion.
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Let G = (V, (P1, C1), (P2, C2), . . . , (Pn, Cn), B) be a contextual grammar
with selection. A direct external derivation step in G is defined as follows: a
word x derives a word y (written as x =⇒ y) if and only if there is an integer i,
1 ≤ i ≤ n, such that x ∈ Pi and y = uxv for some pair (u, v) ∈ Ci. Intuitively,
we can only wrap a context (u, v) ∈ Ci around a word x if x belongs to the
corresponding language Pi.

By =⇒∗ we denote the reflexive and transitive closure of =⇒. The external
language generated by G is defined as

L(G) = { z | x =⇒∗ z for some x ∈ B } .

By L(EC ,F) we denote the family of all external languages generated by con-
textual grammars with selection in F . When we speak about contextual gram-
mars in this paper, we mean contextual grammars with external derivation (also
called external contextual grammars).

Example 1 Let n ≥ 1 and V = {a} be a unary alphabet. We set

Bn =
{
ai | 0 ≤ i ≤ n

}
, Un =

{
an+1

}∗
, and Ln = Bn ∪ Un.

The contextual grammar

Gn = (V, (Un, {(λ, an+1)}), Bn)

generates the language Ln. This can be seen as follows. The only axiom to
which a context can be added is λ. From this, we get the unique derivation

λ =⇒ an+1 =⇒ a2(n+1) =⇒ a3(n+1) =⇒ · · · .

It is easy to see that the set Un is accepted by the automaton

(V, {z0, z1, . . . , zn}, z0, {z0}, δn)

where the graph

start // ONMLHIJKGFED@ABCz0 a
//@AOO BC

a

ONMLHIJKz1 a
// · · ·

a
// ONMLHIJKzn

represents the transition function δn. Hence, we have Ln ∈ L(EC ,REGState
n+1 ).

Furthermore, the language Un is generated by the regular grammar

({S}, {a}, {S → an+1S, S → λ}, S).

Hence, we have also Ln ∈ L(EC ,REGSymb
n+6 ). 3

Obviously, the following lemma holds (see [4], Lemma 4.1).

Lemma 2 For any two language classes X and Y with X ⊆ Y , we have
L(EC , X) ⊆ L(EC , Y ). 2

5



3. Selection with Bounded Resources

First we prove that we obtain an infinite hierarchy with respect to the num-
ber of states.

Theorem 3 For any natural number n ≥ 1, we have the proper inclusion

L(EC ,REGState
n ) ⊂ L(EC ,REGState

n+1 ).

Proof. For n ≥ 1, let

Bn =
{
ai | 0 ≤ i ≤ n

}
, Un =

{
an+1

}∗
, and Ln = Bn ∪ Un

be the languages from Example 1, where we have shown Ln ∈ L(EC ,REGState
n+1 ).

We now prove that Ln /∈ L(EC ,REGState
n ).

Let G = (V, (P1, C1), (P2, C2), . . . , (Pm, Cm), B) be a contextual grammar
with selection in REG such that L(G) = Ln.

Let

k′ = max { |uv| | (u, v) ∈ Ci, 1 ≤ i ≤ m } ,
k′′ = max { |z| | z ∈ B } ,
k = k′ + k′′.

We consider the word w = ak(n+1) ∈ Ln. Obviously, w /∈ B. Thus, the word w
is obtained from some word w′ ∈ Ln by adding a context (u, v) ∈ Ci for some
index i with 1 ≤ i ≤ m and w′ ∈ Pi. Then w = uw′v. For the length of the
word w′, we obtain

|w′| = |w| − |uv| = (k′ + k′′)(n+ 1)− |uv| ≥ k′n+ k′′(n+ 1) > n.

Hence w′ /∈ Bn, so w′ ∈ Un, which implies w′ = aj(n+1) for some j with
1 ≤ j < k and uv = a(k−j)(n+1). Therefore, Pi contains some element of {a}+.
Further, if Pi contains a word z of Bn, then also uzv ∈ Ln. But z ∈ Bn implies
|z| = s with 1 ≤ s ≤ n, and thus |uzv| = s + (k − j)(n + 1) is greater than
n + 1 but not a multiple of n + 1. This is impossible for words in Ln. Hence,
the set Pi does not contain a word of Bn. Let r = min

{
l | al ∈ Pi, al 6= λ

}
.

Then r ≥ n + 1. We set zi = ar−i for 0 ≤ i ≤ r. Then we have the relations
aizi ∈ Pi and ajzi /∈ Pi for 1 ≤ j < i ≤ r because aizi = ar and |ajzi| < r for
1 ≤ j < i ≤ r.

Therefore the words a, a2, . . . , ar are pairwise not in the Myhill-Nerode re-
lation. Thus, the minimal deterministic finite automaton accepting Pi has at
least r ≥ n+ 1 states. 2

We now consider the measures Var and Prod . We start with the following
result.

Theorem 4 The equality L(EC ,REGProd
1 ) = FIN holds.
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Proof. All languages from the class REGProd
1 are finite. According to Lemma 2,

we have the inclusion L(EC,REGProd
1 ) ⊆ L(EC,FIN ). Since the equality

L(EC,FIN ) = FIN holds ([4]), we get the inclusion

L(EC,REGProd
1 ) ⊆ FIN .

Let L be a finite language. This language can be generated by the grammar
G = (V, ({λ}, {(λ, λ)}), L). The regular language {λ} can be generated with
one production S → λ only. Hence, L ∈ L(EC,REGProd

1 ) which gives us the
other inclusion

FIN ⊆ L(EC,REGProd
1 )

and thus the equality claimed. 2

For certain languages over a unary alphabet, we obtain the following.

Theorem 5 Any language L ∈ L(EC ,REG) over a unary alphabet belongs to
the set

L(EC ,REGVar
1 ) ∩ L(EC ,REGProd

2 ).

Proof. By Corollary 8.2 of [16], any language in L(EC ,REG) is linear. Thus,
any language in L(EC ,REG) over a unary alphabet is regular (since all context-
free languages over a unary alphabet are regular, see [17], Volume 1, Chapter 3,
Theorem 2.6). Therefore, any language L ∈ L(EC ,REG) can be represented in
the form

L = {ai1 , ai2 , . . . , air} ∪ {ap}∗{aj1 , aj2 , . . . , ajs}

for some numbers r ≥ 0, s ≥ 0, p ≥ 1, i1, i2, . . . , ir, j1, j2, . . . , js with

0 ≤ i1 < i2 < · · · < ir < p ≤ j1 < j2 < · · · < js < 2p.

This representation follows immediately from an analysis of the form that a
deterministic finite automaton accepting L may have. Such a deterministic
automaton can be uniquely depicted as a chain of transitions (labelled with a)
that ends with a cycle of length p; the values i1, . . . , ir and j1, . . . , js are obtained
by counting how many symbols a should be read in order to get from the initial
state to the final states.

Thus, L can be generated by the contextual grammar

({a}, ({ap}∗{aj1}, {(λ, ap)}), . . . , ({ap}∗{ajs}, {(λ, ap)}), B)

with B = {ai1 , ai2 , . . . , air , aj1 , aj2 , . . . , ajs}. Moreover, each selection language
{ap}∗{aj`}, with 1 ≤ ` ≤ s, is generated by the regular grammar

({S}, {a}, {S → apS, S → aj`}, S).

Hence, L ∈ L(EC ,REGVar
1 ) ∩ L(EC ,REGProd

2 ). 2

The above proof shows that the class of all unary languages from L(EC ,REG)
is equal to the class of all unary regular languages.
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By Theorem 5, there are bounds (1 for the number of variables and 2 for the
number of production rules) for the necessary size of selection languages if the
language to be generated by the respective contextual grammar is unary. We
now show that this does not hold if the underlying alphabet contains at least
two letters.

Let p be a positive natural number. For each natural number n > 1, we
define the following language over the alphabet {a, b}:

Kn = {a(abk1) . . . (abkn−1)abp | ki > p for 1 ≤ i ≤ n− 1}
∪ {a(abk1) . . . (abk`) | 1 ≤ ` < n, ki > p for 1 ≤ i ≤ `}.

The parentheses are used above only to highlight the repetitive structure of the
language.

Lemma 6 For n > 1, we have Kn ∈ L(EC ,REGVar
n−1).

Proof. First, we assume that n ≥ 3. Consider the following regular grammars:

• G1 having n− 1 nonterminals S,A3, A4, . . . , An where S is the axiom and
having the rules S → aabA3, S → bS, S → λ, and Ai → bAi, Ai → abAi+1

for 3 ≤ i ≤ n− 1 and An → bAn, An → abS.

• G2 having n− 1 nonterminals S,A3, A4, . . . , An where S is the axiom and
having the rules S → aabA3 and Ai → bAi, Ai → λ, Ai → abAi+1 for
3 ≤ i ≤ n− 1 and An → bAn, An → λ.

The languages generated by the above grammars are:

• L1 = L(G1) = {a}({a}{b}+)n−1 ∪ L′1 ∪ L′′1 ∪ {λ} where L′1 is a regular
language that contains only words with at least n + 2 a-symbols and at
least two distinct factors aa and L′′1 is a regular language that contains
only words that start with b.

• L2 = L(G2) =
⋃

1≤`<n−1
{a}({a}{b}+)`.

In what follows, we show that Kn is generated by the contextual grammar

Gn = (V, (L1, {(λ, b)}), (L1, {(λ, abp)}), (L2, {(λ, b)}), (L2, {(λ, abp+1)}), B)

with V = {a, b} and B = {aabp+1}.
First, consider a word a(abk1) . . . (abk`) with 1 ≤ ` < n and ki > p for

1 ≤ i ≤ `. This word is generated starting from the axiom aabp+1 by wrapping
the context (λ, b) selected by L2 around the current word until aabk1 is obtained.
Then, if ` > 1, the context (λ, abp+1) selected by L2 is added and we get
aabk1abp+1. The process continues in the same way: First we add several times
(λ, b) selected by L2, then we add (λ, abp+1) selected by L2. At some point,
the word a(abk1) . . . (abk`−1)(abp+1) will be generated. Then, the context (λ, b)
selected by L1 (if ` = n − 1) or by L2 (if ` < n − 1) is added until the word
a(abk1) . . . (abk`) is obtained.
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Now consider the word a(abk1) . . . (abkn−1)abp. First, we generate the word
a(abk1) . . . (abkn−2)abp+1 exactly as above. This word is in L1 \L2. We continue
by wrapping the context (λ, b) selected by L1 around the current word until we
obtain a(abk1) . . . (abkn−1); to end the derivation, we add the context (λ, abp)
selected by L1 and obtain a(abk1) . . . (abkn−1)abp.

It is not hard to see that only words of these forms can be obtained. Using
the contextual rules that have L2 as selector, we only obtain words of the form
a(abk1) . . . (abk`) or a(abk1) . . . (abk`)(abp+1) with 1 ≤ ` < n − 1 and ki > p for
1 ≤ i ≤ `. Using additionally the contextual rules that have L1 as selector, we
obtain further the words of the form a(abk1) . . . (abk`) or a(abk1) . . . (abk`)(abp)
with 1 ≤ ` < n and ki > p for 1 ≤ i ≤ `. The words of the first type can be
further derived, while the words of the second type cannot be derived anymore
as they are not in L1 ∪ L2. Thus, Li ∈ REGVar

n−1 for i ∈ {1, 2}.
Now consider that n = 2. We define the grammar G1 with one nonterminal S

and the rules S → aabS, S → bS, and S → λ. The language generated
by this grammar is L1 = L(G1) = {aa}{b}+ ∪ L′1 ∪ L′′1 ∪ {λ} where L′1 is
a regular language that contains at least two distinct factors aa and L′′1 is a
regular language that contains only words that start with b. The language Kn

is generated by the grammar Gn = (V, (L1, {(λ, b)}), (L1, {(λ, abp)}), B) where,
as in the previous case, B = {aabp+1}. Hence, we have Kn ∈ L(EC ,REGVar

n−1)
in this case, too. 2

Lemma 7 For n > 1, we have that Kn /∈ L(EC,REGVar
n−2).

Proof. Assume that G = (V, (P1, {(u1, v1)}), . . . , (P`, {(u`, v`)}), B) is a con-
textual grammar that generates Kn and that G1, . . . , G` are regular grammars
that generate P1, . . . , P`, respectively.

We first note that ui = λ for 1 ≤ i ≤ `. All the words derived by G have
the form aaw with w ∈ {a, b}∗. Further, if a context has the form (ui, vi) with
ui 6= λ, then wrapping this context around a certain word derived by G yields
a word of the language that contains the factor aa not as a prefix or at least
twice. But this is a contradiction.

Now, denote by M the maximum length of the right hand sides of the pro-
ductions of the grammars G1, . . . , G` and denote by M ′ the maximum length
of the words vi for 1 ≤ i ≤ ` and of the words from B. Then M ′ ≥ p because
every word of the language Kn (and especially of B) has more than p letters.

Let N = M + 2M ′ + 1 and consider now the word w = a(abN ) . . . (abN )abp

where |w|a = n + 1. It does not belong to the set B since it is longer than
any word of B. Thus, it is obtained by adding a context, denoted (λ, vi), to
another word w′ of Kn. We note that this context is of the form (λ, bxabp)
with x ≥ 0 (by the choice of N sufficiently large and because w′ ∈ Kn). Hence,
w′ = a(abN )n−2abm with M +M ′ + 1 ≤ m ≤ N .

In what follows, we show that the grammar Gi generating the selection
language Pi of the contextual rule (Pi, {(λ, vi)}) has at least n−1 nonterminals.
Let us assume the opposite: The grammar Gi has at most n− 2 nonterminals.
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A possible derivation of the word w′ ∈ Pi has the form

S =⇒∗ aabk1A1 =⇒∗ aabNabk2A2 =⇒∗ · · · =⇒∗ a(abN )i−1abkiAi =⇒∗ · · ·
=⇒∗ a(abN )n−2abkn−1An−1 =⇒∗ a(abN )n−2abm

where A1, . . . , An−1 are nonterminals and ki ≤ M for 1 ≤ i ≤ n − 1. Since Gi
has at most n− 2 nonterminals by our assumption, there exist numbers j and k
such that 1 ≤ j < k ≤ n − 1 and Aj = Ak. Hence, we can also derive by the
grammar Gi a word that has at most t ≤ n − 1 symbols a and has the form
a(abl1) . . . (ablt−1) with ls > p for 1 ≤ s ≤ t−1 (we derive a(abN )j−1abkjAj and
then rewrite Aj as we rewrote Ak in the derivation above). In a word obtained
in this way, every group of b symbols contains more than p symbols, because
we basically decreased the number of symbols in such a group by at most M .
Hence, a(abl1) . . . (ablt−1) ∈ Pi and the context (λ, bxabp) can be added which
yields the word a(abl1) . . . (ablt−1)abp with t ≤ n−1 and ls > p for 1 ≤ s ≤ t−1.
This is a contradiction to the definition of Kn. Therefore, Gi has at least n− 1
nonterminals. This concludes our proof. 2

From the previous two lemmas we obtain the following result:

Theorem 8 For any natural number n ≥ 1, we have the proper inclusion

L(EC ,REGVar
n ) ⊂ L(EC ,REGVar

n+1). 2

The generation of the language Kn for a natural number n > 1 requires at
least 2(n − 2) + 1 productions in each component (each nonterminal different
from the axiom has at least two productions; otherwise, we could substitute
each occurrence of a nonterminal A which appears in only one rule A → w
by w in all right hand sides and ignore the nonterminal A and its rule, which
would give a regular grammar with a smaller number of nonterminals). From
the proof of Lemma 6, we have Kn ∈ L(EC ,REGProd

3n−6) for n ≥ 5. Hence,

together, we obtain Kn ∈ L(EC ,REGProd
3n−6) \ L(EC ,REGProd

2n−4) for n ≥ 5, from

which immediately follows that the families L(EC ,REGProd
n ) for n ≥ 1 form

an infinite chain with respect to inclusion. If we do not restrict the size of the
alphabet we get a stronger result for which we first state the following lemma.

Lemma 9 Let G = (N,V, P, S) be a regular grammar, with V = {a1, . . . , an}.
Assume that P contains at most n − 1 rules whose right hand side contains a
nonterminal symbol. Then there exist a number kG ∈ N and a word wG ∈ V ∗
such that wG is not a factor of the prefix of length m − kG of any word w of
length m generated by G for all m ∈ N.

Proof. Let P ′ denote the subset of all the rules of P whose right hand side
contains a nonterminal. Let kG be the maximum length of the right hand
side of the rules from P \ P ′. Furthermore, denote by P ′′ the set of all the
rules of P ′ that are not of the form A → B with A,B ∈ N . We can write
P ′′ = {Ai → xiA

′
i | Ai, A′i ∈ N, xi ∈ V +, i ∈ {1, . . . , t}} for some t ≤ n− 1.
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Let ` be a natural number. There are n` words of length ` over V . We will
compute an upper bound on the number of factors of length ` that can appear
in the prefixes of length m − kG of the words of length m generated by G, for
all m ∈ N.

If x is such a factor it is a factor of one of the words of the set

{xj1 . . . xj` | 1 ≤ j1, . . . , j` ≤ t}.

But the number of factors of length ` of the words from that set is less or equal
to t`(M`− (`−1)) where M is the maximum length of one of the words xi with
i ∈ {1, . . . , t}. Since t ≤ n− 1 it follows that (n− 1)`(M`− `+ 1) upper bounds
the number of factors of length ` that can appear in the prefixes of length m−kG
of the words of length m generated by the grammar G for all m ∈ N.

But for ` sufficiently large we have that n` > (n− 1)`(M`− `+ 1), so there
exists a word of length ` that does not appear as a factor in the prefix of length
m − kG of any word w of length m generated by G for all m ∈ N. Let such a
word be wG. This concludes our proof. 2

We can now prove the infinite hierarchy without ‘gaps’ between the number
of production rules.

Theorem 10 For any natural number n ≥ 1, we have the proper inclusion
L(EC ,REGProd

n ) ⊂ L(EC ,REGProd
n+1 ).

Proof. Let V = {a1, . . . , an}. The language V ∗ is generated by the regular
grammar

G = ({S}, V, {S → aiS | 1 ≤ i ≤ n} ∪ {S → λ}, S).

The language V ∗ is also generated by the contextual grammar

G′ = (V, (V ∗, {(λ, ai) | 1 ≤ i ≤ n}), {λ}).

Thus, V ∗ ∈ L(EC ,REGProd
n+1 ). Let us now prove that V ∗ /∈ L(EC ,REGProd

n ).
We assume the opposite: there exists a contextual grammar with regular se-

lection G′ = (V, (L1, C1), (L2, C2) . . . , (Lp, Cp), B) that generates V ∗ such that
the languages Li can be generated by regular grammars with at most n produc-
tions for 1 ≤ i ≤ p. For all i ∈ {1, . . . , p}, the grammar generating Li must have
at least a rule whose right hand side contains only terminals; consequently, by
Lemma 9, for all i ∈ {1, . . . , p}, there exists ki ∈ N and wi ∈ V ∗ such that wi is
not a factor of the prefix of length m− ki of any word w of length m of Li.

Now let M1 be the maximum length of an axiom of G′, let M2 be the
maximum length of one side of the contexts of G′, and let M3 be the maximum
of the set {ki | 1 ≤ i ≤ p}. We denote by M = M1 +M2 +M3.

Let w = aM1 w1w2 . . . wpa
M
1 . Due to its length, w /∈ B, so it must be obtained

by adding one context c to a word x generated by G′. But the word x would
contain the factor wi in its prefix of length |x| − ki for all i ∈ {1, . . . , p}. So x
does not belong to any of the selection languages, and cannot select c. We have
reached a contradiction, and, consequently, V ∗ /∈ L(EC ,REGProd

n ). 2
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We now consider the measure Symb. For any language L, one needs at least
two symbols for generating it.

Lemma 11 Let L be an infinite regular language. Let k be the minimal length
of non-empty words in L. Then Symb(L) ≥ k + 5.

Proof. Let G be a regular grammar generating L. Let us consider a derivation

S =⇒ x1A1 =⇒ x1x2A2 =⇒ · · · =⇒ x1x2 . . . xn−1An−1 =⇒ x1x2 . . . xn = w

of a word w ∈ L of length k.
If n = 1, then S =⇒ w. The rule S → w contributes k + 2 symbols. There

is also a rule A→ z with z /∈ T ∗ since L is infinite. Hence, Symb(G) ≥ k + 5.
If n ≥ 2, we have rules S → x1A1, Ai → xi+1Ai+1 for 1 ≤ i ≤ n − 2 and

An−1 → xn. Then we have Symb(G) = k + 5 + 3(n− 2) ≥ k + 5. 2

By this rsult, we know especially that, for generating an infinite language,
one needs at least six symbols. With this result, we can show the following
theorem.

Theorem 12 We have L(EC,REGSymb
k ) = FIN for 2 ≤ k ≤ 5.

Proof. According to Lemma 11, all languages from the set REGSymb
k where k

satisfies 2 ≤ k ≤ 5 are finite. Thus, L(EC,REGSymb
5 ) ⊆ L(EC,FIN ). Since

L(EC,FIN ) = FIN ([4]), we get L(EC,REGSymb
5 ) ⊆ FIN .

Let L be a finite language. This language can be generated by the grammar
G = (V, ({λ}, {(λ, λ)}), L). Hence, L ∈ L(EC,REGSymb

2 ). 2

Finally, we also obtain the following result.

Theorem 13 For any number n ≥ 6, we have

L(EC ,REGSymb
n−1 ) ⊂ L(EC ,REGSymb

n ).

Proof. Let Ln =
{
ai | 0 ≤ i ≤ n

}
∪
{
an+1

}∗
be the languages from Example 1,

where we have shown that Ln belongs to the class L(EC ,REGSymb
n+6 ).

We now prove that Ln /∈ L(EC ,REGSymb
n+5 ). Assume the contrary, i. e.,

there is a contextual grammar G = (V, (P1, C1), (P2, C2), . . . , (Pm, Cm), B) with

selection in REGSymb
n+5 such that L(G) = Ln. We define k′, k′′, and k as in the

proof of Theorem 3,

k′ = max { |uv| | (u, v) ∈ Ci, 1 ≤ i ≤ m } ,
k′′ = max { |z| | z ∈ B } ,
k = k′ + k′′,
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and consider the words wp = apk(n+1) for p ≥ 1. Again, there are words w′p
such that wp = upw

′
pvp for some context (up, vp) associated with some regular

set Pip , 1 ≤ ip ≤ m, and

pk(n+ 1) = |wp| > |w′p| = p(k′ + k′′)(n+ 1)− |upvp|
≥ p(k′ + k′′)(n+ 1)− k′ > (p− 1)k(n+ 1).

Thus, all these words w′p are different and each of them belongs to at least one
of the sets Pj , 1 ≤ j ≤ m. Therefore at least one of the sets Pj , 1 ≤ j ≤ m,
say Pi, is infinite. As in the proof of Theorem 3, we can show that the shortest
non-empty word of Pi has a length r ≥ n + 1. Now we get from Lemma 11
that Symb(Pi) ≥ n+ 6. 2

We make some final remarks on the results of this section. We have shown
that, for K ∈ {State,Var ,Prod}, we obtain infinite dense hierarchies, i. e., for
any n ≥ 1,

L(EC ,REGK
n+1) \ L(EC ,REGK

n ) 6= ∅.

However, these results hold for all alphabets with respect to State; in the case
of Var , it is valid for all alphabets with at least two letters (if the alphabet is
unary, we have only one level in the hierarchy); and for Prod we need alphabets
of arbitrary size. It is an open question whether the results hold for Prod and a
fixed alphabet size. For Symb, we get a dense hierarchy over all alphabets, but
starting with n = 6.

4. Circular, Ordered, and Union-Free Selection

We start with some results on circular selection languages.

Theorem 14 We have the proper inclusion L(EC ,COMM ) ⊂ L(EC ,CIRC ).

Proof. By Lemma 2, we obtain L(EC ,COMM ) ⊆ L(EC ,CIRC ). Let

P1 = { abcn | n ≥ 1 } , P2 = { cnba | n ≥ 1 } , and L = P1 ∪ P2.

The language L is generated by the contextual grammar

G = ({ a, b, c } , (Circ(P1), { (λ, c) }), (Circ(P2), { (c, λ) }), { abc, cba })

because, for 1 ≤ i ≤ 2, a word from the set Pi always derives a word from the
set Pi since the circular closures of the sets P1 and P2 are disjoint; furthermore,
a word abcn derives the word abcn+1 and a word cnba derives the word cn+1ba
for n ≥ 1.

Let us assume that the language L is also generated by a contextual gram-
mar G′ = ({ a, b, c } , (Q1, C1), (Q2, C2), . . . , (Qm, Cm), B) where all sets Qi with
1 ≤ i ≤ m are commutative. We consider a word abck ∈ L where k is greater
than the maximal length of the words in the set B. Then this word is gen-
erated by deriving another word z ∈ L. Hence, there is an index i with
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1 ≤ i ≤ m such that abck = uzv for some context (u, v) ∈ Ci and z ∈ Qi.
Since z ∈ L the word z has the form abcl with 1 ≤ l < k. Consequently, the
context (u, v) is (λ, cs) for a number s ≥ 1. Since z ∈ Qi and the set Qi is
commutative, it also contains the word clba which belongs to the language L.
According to our assumption, this word clba belongs to the language L(G′)
and therefore derives the word clbacs ∈ L(G′) which does not belong to the
language L. Hence, the two languages L and L(G′) are not equal which con-
tradicts the assumption. Thus, the language L cannot be generated by a con-
textual grammar with commutative selection which yields the proper inclusion
L(EC ,COMM ) ⊂ L(EC ,CIRC ). 2

Theorem 15 The class L(EC ,CIRC ) is incomparable with each of the classes
L(EC ,DEF ) and L(EC ,SUF ).

Proof. Let V = {a, b, c} and L1 = { anbn | n ≥ 1 } ∪ { cbn | n ≥ 1 }. The
language L1 can be generated by the contextual grammar with circular selection

G = (V, (P1, { (a, b) }), (P2, { (λ, b) }), { ab, cb })

with P1 = { w | w ∈ V ∗ and |w|c = 0 } and P2 = V ∗\P1. However, the language
does not belong to the class L(EC ,DEF ) according to [4].

Let L2 = { abn | n ≥ 1 } ∪ { b }. The language L2 can be generated by

G = ({ a, b } , (Circ({ abn | n ≥ 1 }), { (λ, b) }), { ab, b })

with circular selection. However, L2 /∈ L(EC ,SUF ) according to [4].
Let L3 = { abn | n ≥ 1 } ∪ { bna | n ≥ 1 }. According to [4], the language L3

belongs to both the classes L(EC ,DEF ) and L(EC ,SUF ). Let us assume that
the language L3 is also generated by a contextual grammar

G = ({ a, b } , (P1, C1), (P2, C2), . . . , (Pm, Cm), B)

where all sets Pi (1 ≤ i ≤ m) are circular. We consider a word abk ∈ L where k
is greater than the maximal length of the words in the set B. Then this word
is generated by deriving another word z ∈ L3. Hence, there is an index i with
1 ≤ i ≤ m such that abk = uzv for some context (u, v) ∈ Ci and z ∈ Pi. Since
z ∈ L3 the word z has the form abl with 1 ≤ l < k. Consequently, the context
(u, v) is (λ, bs) for a number s ≥ 1. Since z ∈ Pi and the set Pi is circular, it
also contains the word bla which belongs to the language L3. According to our
assumption, this word bla belongs to the language L(G) and therefore derives
the word blabs ∈ L(G) which does not belong to the language L3. Hence, the
two languages L3 and L(G) are not equal which contradicts the assumption.
Thus, the language L3 does not belong to the class L(EC ,CIRC ).

The languages L1, L2, and L3 are witnesses for the claimed incomparability.
2

The language L3 = { abn | n ≥ 1 }∪{ bna | n ≥ 1 } from the proof of the pre-
vious theorem also belongs to the class L(EC ,REG). This yields the following
statement.
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Corollary 16 We have the proper inclusion L(EC ,CIRC ) ⊂ L(EC ,REG). 2

We now give some results on the class of languages generated by contextual
grammars with ordered selection.

Let P1 = { anbn | n ≥ 1 }, P2 = { bn | n ≥ 1 }, and L = P1 ∪ P2. The
language L is generated by the contextual grammar

G = ({ a, b } , (P ′1, { (a, b) }), (P2, { (λ, b) }), { ab, b })

with P ′1 = {b}∗{a}{a, b}∗. The set P ′1 can be accepted by the finite automaton

A = ({ a, b } , { z0, z1 } , z0, { z1 } , δ)

with the transition function δ defined by δ(z0, a) = δ(z1, a) = z1 and δ(zi, b) = zi
for 0 ≤ i ≤ 1. Both the sets P ′1 and P2 are ordered. This leads us to the following
conclusion.

Corollary 17 The language L = { anbn | n ≥ 1 }∪{ bn | n ≥ 1 } belongs to the
class L(EC ,ORD). 2

In [4], it was shown that the language L1 = { anbn | n ≥ 1 }∪{ cbn | n ≥ 1 }
does not belong to the class L(EC ,DEF ). Using similar techniques, one can
also show that the language L = { anbn | n ≥ 1 }∪{ bn | n ≥ 1 } does not belong
to the class L(EC ,DEF ). Together with Corollary 17, we obtain the following
statement.

Theorem 18 There exists a language in the set L(EC ,ORD)\L(EC ,DEF ).2

By Lemma 2, the class L(EC ,COMB) is a subset of the class L(EC ,DEF )
(in [4], even its properness was shown) and of the class L(EC ,ORD). This
yields the following result.

Corollary 19 The proper inclusion L(EC ,COMB) ⊂ L(EC ,ORD) holds. 2

We use the language L = { anbn | n ≥ 1 } ∪ { bn | n ≥ 1 } given above to
show the next statement.

Theorem 20 The proper inclusion L(EC ,NIL) ⊂ L(EC ,ORD) holds.

Proof. By Lemma 2, we know the inclusion L(EC ,NIL) ⊆ L(EC ,ORD). Let
us consider the language L = { anbn | n ≥ 1 } ∪ { bn | n ≥ 1 } given above. By
Corollary 17, we have L ∈ L(EC ,ORD).

Assume, L ∈ L(EC ,NIL). Then there is a contextual grammar

G = ({ a, b } , (P1, C1), (P2, C2), . . . , (Pm, Cm), B)

where all sets Pi (1 ≤ i ≤ m) are nilpotent.
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Let µ be the maximal length of all words in the base set B and the finite
sets Pi:

µ = max { |w| | w ∈ B or w ∈ Pi and #(Pi) <∞, 1 ≤ i ≤ m } .

Let κ be the maximal length of all contexts:

κ = max { |u|+ |v| | (u, v) ∈ Ci, 1 ≤ i ≤ m } .

We now consider a word anbn ∈ L with n > µ+κ. Then there exists a word
z ∈ L(G), an index i with 1 ≤ i ≤ m, and a context (u, v) ∈ Ci such that z ∈ Pi
and anbn = uzv. Since n > κ ≥ |u| and n > |v| there are numbers s ≥ 0 and
t ≥ 0 such that u = as, v = bt, and s+ t ≥ 1.

Because of the choice of n, we further have |z| > µ. Hence, Pi is infinite (in
the finite selection languages, there is no word with a length greater than µ).
Since it is nilpotent, the set C = { a, b }∗ \Pi is finite. Hence, the set C contains
only finitely many words of the form akbk or bk. Thus, the set Pi contains in-
finitely many words of the form akbk and infinitely many words of the form bk.
If s 6= t, we obtain from a word akbk ∈ Pi a word which is not in the lan-
guage L. Hence, s = t. But then from a word bk ∈ Pi we can derive the word
ubkv = asbk+s which is due to s ≥ 1 not a word of the language L. Thus,
L /∈ L(EC ,NIL). 2

We now discuss union-free languages. By the classical theorem by Kleene we
know that every regular language over an alphabet V can be constructed from
the sets {x} for x ∈ V and the empty set by finitely many operations of union,
concatenation and Kleene-star. We now present a version of this statement
using union-free sets.

Lemma 21 Every regular language can be represented by a finite union of
union-free languages.

Proof. Let V be an alphabet. The atomic regular languages empty set and {x}
for x ∈ V are union-free. Let U and W be two regular languages over V with
representations as finite unions

U = U1 ∪ U2 ∪ · · · ∪ Un and W = W1 ∪W2 ∪ · · · ∪Wm

of union-free languages Ui for 1 ≤ i ≤ n and Wi for 1 ≤ i ≤ m. Then also
the languages U ∪W , U ·W , and U∗ can be represented by a finite union of
union-free languages:

U ∪W = U1 ∪ U2 ∪ · · · ∪ Un ∪W1 ∪W2 ∪ · · · ∪Wm,

U ·W = (U1 ∪ U2 ∪ · · · ∪ Un) · (W1 ∪W2 ∪ · · · ∪Wm) =

n⋃
i=1

m⋃
j=1

Ui ·Wj ,

U∗ = (U1 ∪ U2 ∪ · · · ∪ Un)∗ = (U∗1U
∗
2 . . . U

∗
n)∗.
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Hence, any regular language can be represented by a finite union of union-
free languages. 2

Obviously, there exist non-union-free regular languages. However, the pre-
vious statement helps us to show that the restriction to union-free selection
languages does not imply a restriction of the generative capacity of contextual
grammars.

Theorem 22 We have the equality L(EC ,UF ) = L(EC ,REG).

Proof. According to Lemma 2, we have L(EC ,UF ) ⊆ L(EC ,REG). Hence,
we only have to show that the inclusion L(EC ,REG) ⊆ L(EC ,UF ) also holds.

Let L ∈ L(EC ,REG) and G = (V, (P1, C1), (P2, C2), . . . , (Pn, Cn), B) be a
contextual grammar generating L where the sets P1, P2, . . . , Pn are arbitrary
regular languages. By Lemma 21, every language Pi (1 ≤ i ≤ n) can be repre-
sented as a union Pi = Qi,1 ∪Qi,2 ∪ · · · ∪Qi,ni

of union-free languages Qi,j with
1 ≤ j ≤ ni for a natural number ni ≥ 1. The contextual grammar

G′ = (V, (Q1,1, C1), . . . , (Q1,n1 , C1), . . . , (Qn,1, Cn), . . . , (Qn,nn , C1), B)

generates the same language as G because any context can by added by G if and
only if it can be added by G′. Thus, for any language L ∈ L(EC ,REG), there
is also a contextual grammar that generates the language L and has only union-
free selection languages. This proves the inclusion L(EC ,REG) ⊆ L(EC ,UF ).

2

Note that the results of this section come as an extension of the hierarchy of
classes of languages generated by contextual grammars with subregular choice
reported in [4]. Once again, it is worth mentioning that all these results are
valid for alphabets that contain at least two letters, except for Theorem 14,
where three letters are needed; it remains to be settled whether these bounds
are optimal. It also seems interesting how the hierarchies defined in the previ-
ous section can be compared with the hierarchy developed in [4] and here. It
seems interesting to see if results similar to the ones shown in this and the pre-
vious section can be derived for internal contextual grammars with subregular
selection.
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