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Tra	c classi
cation utilizing �ow measurement enables operators to perform essential network management. Flow accounting
methods such as NetFlow are, however, considered inadequate for classi
cation requiring additional packet-level information, host
behaviour analysis, and specialized hardware limiting their practical adoption. �is paper aims to overcome these challenges by
proposing two-phased machine learning classi
cation mechanism with NetFlow as input. �e individual �ow classes are derived
per application through �-means and are further used to train a C5.0 decision tree classi
er. As part of validation, the initial
unsupervised phase used �ow records of 
�een popular Internet applications that were collected and independently subjected to �-
means clustering to determine unique �ow classes generated per application.�e derived �ow classes were a�erwards used to train
and test a supervised C5.0 based decision tree.�e resulting classi
er reported an average accuracy of 92.37% on approximately 3.4
million test cases increasing to 96.67% with adaptive boosting. �e classi
er speci
city factor which accounted for di�erentiating
content speci
c from supplementary �ows ranged between 98.37% and 99.57%. Furthermore, the computational performance and
accuracy of the proposedmethodology in comparisonwith similarmachine learning techniques lead us to recommend its extension
to other applications in achieving highly granular real-time tra	c classi
cation.

1. Introduction

Tra	c classi
cation methods using �ow and packet based
measurements have been previously researched using various
techniques ranging from automated machine learning (ML)
algorithms to deep packet inspection (DPI) for accurate
application identi
cation. Port and protocol analysis, once
the default method for tra	c identi
cation is now considered
obsolete as most applications use dynamic ports, employ
HTTPS or encrypted SRTP or use tunnelling, which makes
classi
cation close to impossible. Deep packet inspection
(DPI) is useful; however the computational overhead and
additional hardware required for packet analysis severely
limit its practical implementation for network operators [1].
Moreover, aggregation based tra	c monitoring techniques
using �ow measurements have proliferated in recent years
due to their inherent scalability and ease of implementation as
well as compatibility with existing hardware using standard-
ized export formats such as NetFlow and IPFIX [2]. However,

despite an increase in use, �ow based network monitoring
also encountered tra	c classi
cation challenges mainly due
to frequent obfuscation and encryption techniques employed
by many applications [3–5]. Most automated machine learn-
ing classi
cation algorithms utilizing NetFlow involve sig-
ni
cant processing overhead and sometimes employ san-
itized input requiring simultaneous computations on �ow
records and packet traces to obtain meaningful results [3,
6, 7]. Additionally, popular Internet applications generate
convoluted sets of �ows representing content speci
c and
auxiliary control �ows, making application identi
cation
on a per-�ow basis even more challenging. �e present
paper proposed a per-�ow C5.0 decision tree classi
er by
employing a two-phased machine learning approach while
solely utilizing the existing quantitative attributes of NetFlow
records. Flow records for 
�een popular Internet applications
were 
rst collected and unique �ow classes were derived
per application using �-means clustering. Based on these

Hindawi Publishing Corporation
Journal of Computer Networks and Communications
Volume 2016, Article ID 2048302, 21 pages
http://dx.doi.org/10.1155/2016/2048302



2 Journal of Computer Networks and Communications

Table 1: Tra	c classi
cation approaches.

Category
Classi
cation
methodology

Attribute(s) used Granularity
Processing

time
Sample tools/ML techniques

Port based Protocol port Protocol ports High Low
Any (custom), PRTG network
monitor [55], Nagios [56],
Wireshark [48]

Payload
inspection

Deep packet
inspection

Payload inspection of, for example, 
rst �
packets, 
rst packet per direction

High High
OpenDPI [1], nDPI [45], L7
(TIE) [35]

Stochastic packet
inference

Statistical properties inherent in packet
header and payload

High High
Netzob [57], Polyglot [58],
KISS [8]

Behavioural
techniques

End-point behaviour
monitoring

Identifying host (communication)
behaviour pattern

Low Moderate
BLINC [46], SVM [59], näıve
Bayes [60]

Tra	c accounting
Heuristic analysis of inspected packets,
�ows

High High
ANTCs [61], näıve Bayes [60],
Bayesian network [62]

Statistical
approaches

Packet based
Packet and payload size, interpacket
arrival time

High Moderate
�NN [63], Hidden
Markov/Gaussian Mixture
Models

Flow based
Duration, transmission rate, multiple
�ow features

Low Low
�-means/hierarchical
clustering [27], J48 [30], C5.0
[31], BFTree [64], SVM [59]

preclassi
ed �ows (the ground-truth data), the C.50 classi-

er was subsequently trained for highly granular per-�ow
application tra	c classi
cation. �e classi
ed applications
included YouTube, Net�ix, Dailymotion, Skype, Google Talk,
Facebook video chat, VUZE and BitTorrent clients, Dropbox,
Google Drive and OneDrive cloud storage, two interactive
online games, and the �underbird and Outlook email
clients.�e rest of this paper is organized as follows. Section 2
presents related background work in tra	c classi
cation and
gives an overview of �-means clustering and C.50 algorithm.
Section 3 elaborates on data collection, preprocessing, and
feature selection methodology. Section 4 details �ow clus-
tering using �-means and discusses the derived �ow classes.
Section 5 evaluates the accuracy of the resultingC5.0 classi
er
while Section 6 compares the performance and computation
overhead of the proposed approach with state-of-the-art ML
based classi
cation schemes. Final conclusions are presented
in Section 7.

2. Background

�e following subsections present a comprehensive overview
of state of the art in tra	c classi
cation and consider related
work in addressing �ow level classi
cation challenges using
supervised, unsupervised, and cascaded ML techniques. A
brief outline of �-means clustering and C5.0 machine learn-
ing techniques in the context of tra	c classi
cation is detailed
a�erwards.

2.1. Tra�c Classi�cation Methodologies and Related Work.
Tra	c classi
cation serves as a fundamental requirement
for network operators to di�erentiate and prioritize tra	c
for a number of purposes, from guaranteeing quality of
service to anomaly detection and even pro
ling user resource
requirements. Consequentially a large body of research can

be attributed to tra	c classi
cation such as [8–13] along with
comprehensive surveys [14–16], which re�ect the interest of
the networking community in this particular avenue. From
a high level methodology perspective, tra	c classi
cation
research can be broadly divided into port and packet payload
based classi
cation, behavioural identi
cation techniques,
and statistical measurement based approaches [16]. A sum-
mary of the prevalent classi
cation approaches, their tra	c
feature usage, and associated algorithms is given in Table 1.
While port based classi
cation techniques are now consid-
ered obsolete given the frequent obfuscation techniques and
dynamic range of ports used by applications, packet payload
inspection methods remain relevant primarily due to their
high classi
cation accuracy. Payload based classi
ers inspect
packet payloads using deep packet inspection (DPI) to iden-
tify application signatures or utilize a stochastic inspection
(SPI) of packets to look for statistical parameters in packet
payloads. Although the resulting classi
cation is highly
accurate it also presents signi
cant computational costs [16–
18] as well as being error-prone in dealing with encrypted
packets. In comparison, behavioural classi
cation techniques
work higher up the networking stack and peruse the total
tra	c patterns of the end-points (hosts and servers) such as
the number of machines contacted, the protocol used, and
the time frame of bidirectional communication to identify
the application being used on the host [19–22]. Behavioural
techniques are highly promising and provide a great deal of
classi
cation accuracy with reduced overhead compared to
payload inspection methods [9, 13]. However, behavioural
techniques focus on end-point activity and require param-
eters from a number of �ows to be collected and analysed
before successful application identi
cation. With increasing
ubiquity of �ow level network monitoring which presents a
low-cost tra	c accounting solution, speci
cally utilizingNet-
Flow due to scalability and ease of use, statistical classi
cation
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techniques utilizing �owmeasurements have gainedmomen-
tum [2, 8–12, 23]. Statistical approaches exploit application
diversity and inherent tra	c footprints (�ow parameters)
to characterize tra	c and subsequently derive classi
cation
benchmarks through datamining techniques to identify indi-
vidual applications [24]. Statistical classi
cation is considered
light-weight and highly scalable from an operational point of
view especiallywhen real-time or near real-time tra	c identi-

cation is required.While tra	c classi
cation in the network
core is increasingly challenging and seldom implemented,
application �ow identi
cation at the edge or network ingress
as detailed in [16] allows operators in shaping the respec-
tive tra	c further upstream. Statistical �ow based tra	c
classi
cations however, due to minimal number of available
features in a typical �ow record such as NetFlow, report low
classi
cation accuracy and increasingly rely on additional
packet payload information to produce e�ective results [8–
12]. �e present work picks up from this narrative and solely
utilizes NetFlow attributes using two-phased machine learn-
ing (ML), incorporating a combination of unsupervised �-
means cluster analysis andC5.0 based decision tree algorithm
to achieve high accuracy in application tra	c classi
cation.

Typical statistical �ow level classi
cation can be further
subdivided based on the type of ML algorithm being used,
that is, supervised or unsupervised. Unsupervised methods
alone do not rely on any training data for classi
cation and,
while being time and resource e	cient, especially with large
data sets, encompass signi
cant limitations hampering their
wider adoption. Firstly, cluster analysis is mostly done o�ine
and relies on evaluating stored �ow records in statistical
applications for cluster learning and tra	c identi
cation
[25, 26]. Secondly, unsupervised clustering quite o�en also
requires additional information from packet-level traces
requiring specialized hardware and is therefore considered as
an expensive option for network operators [27, 28]. Lastly,
once tra	c records have been clustered, de
ning optimal
value ranges of classi
cation attributes for real-time systems
is seldom easy and highly dependent on the data set used [29].

Supervised ML algorithms in contrast require a compre-
hensive training data set to serve as primary input for build-
ing the classi
ers; the completeness of the data set, together
with the ability of themethod to discriminate between classes,
is the decisive factor for the accuracy of themethod.Although
considered favourable in terms of presenting a discrete rule
set or decision tree for identifying applications, supervised
training also falls short of presenting a complete solution
to classi
cation challenges, as a highly accurate training/test
data set (also referred to as ground-truth data) is required
prior to further use. To aid in obtaining accurate ground-
truth data several ideas have been explored. Separate o�ine
tra	c identi
cation systems were used to preprocess and
generate training data for online classi
ers in [30]. Custom
scripts were employed in [31] on researcher machines to
associate �ow records and packets with application usage.
Deep packet inspection was used to obtain application names
for labelling training data in [32]. However, obtaining accu-
rate ground-truth data considering only singular application
class labels for subsequent training of the supervised ML
classi
er falls signi
cantly short of recognizing the di�erent

�ows generated per application [25–32]. Internet applications
generate a convoluted set of �ows including both application
initiated content speci
c or auxiliary control �ows and other
functional tra	c such as DNS or multicasts. Per-�ow tra	c
classi
cation hence requires a full appreciation of the peculiar
traits and types of �ows (classes) generated per application
to eliminate the classi
cation system relying on time window
analysis or packet derivative information to achieve higher
classi
cation accuracy.

To increase the �ow classi
cation accuracy, cascaded
classi
cation methodologies employing a combination of
algorithms as well as semisupervised ML approaches have
also been previously explored. Foremski et al. [33] combined
several algorithms using a cascaded principle where the
selection of chosen algorithm to be applied for each IP �ow
classi
cation depended on predetermined classi
er selection
criteria. Jin et al. [23] combined binary classi
ers in a series
to identify tra	c �ows while using a scoring system to
assign each �ow to a tra	c class. Additionally, collective
tra	c statistics from multiple �ows were used to achieve
greater classi
cation accuracy. Similarly Carela-Español et
al. [34] used �-dimensional trees to implement an online
real-time classi
er using only initial packets from �ows and
destination port numbers for classi
cation. de Donato et al.
[35] introduced a comprehensive tra	c identi
cation engine
(TIE) incorporating several modular classi
er plug-ins, using
the available input tra	c features to select the classi
er(s),
merging the obtained results from each, and giving the 
nal
classi
cation output. A similar approach was followed in
Netramark [36] incorporating multiple classi
ers to appraise
the comparative accuracy of the algorithms as well as use
a weighted voting framework to select a single best classi-

cation output. Another prominent ML tool used in tra	c
classi
cation studies is Weka [37], incorporating a library
(Java based) of supervised and unsupervised classi
ers which
can be readily implemented on test data set to evaluate the
accuracy of the results from each methodology. Using multi-
ple classi
ers and selecting the best choice for classifying each
tra	c �ow through voting or even combining the results for a

nal verdict, however, does not speci
cally consider re
ning
the ground-truth data to fully account for the multiple �ow
classes (per application) and their subsequent identi
cation.
Additionally merging multiple instances of classi
ers raises
scalability issues with regard to their real-time implementa-
tion.

Semisupervised learning techniques on the other hand
use a relatively small amount of labelled data with a large
amount of unlabelled records to train a classi
er [38]. Two
ML algorithms, unsupervised and supervised, were com-
bined in [39] and the scheme used a probabilistic assignment
during unsupervised cluster analysis to associated clusters
with tra	c labels. Zhang et al. [40] proposed using a
fractional amount of �ows labelled through cluster analysis
to train and construct a classi
cation model speci
cally
focusing on zero-day application identi
cation. �e sole
use of cluster analysis to serve as a means for identifying
applications and generating training data without either
additional manual or automated validation may, however,
lead to incorrect tra	c labelling. Unmapped �ow clusters
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from unsupervised learning were, for example, attributed
to unknown tra	c in [39]. Error-prone labelling of �ows
through cluster analysis using semisupervised approaches
may also result in signi
cant misclassi
cation penalties.

Sub�ow quali
cation is paramount to fully apply network
policies such as guaranteeing application QoS, pro
ling user
activity, and accurately detecting network anomalies. Fur-
thermore, correct sub�ow identi
cation aids in reducing the
over-time degradation of supervised algorithms by account-
ing for the multiple types of �ow classes and their respective
parameters per application, reducing the unseen examples.
�e present approach re
nes the acquired ground-truth data
by segregation of prelabelled application �ows through inde-
pendent unsupervised clustering, therea�er used to train a
supervised C5.0 decision tree.�e resulting classi
er is hence
able to recognize themultiple �ow classes even from the same
applicationwithout combining the results frommultiple clas-
si
ers or using popular voting. �is also increases the scala-
bility of the 
nal decision tree which can be implemented as a
standalone system at suitable tra	c aggregation points in the
network capable of real-time tra	c classi
cation.

Finally, as noted in [25, 41, 42], given the multitude of
classi
cation methodologies, dissimilar tra	c traces, and the
diversity in �ow classi
cation features, benchmarking the
performance of classi
cation algorithms is a di	cult under-
taking. In the present work, the widely used classi
cation tool
Weka [36] was employed to yield a qualitative comparison
in terms of the accuracy and computational overhead of the
proposed design against some state-of-the-art classi
cation
methods.

2.2. �-Means Clustering. Flow level clustering requires
e	ciently partitioning collected �ows per application into
groups based on exported NetFlow attributes. One of the
prominent unsupervised clustering techniques is the �-
means clustering algorithm preferred over other methods
such as hierarchical clustering, due to its enhanced computa-
tional e	ciency [10, 32]. �-means minimizes a given number
of vectors by choosing � random vectors as initial cluster cen-
tres and assigning each vector to a cluster as determined by a
distancemetric comparisonwith the cluster centre (a squared
error function) as given in (1). Cluster centres are then recom-
puted as the average (or mean) of the cluster members. �is
iteration continues repeatedly, ending either when the clus-
ters converge or when a speci
ed number of iterations have
passed [27, 43]:

� =
�
∑
�=1

�
∑
�=1

������
�
� − ��
�����
2 . (1)

In (1), �� represents cluster centre, � equals the size of the
sample space (collected �ows), and � is the chosen value for
number of unique clusters (�ow classes). Hence, using �-
means, � �ows can be partitioned into � classes. Value of � is
of signi
cant importance as it directly in�uences the number
of �ow classes a�ecting over
tting. An intelligent alternative
to calculate the optimal number of clusters is by using the
Everitt and Hothorn graphical approach [44], discussed and
applied in Section 4.

2.3. C5.0 Machine Learning Algorithm. �e C5.0 algorithm
and its predecessor C4.5 described in [30] attempt to predict
a dependent attribute by 
nding optimal value ranges of an
independent set of attributes. At each stage of iteration, the
algorithm aims tominimize information entropy by 
nding a
single attribute that best separates di�erent classes from each
other. �e process continues until the whole sample space
is split into a decision tree isolating each class. Hence, in a
sample space comprising � application �ow classes, if training
data is given by preclassi
ed samples given by vector 	 (2),
each sample �ow
�may consist of a �-dimensional vector (3),
where �� represents independent attributes which are used to
identify the class in which 
� falls:

	 = [
1, 
2, 
3, 
�] (2)


� = [�1, �2, �3, ��] . (3)

C5.0 could therefore be used to build a decision tree utilizing
�owattributes �� of each sample
� frompreclassi
ed training
data. C5.0 also includes advanced options for boosting, prun-
ing, and winnowing to enhance accuracy and computational
e	ciency of the resulting decision tree classi
er [31]. �e
adaptive boosting proposed in [32] generates a batch of
classi
ers instead of a single classi
er and uses vote count
from each classi
er on every examined sample to predict the

nal class. Advanced pruning options remove parts of the
classi
cation tree representing relatively high error rate at
every stage of iteration and once 
nally for the complete tree
to reduce performance caveats. Finally enabling winnowing
reduces the feature set required for classi
cation by removing
covariates with lowpredictive ability during classi
er training
and cross-validation stage.

3. Methodology

To address the challenges of obtaining high quality ground-
truth data incorporating �ow class segregation and identi
-
cation in each of the examined applications, our proposed
classi
cation technique utilizes unsupervised cluster analysis
and supervised classi
er training in tandem. A high level
overview of the tra	c classi
cation scheme is shown in
Figure 1 with a description of principal steps as follows.

(i) Preprocessing. Internet tra	c is collected from end-
user machines and marked with application labels
accordingly (e.g., Skype and YouTube) using a local-
ized operational packet-level classi
er. Application
labelled tra	c is a�erwards exported as �ows using
a �ow exporting utility for unsupervised cluster anal-
ysis.

(ii) Cluster Analysis. Using unsupervised �-means, �ows
belonging to individual applications are separately
cluster analysed to extract unique subclasses per
application, o�ering a 
ner granularity of the clas-
si
cation (e.g., YouTube and Net�ix �ows would be
classed as streaming and browsing).

(iii) Classi�er Training. Flows marked with their �-means
clusters, indicating the subclass they belong to, are
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Figure 1: Tra	c classi
cation scheme.
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Figure 2: Data collection and preprocessing work�ow.

a�erwards fed to a C5.0 classi
er for supervised
training, leading to a decision tree.

(iv) Evaluation. A separate data set is used for testing
the accuracy of the algorithm. For each NetFlow
record the trained C5.0 classi
es the application and
the subclass of the �ow based on their respective
attributes, ingrained during decision tree creation.

�e following subsections detail the methodology used for
collecting NetFlow records from user machines, �ow cus-
tomization, �-means clustering, and designing feature sets for
the C5.0 classi
er.

3.1. Data Collection. To increase the scalability of the resul-
tant classi
er in identifying tra	c from di�erent network
settings, NetFlow records were collected from two environ-
ments: (i) typical residential premises using broadband con-
nection and (ii) an academic setting using corporate Internet
as depicted in Figure 2. Two PCs were used in each environ-
ment for user tra	c generation and collection. In order to
accurately isolate tra	c for each of the 
�een examined appli-
cations, a localized extension of packet-level classi
er nDPI
[45] was used on the researcher’s machines, excluding refer-
ences to application data or the end-point identity of users
for anonymity similar to [46, 47]. �e nDPI is based on the
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Table 2: Tra	c collection summary.

Tra	c class Application Bytes (×106) Flows Dates Duration (hrs)

Video streaming

YouTube 16093.87 879641 [09–12]/09/2015 6.89

Net�ix 11586.61 454985 [08–09]/09/2015 5.65

Dailymotion 11258.12 398412 [15–16]/03/2016 5.31

Video chat/VoIP

Skype 6251.06 1492380 [08–17]/10/2015 9.45

Gtalk 4584.02 1025260 [14–18]/03/2016 4.25

Facebook Messenger 7824.13 1158302 [15–21]/03/2016 3.28

P2P torrent
VUZE 131611.31 1318749 [20–23]/09/2015 4.28

BitTorrent 154138.97 1308881 [20–23]/09/2015 3.56

Cloud storage

Dropbox 211833.57 408677 [11–23]/09/2015 1.56

Google Drive 158923.52 358426 [20–23]/03/2016 2.31

OneDrive 186358.21 325854 [21–27]/03/2016 1.81

Online games
8-Ball Pool 953.91 1358425 [10–13]/10/2015 0.35

Treasure Hunt 1158.28 1592362 [15–22]/03/2016 2.11

Email client
�underbird 1401.36 821484 [15–31]/08/2015 2.21

Outlook 1854.54 698722 [19–31]/03/2016 3.55

libcap andOpenDPI library [48] and is continuously updated
to increase the number of applications and protocols that can
be successfully identi
ed. Once the tra	c from the examined
applications was identi
ed and marked with application
names, it was converted to the NetFlow format using the

so��owd utility [49]. A total of approximately 13.6 × 106 �ows
were collected and marked with application labels. Table 2
presents a summary of collected �ows including the bytes,
�ows, time frame of the tra	c collection, and the duration
associated with each application. �e NetFlow records were
a�erwards subjected to further preprocessing, that is, feature
set expansion using the nfdump utility [50] and creation
of bidirectional �ows before being exported to individual
application storage 
lers as detailed in the following section.

3.2. Customizing NetFlow Records. NetFlow by default out-
puts 5-tuple address, port, and protocol connection infor-
mation ⟨SrcIP,DstIP, SrcPo,DstPo.,Proto.⟩ along with the
timing and interface relating to each �ow. Transmitted
and received �ows are, however, not correlated by default.
Generally considered as lacking an extensive set of attributes,
it further extrapolates the use of packet traces for tra	c
identi
cation as highlighted in [26–29]. To fully explore the
prediction ability of NetFlow attributes with the proposed
methodology, nfdump [50] was used to expand the NetFlow
output to display �ow duration, number of packets, data rate
(bits per second), packet transfer rate (pps), and bytes per
packet (Bpp) for each �ow; then transmitted and received
�ows were correlated to output a 17-tuple bidirectional �ow
as shown by the snippet in Table 3.

3.3. Extracting Flow Classes (�-Means Clustering). Popular
applications such as YouTube or Skype generate an intricate
set of �ows between various web servers and the client
depending on their underlying content distribution, load
balancing, and authentication schemes [51–54]. While DPI
based tra	c classi
cation is useful in identifying the respec-
tive applications, it does not speci
cally segregate di�erent

�ows generated per application attributed to the primary
application content or control signalling, session establish-
ment, embedded webpage advertisements, and so forth.
Per-�ow classi
cation consequently requires a separation of
content speci
c and supplementary �ows to retrieve the dif-
ferent �ow classes generated per application for subsequently
training and testing the classi
er. Flow classi
cation is not
possible using supervised ML alone due to lack of infor-
mation about the �ow classes generated by an application,
requiring an independent technique for per-application �ow
segregation. �e �-means algorithm was therefore indepen-
dently applied on paired bidirectional �ows generated per
application in order to retrieve the respective �ow classes.
Due to extensive repetition of source and destination IP
addresses, port numbers, and protocol information in the
collected data, these were deemed scalar entities for analysis
and excluded while clustering. �e remaining 12 attributes
chosen to isolate application speci
c �ows from auxiliary
data per application for further analysis comprise transmitted
bytes Tx.B., transmitted packets Tx.Pkt., transmitted data rate
in bits per second Tx.bps., transmitted packers per second
Tx.pps., transmitted packet size in bytes per packet Tx.Bpp.,
transmitted �owdurationTx.s., received bytes Rx.B., received
packets Rx.Pkt., received data rate in bits per second Rx.bps.,
received packets per second Rx.pps., received packet size
in bytes per packet Rx.Bpp., and received �ow duration
Rx.s. �e clustering vector per application could therefore be
represented by the following equation:

��� = [Tx.B��,Tx.pkt��,Tx.bps��,Tx.pps��,Tx.Bpp��,

Rx.s��,Rx.B��,Rx.pkt��,Rx.bps��,Rx.pps��,Rx.Bpp��,

Rx.s��] .

(4)

In (4), � and � are unique per application and per �ow,
respectively. Hence, bidirectional �ows represented by vector
��� split into � clusters represent the types of �ows per
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Table 4: NetFlow feature sets for C5.0 classi
er training.

Set 1 Set 2

Protocol and port information
(i) Source and destination port num
(ii) Protocol (TCP, UDP)

Protocol and port information
(i) Source and destination port labels
(ii) Protocol (TCP, UDP)

Set 3 Set 4

Flow parameters
(i) Received and transmitted packets (Rx.Pkts., Tx.Pkts.)
(ii) Received and transmitted packet rate (Rx.pps., Tx.pps.)
(iii) Received and transmitted data rate (Rx.bps., Tx.bps.)
(iv) Received and transmitted bytes per packet (Tx.Bpp., Rx.Bpp.)
(v) Received and transmitted data (Rx.B., Tx.B.)
(vi) Received and transmitted �ow duration (Tx.s., Rx.s.)

Flow parameter ratios
(i) Received packets to transmitted packets (Rx.Pkts./Tx.Pkts.)
(ii) Received to transmitted packet rate (Rx.pps./Tx.pps.)
(iii) Received to transmitted data rate (Rx.bps./Tx.bps.)
(iv) Received to transmitted bytes per packet (Rx.Bpp./Tx.Bpp.)
(v) Received to transmitted data (Rx.B./Tx.B.)
(vi) Received to transmitted �ow duration (Rx.s./Tx.s.)

application. Once segregated, �ows per application were sub-
sequently labelled with the respective �ow class before data
sets for all the 
�een examined applications were combined
and split in equal proportions (∼50%) for training and testing
the C5.0 ML classi
er.

3.4. Feature Selection. Feature set selection is of paramount
importance for training the classi
er, given that these should
be predictive and must correctly classify the application
tra	c. �e selected features must also closely link to the
�ow classes derived from �-means clustering and utilize their
NetFlow values to discriminate between di�erent application
�ows. NetFlow attributes can be broadly grouped by trans-
port layer parameters and network layer tra	c statistics for
each �ow. Both groups were studied for classi
er training
individually and in combination to examine their e	ciency
for classi
cation. Additionally, minimizing the set of fea-
tures for tra	c classi
cation also minimizes the processing
overhead involved in creating decision trees and reduced
classi
cation time. Four sets of features sets were, there-
fore, devised around transport and network layer features
translating for the independent attributes ��, given in (3)
as shown in Table 4. Set 1 included source and destination
port numbers along with protocol information. Set 2 used
source and destination ports however, rather than using
actual port numbers; these were labelled as Known (0–
1023) and Unknown (>1023) aiming to evaluate classi
cation
accuracy on basic port information alone. Set 3 included 12
�ow attributes excluding source and destination IP addresses
and port and protocol information while set 4 represented
the same as ratios thereby reducing the feature set to 6
covariates with the intention of compressing the size of
resulting decision tree even further.

4. Unsupervised Flow Clustering

4.1. Calculating Flow Classes per Application: Value of �. A
total of 6.8 million bidirectional �ows were cluster analysed
independently for each application using the computationally
e	cient Hartigan and Wong implementation of �-means in
� [43]. Since value of � directly in�uences the number of
�ow clusters (classes) per application, Everitt and Hothorn

methodwas employed to determine �number per application
[44]. �is graphical technique plots within cluster sum of
square values (wss) against the number of clusters �, with the
curve in plot signifying an appropriate number of clusters that

t the input data. �e plot of wss versus � of �ow records for
each application is given in Figures 3–7. Automated scripting
calculated the maximum within cluster variance between
successive values according to Everitt and Hothorn criteria
in reaching the optimal cluster number per application
and marked the respective �ow records with the individual
cluster colour. Table 5 details the optimal number of clusters
translating for di�erent types of �ows classes determined
per application along with the “within sum of squares” per
cluster to “total sum of square distance” between clusters
(wss/total ss) representing the tightness of these clusters in
covering the entire sample space, that is, �ow records. A small
sample set comprising approximately 1K bidirectional �ows
from each cluster was a�erwards analysed o�ine to assign
the respective �ow labels as detailed in the following section.

4.2. Analysis. YouTube access seemed to be solely used for
streaming (and not content upload) in the present case and
the corresponding clusters indicated 3 unique �ow classes
generated as shown by the graph in Figure 3(a). According to
YouTube tra	c analysis studies carried out in [51, 52], these
were narrowed to three unique �ow classes and attributed to
content-streaming, website browsing (or video searches), and
redirections between YouTube and other Google content dis-
tribution servers. Net�ix and Dailymotion video streaming
similarly showed three �ow classes, two for video content-
streaming having di�erent download rates corresponding to
start of video succeeded by steady bu�ering stage and a third
for user searches. For these applications, video streaming
�ows were labelled as “streaming” while website searches and
server redirections were labelled as “browsing.”

�e Skype client was used for video with voice communi-
cation rather than 
le sharing or instant messaging as per the
labelled �ow record perusal. Subsequent clustering produced
two highly discriminate clusters given by the knee-point
of the graph in Figure 4(a). Skype stores user information
in a decentralized manner with Skype clients acting as
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Figure 3: Inner-cluster variance versus �.

Table 5: Segregated �ows per application.

Tra	c class Application Cluster (�) wss/total ss Content speci
c �ows Auxiliary �ows

Streaming

YouTube 3 87.3% Streaming Browsing

Net�ix 3 94.6% Streaming Browsing

Dailymotion 3 95.1% Streaming Browsing

Comms./VoIP

Skype 2 98.8% Comms. Comms. Ctrl.

Gtalk 2 97.21% Comms. Comms. Ctrl.

Facebook Messenger 3 92.12% Comms. Comms. Ctrl., Browsing

Torrents/P2P
VUZE 3 97.9% Torrent Torr.Ctrl.

BitTorrent 3 91.2% Torrent Torr.Ctrl.

Cloud storage

Dropbox 3 89.2% Up/dwnld. Browsing

Google Drive 3 88.15% Up/dwnld. Browsing

OneDrive 3 92.14% Up/dwnld. Browsing

Gaming
8-Ball Pool 2 88.4% Game ctrl. Game setup

Treasure Hunt 2 91.98% Game ctrl. Game setup

Email
�underbird 2 99.14% Email msg. Dir. lookups

Outlook 2 97.45% Email msg. Dir. lookups
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Figure 4: Inner-cluster variance versus �.

host nodes that initiate connections with super nodes for
registering with a Skype login server and exchanging con-
tinuous keep-alive messages [53]. �e resulting overlay peer-
to-peer network employs both TCP and UDP connections
both for communication between host and super nodes and
for communication between two hosts running the client
application [54, 65]. One �ow cluster was hence determined
to be directly associated with control features servicing con-
nections and authentication between host and super nodes,
having a much lower data volume and receiving rate and a
signi
cant number of unidirectional �ows compared to the
second group. �e second �ow cluster is comprised of video
calls between Skype clients having substantially higher data
rate and total data volume.�e respective �ows were labelled
as “Comms. Control” and “Comms.” accordingly. �e same
number of clusters was observed for Gtalk attributed to
voice communication and control signalling with the Google
content server with the later having a lower tra	c footprint
with respect to �ow transmission duration and the average
bit rate of the �ows compared to the former. For Facebook
Messenger, however, three optimal clusters were observed,

one with a high bit rate and duration similar to the VoIP
calls observed in Skype and Gtalk, one for connection estab-
lishment, and lastly one for the background live newsfeed
being continuously updated on the Facebook page. �e
clusters were thus accordingly labelled under “Comms.” and
“Comms. Control” and “Browsing” classes.

For online cloud storage, usually requiring low user
interactivity as highlighted in [66], the prominent Dropbox
storage, Google Drive, and OneDrive were examined. �e
applications employed 
le transfers ranging in size from
25KB to 1.5 GB, frequently in batches of 1, 5, and 10 
les. Clus-
ter analysis on generated tra	c featured around 3 optimal
�ow clusters as represented by Figure 5. �e three distinct
�ow clusters a�er analysis were labelled as one each for 
le
“uploads” and “downloads” and a third for interaction with
the hosting website tagged “browsing.”

To examine torrent applications, the original BitTor-
rent and VUZE derivative client were used on researcher
machines to search and download di�erent combinations of

les with sizes ranging from 25MB to over 1 GB. Cluster
analysing these torrent �ows resulted in three distinct clusters
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Figure 5: Inner-cluster variance versus �.

representing actual 
le download labelled as “torrent” and
later two as “torrent control” responsible for further seeding
of downloaded 
les and communication with other peers.

For online interactive Macromedia Flash player based
pool and Treasure Hunt game, two clearly distinct �ow
classes as depicted in Figures 6(c) and 7(a) responsible for
initial “game setup” and continued interactive “game control”
constituted all �ows.

Lastly the email clients �underbird and Outlook were
used with three distinct email accounts, Yahoo, Gmail, and
a corporate account. Cluster analysis revealed two discrete
types of �ows shown in Figures 7(a) and 7(b). One �ow clus-
ter comprised sending and receiving email messages which
in this case could also be easily identi
ed by looking at well-
known destination port assignments for SMTP, POP, and
IMAPprotocols.�e second �ow class represented “directory
lookups” by the client using HTTP and SSL having signi
-
cantly lower total data volume per �ow compared to email
messages.

Segregated �ows of all applications were labelled with
�ow classes and combined into a single data set. �e next
section details the splitting of training and testing data and
evaluates the C5.0 ML classi
er.

5. C5.0 Decision Tree Classifier

Approximately 6.8 million �ows were labelled with appro-
priate �ow classes as a result of �-means cluster analysis, in
accordance with Table 4. In order to comprehensively test
classi
er accuracy, the data set was further split in almost
equal percentages (∼50%) per �ow class for training and
testing purposes.

5.1. Classi�er Evaluation. C5.0 ML was applied on the train-
ing data set using feature sets 1 to 4, with alternate pruning
and boosting options. Asmentioned earlier, enabling pruning
removes parts of the decision tree representing relatively
higher error rates than others while adaptive boosting gener-
ates a batch of classi
ers and uses voting on every examined
sample to predict the 
nal class. Classi
ers were derived by
enabling both options to analyse improvements in predictive
ability using the feature sets in Table 4. �e resulting predic-
tion accuracy for each attribute set is reported in Table 6. Set
1 included source and destination port numbers along with
protocol information and resulted in amaximum accuracy of
41.97%with themaximum allowed boosting factor of 100 and
could easily be ruled out for use as standalone feature set for
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Figure 6: Inner-cluster variance versus �.

Table 6: Feature sets versus classi
er accuracy.

Feature set
Pruning = false Pruning = true

No boost Boost 10 Boost 100 No boost Boost 10 Boost 100

Set 1 39.58 40.01 41.34 39.44 40.48 41.97

Set 2 24.29 24.29 24.29 24.29 24.29 24.29

Set 3 82.29 83.24 84.29 82.20 84.97 83.95

Set 4 73.18 75.51 75.70 73.18 72.62 75.03

Sets 1 + 3 91.37 94.39 95.98 92.37 94.52 96.67

Sets 1 + 4 84.48 87.47 86.47 84.48 86.42 86.79

Sets 2 + 3 84.90 86.91 85.71 84.90 85.00 85.61

Sets 2 + 4 74.37 77.07 77.21 74.37 76.83 77.42

classi
cation. Set 2 used port name labelling instead of actual
numbers and protocol information, resulting in considerably
low accuracy even when compared to set 1 with uniformity in
values regardless of boosting at 24.29%. Set 3 included twelve
�ow attributes and resulted in a signi
cantly improved accu-
racy of 84.97% with a boost 10. Finally, set 4 incorporating
only six �ow ratios led to amaximumaccuracy of 75.03%with

100 times’ boost. In this particular instance disabling pruning
resulted in amore accurate classi
er at 75.70%.When used in
combinations sets 2 and 4 presented lowest accuracy peaking
at 77.42% while sets 1 and 4 as well as 2 and 3 resulted in
reasonable level of classi
er accuracy at 86.79% and 86.91%,
respectively. Sets 1 and 3 combined showed a considerable
improvement with classi
cation accuracy peaking at 96.67%



Journal of Computer Networks and Communications 13

1 2 3 4 5 6 7 8 9 10

W
it

h
in

 g
ro

u
p

s 
su

m
 o

f 
sq

u
ar

es
 (

w
ss

)

Treasure Hunt

Number of clusters (k)

Optimal cluster calculation
9.90E + 14

8.90E + 14

7.90E + 14

6.90E + 14

5.90E + 14

4.90E + 14

3.90E + 14

(a) Treasure Hunt

1 2 3 4 5 6 7 8 9 10

W
it

h
in

 g
ro

u
p

s 
su

m
 o

f 
sq

u
ar

es
 (

w
ss

)

Number of clusters (k)

Optimal cluster calculation

�underbird

5.90E + 16

4.90E + 16

3.90E + 16

2.90E + 16

1.90E + 16

9.00E + 15

(b) �underbird

1 2 3 4 5 6 7 8 9 10

W
it

h
in

 g
ro

u
p

s 
su

m
 o

f 
sq

u
ar

es
 (

w
ss

)

Number of clusters (k)

Optimal cluster calculation

Outlook

8.00E + 18

7.50E + 18

7.00E + 18

6.50E + 18

6.00E + 18

5.50E + 18

5.00E + 18

4.50E + 18

4.00E + 18

(c) Outlook

Figure 7: Inner-cluster variance versus �.

Table 7: Misclassi
cation table for best feature set combination (training stage).

Application classi
ed (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(a) Game setup 156432 229

(b) Game ctrl. 257707

(c) Browsing 32 932493

(d) Stor dnld. 63212

(e) Stor upld. 56613

(f) Email mssg. 257707

(g) Email dir. 122343

(h) Comms. 257552

(i) Comms ctrl. 87 561432 157

(j) Streaming 35 77343

(k) Torr ctrl. 203764

(l) Torrent 89 453142

with a 100-boost while even with a boost 10 or a single
classi
er (no boost) the prediction results were 94.52% and
92.37%, respectively.

�e misclassi
cation table generated during training
stage for this best combination (sets 1 and 3) classi
er is

presented in Table 7. �e highest number of discrepancies
was observed between “game setup” and “torrent control”
classes (229 �ows). Due to low predictive ability (estimated
during classi
er training), only one attribute received packets
per second (Rx.pps.) was winnowed during the training
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Table 8: Flow attribute usage.

Flow attribute usage in selected C5.0 classi
er

Category Attribute
Percentage

use

Protocol and port

Protocol 80.62%

Destination port 100%

Source port 100%

Transmitted �ow
(Tx) attributes

Bytes [Tx.B.] 100%

Packets [Tx.Pkt.] 100%

Bits per second [Tx.bps.] 100%

Packets per sec. [Tx.pps.] 96.25%

Bytes per package [Tx.Bpp.] 100%

Duration [Tx.s.] 95.48%

Received �ow (Rx)
attributes

Bytes [Rx.B.] 100%

Packets [Rx.Pkt.] 100%

Bits per sec. [Rx.bps.] 100%

Bytes per package [Rx.Bpp.] 100%

Duration [Rx.s.] 98.61%

stage. �e remaining 14 attributes used to build the resulting
classi
er along with their percentage use are given in Table 8.

5.2. Confusion Matrix Analysis. �e confusion matrix for
selected classi
er specifying cross-tabulation of predicted
classes and observed values with associated statistics between
di�erent �ow classes is given in Table 9. �e highest errors
occurred between “game control” and “browsing” �ows
(60114 or 1.76% of total tested �ows), while no misclassi
ca-
tion errors were observed between “game setup” and “torrent
control” �ows as witnessed during training cross-validation
stage.�e overall accuracy statistics are presented in Table 10.
�e value for the kappa coe	cient [67, 68], which takes into
account chance occurrences of accurately classi
ed �ows and
is generally considered a more robust measure than simple
percent agreement calculation, was also signi
cantly high at
95.31%. �e overall accuracy rate was also computed along
with a 95 percent con
dence interval (CI) for this rate (0.9364
and 0.956) and a one-sided test to see if the accuracy is
better than the “no information rate,” which is taken to be
the largest class percentage in the data (� value: accuracy >
NIR: <2.2� − 16) [69]. McNemar’s test � value however was
not available due to sparse tables (bidirectional �ow vectors
having very low or zero attribute values for some �ow classes,
i.e., Skype control, etc.).

5.3. Sensitivity and Speci�city Factor. For a given �ow, the
classi
er’s ability to accurately predict the �ow class is charac-
terized by classi
er sensitivity factor and to di�erentiate this
�ow from other �ow classes is by its speci
city factor. Both
parameters are of signi
cant importance and ascertaining a
classi
er’s suitability for both �ow identi
cation and discrim-
ination.�e sensitivity and speci
city bar graph for each �ow
class for the selected classi
er is given in Figure 8. Lowest
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Figure 8: Classi
er sensitivity and speci
city factor per tra	c class.

sensitivity was recorded for cloud storage �ows (87.67–
89.89%) among all classes, also evident from Figure 8 due to
a higher mismatch between storage download and streaming
(1335 or 0.039%) as well as storage upload and browsing
�ows (4006 or 0.11% of total tested �ows).�e corresponding
speci
city values for both storage �ow classes, however, being
signi
cantly high indicated correct di�erentiation ability
of the classi
er for this application and lower sensitivity
factor accredited to other application �ows being misclassi-

ed under this class. Communication and BitTorrent tra	c
classes showed high sensitivity and speci
city values. �e
selected classi
er also showed high accuracy in detecting
and di�erentiating between email messages and directory
lookups. �e classi
cation accuracy reported per �ow class
was also greater than 90% for all applications apart from
Dropbox which showed 87.67% accuracy due to mismatch
with streaming and browsing �ows. �e speci
city values,
however, were substantively high without exception across all
�ow classes ranging between 98.37 and 99.57%. �e results
represent a highly granular classi
er with ability to accurately
identify application tra	c as well as discriminate between
�ows generated by same application without employing any
complex time window �ow and packet analysis. As an added
advantage, the approach only used a minor change in output
formatting ofNetFlow attributes together with basic scripting
for creating bidirectional �ows. �e next section considers
some alternate approaches for machine learning based tra	c
classi
cation and compares their accuracy and computational
overhead with the derived classi
er.

6. Qualitative Comparison

To undertake a comprehensive qualitative evaluation of the
two-phased ML approach, we considered alternate ML clas-
si
ers and appraised their viability for per-�ow tra	c classi-

cation in relation to the proposed technique.Wekamachine
learning so�ware suite (version 3.6.13) was employed to eval-
uate the eight most commonly utilized supervised machine
learning algorithms in comparison with the proposed two-
phased approach. �e comparison evaluated (i) the classi
-
cation accuracy of each algorithm and (ii) the computational
overhead including the training and testing times to validate
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Table 9: Confusion matrix calculation for optimal classi
er (evaluation stage).

Application classi
ed (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

(a) Game setup 156435

(b) Game ctrl. 257718 60114

(c) Browsing 632 25481 932494 4006

(d) Stor dnld. 63208

(e) Stor upld. 56611

(f) Email mssg. 257710

(g) Email dir. 3981 2561 122346

(h) Comms. 257552

(i) Comms ctrl. 4587 561433

(j) Streaming 1335 77341

(k) Torrent 2078 453143

(l) Torr ctrl. 5843 6154 203766

Table 10: Overall statistics.

Statistical property Value

Classi
er accuracy 96.67%

95% con
dence interval (CI) (0.9364, 0956)

No information rate 0.3332

� value (Acc > NIR) <2.2� − 16
Kappa 0.9531

McNemar’s test � value NA

the results from each classi
cation technique as well as (iii)
provide perspectives on the scalability of our two-phased
machine learning classi
er.�e classi
ers used the same ratio
of training and testing data set pools (marked with respective
application class), where 50% of the �ows were used for
training the respective classi
er and the remaining 50% �ows
were used for testing purposes.

We brie�y describe the machine learning algorithms that
were evaluated as follows.

J48/C4.5 decision tree constructs a tree structure, in which
each node represents feature tests, each branch represents a
result (output) of the test, and each leaf node represents a class
label, that is, application �ow label in the present work [30,
70]. In order to use a decision tree for classi
cation, a given
tuple (which requires class prediction) corresponding to �ow
features walks through the decision tree from the root to a
leaf. �e label of the leaf node is the classi
cation result. �e
algorithm was enabled with default parameters (con
dence
factor of 0.25 and reduced-error pruning by 3-fold) in the
Weka implementation of the present experiment to optimize
the resulting decision tree.
� nearest neighbours (�NN) algorithm computes the

distance (Euclidean) from each test sample to the � nearest
neighbours in the �-dimensional feature space. �e classi
er
selects the majority label class from the � nearest neighbours
and assigns it to the test sample [63]. For the present
evaluation � = 1 was utilized.

Naı̈ve Bayes (NB), considered as a baseline classi
er in
several tra	c classi
cation studies, selects optimal (prob-
abilistic) estimation of precision values based on analysis
of training data using Bayes’ theorem, assuming highly
independent relationship between features [60, 71].

Best-�rst decision tree (BFTree) uses binary splitting for
nominal as well as numeric attributes and uses a top-down
decision tree derivation approach such that the best split is
added at each step [64]. In contrast to depth-
rst order in
each iterative tree generation step [64, 72], the algorithm
expands nodes in best-
rst order instead of a 
xed order. Both
gain and Gini index are utilized in calculating the best node
in tree growth phase. �e algorithm was implemented using
postpruning enabled and with a default value of 5-fold in
pruning to optimize the resulting classi
er.

Regression tree representative (REPTree) is a fast imple-
mentation of decision tree learning which builds a deci-
sion/regression tree using information gain and variancewith
reduced-error pruning along with back
tting. REPTree uses
regression tree logic to create multiple trees and selects the
best from all the generated trees. �e algorithm only sorts
values for numeric attributes once. It was implemented with
pruning enabled with the default value of 3-fold.

Sequential minimal optimization (SMO), a support vector
classi
er trained using a sequential minimal optimization
algorithm by breaking optimization problem into smaller
chunks, was solved analytically. �e algorithm transforms
nominal attributes into binaries and by default normalizes all
attributes [59, 73]. It was implemented using Weka with nor-
malization turned on along with the default parameters (the
complexity parameter � = 1 and polynomial exponent � =
1).

Decision tables and naı̈ve Bayes (DTNB) is a hybrid
classi
er which combines decision tables along with näıve
Bayes and evaluates the bene
t of dividing available features
into disjoint sets to be used by each algorithm, respectively
[74]. Using a forward selection search, the selected attributes
are modeled using NB and decision table (conditional prob-
ability table) and at each step, and unnecessary attributes
are removed from the 
nal model. �e combined model
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Figure 9: Comparative and average overall accuracy of machine learning algorithms for each tra	c class.

reportedly [74] performs better in comparison to individual
näıve Bayes and decision tables and was implemented with
default parameters. �e 
nal classi
er selected and used 5
attributes (out of 16 using backward elimination and forward
selection search).

Bayesian network (BayesNet) is an acyclic directed graph
that represents a set of features as its vertices and the
probabilistic relationship among features as graph edges [62].
While using Bayes’ rule for probabilistic inference, under
invalid conditional independence assumption (in näıve
Bayes) BayesNet may outperform NB and yield better clas-
si
cation accuracy [75]. �e default parameters, that is, Sim-
pleEstimator, were used for estimating the conditional prob-
ability tables of BN in theWeka implementation of BN on the
training set.

�e following subsections highlight a qualitative com-
parison between the above machine learning classi
cation
techniques and the proposed two-phased approach.

6.1. Comparative Accuracy. �e respective accuracy of each
examined tra	c class for multiple classi
ers is given in

Figure 9. Overall the two-phased approach achieved better
per-�ow classi
cation in comparison with the alternate tech-
niques, while for few applications (�ow types) the classi
-
cation accuracy was almost equal. For the game setup �ows
the accuracy is the highest. For game control �ows, alternate
approaches such as �NN and REPTree provide a better
percentage of correctly identi
ed �ows. �is was considered
earlierwhile evaluating the sensitivity of two-phased classi
er
and was mainly due to misclassi
cation errors (of game
control) with the web browsing �ows. �NN and REPTree,
however, provide a lower accuracy than two-phased ML
for browsing and streaming �ows. Similarly, for the stream-
ing application tier, SMO based approach yielded highly
accurate results comparable to two-phased machine learning
approach while it yielded minimal accuracy when email tier
was examined. For the communication application �ows,
almost all classi
ers with the exception of NB (∼63%) pro-
vided correct classi
cation results (∼80%).�iswas primarily
due to the predictive ability of �ow parameters for this set of
applications. For torrent based �ows, J48 decision tree along
with BFTree provided almost 99.99% classi
cation results,
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with BFTree (97.25%) exceeding the two-phased classi
er
which gave approximately 90.02% �ow identi
cation capa-
bility of torrent control �ows due to mismatch with game
control and browsing �ows. �erefore, while one approach
might be suitable for identifying certain tra	c �ows, similar
high accuracymight not be realized for a di�erent application
using the same classi
er. In terms of overall accuracy, two-
phased ML provided a much more coherent and applicable
result at 96.67% with the lowest accuracy attributed to SMO
at approximately 53.2% correctly classi
ed records.

6.2. Computational Performance. To evaluate the computa-
tional performance of the classi
ers, each was independently
implemented on a testmachine (PC), an Intel based i54310-M
processor chipset with two CPUs each at 2.70GHz and 16GB
of memory. �e operating system used a GNU/Linux kernel
(3.14.4 x64) and it was veri
ed that no other user processes
(apart from the Weka so�ware suite) were consuming CPU
cycles or any of the operating system processes were CPU
or I/O intensive. �e two-phased ML evaluation included
the combined cluster analysis and subsequent C5.0 training
phase from labelled �ows.�iswas done solely to examine the
computational requirements of the unsupervised and super-
vised machine learning ensemble, excluding the ground-
truth acquisition and re
nement (i.e., DPI based application
�ow perusal and subclass marking) which can be done o�ine
and continuously on much greater data sets in a practical
network implementation. To give a realistic comparison,
the alternate classi
ers used the same application labelled
�ows (ground-truth). �e average CPU utilization for each
classi
er in terms of the �ow records and bytes processed
(testing) is given in Figure 10. We observed a linear rela-
tionship between the CPU utilization and the amount of
records processed for all classi
ers followed by a steady-state
pattern albeit di�erent consumption footprints. �e �NN
classi
er had the highest CPU usage at up to 5.32% with a
gradual decrease steadying at 4.21%. NB classi
er had the
lowest consumption at 1.61% while two-phased ML reported
around 4.31% usage. Similarly the average memory usage
per classi
er in processing �ow records and bytes of data is
provided in Figure 11. �e BFTree algorithm had the highest
memory usage at 190.28MB with the two-phased ML at
175.31MB. BayesNet had the lowest memory footprint with
a steady-state value of approximately 50.14MB.

�e average training and testing times with respect to
three di�erent sizes of �ow sets (1000, 1million, and 3million)
for each classi
er are depicted in Figure 12.�e training time
for two-phased classi
er was signi
cantly high compared to
other classi
ers for �ow record size of 1000 �ows. �is was
due to the in-tandem processing of the two embedded algo-
rithms used. �e training time relationship for most classi-

ers with respect to the size of training data at larger values of
the latter was, however, nonlinear. �e training time for J48,
for example, for both 1M and 3M �ows, was approximately
the same averaging at around 59.35minutes. Similarly, BFTree
approximated in between 60.12 minutes for 1M and 63.45
minutes for 3M �ows, respectively. Two-phased classi
er also
reported between 80.87 minutes and 84.51 minutes for the
respective �ow records in the training phase. �is yields

0

1

2

3

4

5

6

7

8
CPU: �ows

Flow records (processed)

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

10
0

10
00

10
00
0

1E
+
05

2E
+
05

3
E
+
05

4
E
+
05

5
E
+
05

6
E
+
05

7
E
+
05

8E
+
05

9
E
+
05

1E
+
06

2E
+
06

3
E
+
06

4
E
+
06

J48

kNN

BFTree

REPTree

Two-phased

SMO

DTNB

BayesNet
Naïve Bayes

(a)

0

1

2

3

4

5

6

7

8
CPU: bytes

Bytes (processed)

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

0.
05 5

5
0

5
00

10
00

15
00

20
00

25
00

3
00
0

3
5
00

4
00
0

4
5
00

5
00
0

7
00
0

12
00
0

17
00
0

×104

J48

kNN

BFTree

REPTree

SMO

DTNB

BayesNet

Two-phased

Naïve Bayes

(b)

Figure 10: CPU utilization percentage: (a) �ow records; (b) bytes.

approximately on average 0.88 seconds spent training around
1K �ows with a standard deviation (�) of 1.137 between 1M
and 3M�ows.Hence, the proposed technique results in better
performance in terms of training times in the steady state
with relatively larger data sets. However, as noted above it
does not speci
cally consider the time duration involved in
o�ine analysis of optimal cluster labelling following exami-
nation of di�erent types of tra	c generated per application.
�e SMO classi
er accounted for the highest training times
with larger �ow records requiring around 140.35 minutes
of training 3M �ows. SMO, therefore, reported the lowest
accuracy while having substantial resource consumption,
performing quite marginally compared to other techniques.

Considering the testing timelines, NB followed by
J48 classi
ers were most e	cient in classifying �ows at
approximately 6.3 minutes and 8.12 minutes, respectively.
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Figure 11: Memory usage: (a) �ow records; (b) bytes.

Two-phased recorded a linear relationship between the �ows
tested and the respective processing time frame. Approx-
imately 15.17 minutes was spent in classifying 3M �ows,
averaging at 0.30 seconds for processing 1K �ow records with
a standard deviation (�) of 0.071 between 1M and 3M �ows.
�us, given the high accuracy of the two-phased approach
the computation performance seems highly applicable in
realistic tra	c classi
cation scenarios. BN reported the high-
est 16.91 minutes in testing 3M �ows albeit average overall
classi
cation performance as depicted in Figure 9. �e two-
phased approach therefore yields better accuracy across all
tra	c classes with a comparably smaller computational cost
when considered in relation to the examined alternate classi-

cation approaches implemented using the Weka platform.
However, it may be noted that since Weka is a Java based
implementation of the classi
ers, the exact computational
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Figure 12: Classi
er time frames for (a) training and (b) processing
time.

overhead reported might be di�erent when a standalone
classi
er utility for each approach is applied resulting in a
more e	cient performance.

6.3. Scalability. In classi
cation accuracy comparisons
among several classi
ers it is evident that the prediction
ability of a scheme is highly dependent on analysing a correct
measure of variation between the selected �ow attributes for
each tra	c class. Traditionally the bidirectional �ow features
utilized in the present research have shown considerable
applicability in multiple classi
ers to attain a (somewhat)
acceptable degree of tra	c identi
cation. However, as
highlighted in [14, 16] the wide majority of the classi
cation
algorithms are infeasible with respect to their application in
the network backbone by ISPs. �e reasons for this lack of
applicability range from the tremendous amount of tra	c
generated in the network core to the actual methodology of
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the approach, for example, sometimes requiring analysis of
end-point behaviour for classi
cation [16, 76]. In addition
�ow based techniques o�en rely on statistical information
from bidirectional tra	c (speci
cally TCP) and placing
the tra	c measurement or collection point as close to the
ingress or the edge of the network as possible to collect the
necessary features from outbound as well as inbound �ows.
An alternate approach to address this limitation [77] details
an algorithm for predicting the inbound tra	c �ow attributes
based on the unidirectional transmitted TCP �ows. However,
in the present case we propose using the former technique
of keeping �ow measurements as close to the ingress or
edge of the network. �is technique ensures corroboration
between upstream and downstream host tra	c to generate
bidirectional �ow features, minimizing the operational
and computational cost of implementing the two-phased
classi
er.

�eproposed two-phased approach is signi
cantly repro-
ducible due to the utilization of NetFlow, ubiquitous in
present ISP networking gear. Additionally, the derived clas-
si
er reported high e	ciency in dealing with voluminous
data (�ow records) with high level of accuracy, again a
basic tra	c classi
cation requirement by service providers.
�e synergetic combination of classi
ers in the present case
produced comprehensive tra	c classi
cation results and a
comparatively lower processing overhead while using non-
specialized hardware.

7. Conclusion

�e present paper used a twofold machine learning approach
for tra	c classi
cation on a per-�owbasis by solely usingNet-
Flow attributes and without depending on packet derivatives
or complex time window analysis. During the unsupervised
phase, approximately 6.8 million bidirectional �ows for all
applications were collected and cluster analysed resulting in
12 unique �ow classes.�e supervised phase used four di�er-
ent feature sets of NetFlow attributes from the derived �ow
classes to test and train the C5.0 ML decision tree classi
er.
�e foremost feature set comprising 14 NetFlow attributes
reported an average prediction accuracy of 92.37% increasing
to 96.67% with adaptive boosting. Sensitivity factor of the
classi
er was also exceedingly high ranging above 90%
with only cloud storage �ows (
le upload and downloads)
reporting relatively low values between 87.67 and 89.89% due
tomisclassi
cation with general web browsing and streaming
�ows.�e corresponding speci
city factor, however, translat-
ing for classi
er �ow discrimination ability ranged between
98.37 and 99.57% across all applications. Furthermore, the
substantive accuracy of the present approach in achieving
highly granular per-�ow application identi
cation and the
computational e	ciency in comparison with other machine
learning classi
cation methodologies paves way for future
work in extending this method to include other applications
for real-time or near real-time �ow based classi
cation.
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[5] J. Camacho, P. Padilla, P. Garćıa-Teodoro, and J. Dı́az-Verdejo,
“A generalizable dynamic �ow pairing method for tra	c clas-
si
cation,” Computer Networks, vol. 57, no. 14, pp. 2718–2732,
2013.
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