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ON INTERPOLATION IN PERIODIC AUTOREGRESSIVE PROCESSES 

JIRI ANDEL, ASUNCION RUBIO 

(Received October 15, 1985) 

Summary. The periodic autoregressive processes are useful in statistical analysis of seasonal 
time series. Some procedures (e.g. extrapolation) are quite analogous to those in the classical 
autoregressive models. The problem of interpolation needs, however, some special methods. 
They are demonstrated in the paper on the case of the process of the second order with the 
period of length 2. 

Keywords: covariance function, interpolation, multivariate AR(1) process, periodic autoregres
sive process, projection. 

AMS subject classificatiin: 62M10. 

1. INTRODUCTION 

The periodic autoregressive process {Xt} of the nth order with a period p is given 
by the relation 

n 

(1.1) Xn+U-1)p + k = 2_j t>ki-^n + (j-l)p + k-i + rln + (j-i)p + k (& = -L --->P)> 
i - 1 

where bki are given constants and nt are uncorrelated random variables with vanishing 
mean such that Var nn+u_1)p+k = ak. We shall assume that 0 < o\ < oo (k = 
= 1, ..., p). If the variables Xl9 . . . , I „ are given, then the relation (1.1) is considered 
for p = 1, 2 , . . . . But under certain conditions, which will be briefly discussed later 
on, it is possible to consider the process {Xt}™=_00 similarly as in the stationary 
autoregressive models. 

The history of the periodic autoregressive processes is described in [2]. We only 
remind that important results about the structure of the periodic autoregressive 
processes and about asymptotic properties of some estimators were derived by Pagano 
in [6]. Statistical analysis of the periodic autoregressive processes based on the 
Bayes approach is described in [2] and [3]. 

In the special case when n = 2, p = 2 the model ( IA ) can be written in the form 

(1-2) ^ 2 t + l = bliX2t + bl2^2t-l + Vlt+l > 

%2t+2 ~ ^21^2t+l + ^22^2t + W2f + 2 • 

It follows from the general results given in [6] that any periodic autoregressive 
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model can be transformed into classical multidimensional autoregressive model. 
In the special case (1.2) we introduce random vectors 

Zt = ("it-1> Xit)' , Yt = (nit- n lit)' 

and matrices 
h °\ B =(~bi2> ~bll\ D = (Gu ° 

-621, -J' l \ 0, -b22)' U , o-2y 

Then (1.2) can be expressed as 

(1.3) B0Zl+i + B1Zt = Yl+l 

(cf. [2], p. 381). It is well known that the two-dimensional autoregressive process 
[Zt}™__ao is stationary if and only if the roots Al9 A2 of the equation 

(1.4) \B01 + Bt\ - 0 

satisfy |AjJ < 1, |^2 | < 1. It can be easily checked that (1.4) is equivalent to 

^ ~ (611^21 + fei2 + b22)X + bi2b22 = 0 . 

In our case Var Yt+1 = D2. Since we are going to use some formulas derived under 
the assumption that the white noise in the multidimensional autoregressive model 
has the unit variance matrix, we must transform (1.3) to such case. It is quite easy, 
because (1.3) is equivalent to 

(1.5) A0Zt+i + A1Zt = D-%+i, 
where 
(1.6) A0 = DlB0, A^D'B,. 

Now, Var D~1Yt+i = /. Clearly, the equation \A0X 4- AA — 0 has the same roots 

A1? X2
 a s l n e equation (1.4). 

Till the end of this paper we shall assume that {Z,} is stationary. 

2. COVARIANCE FUNCTION OF STATIONARY MULTIVARIATE AR(1) PROCESS 

Although most of the results of this section are known, we introduce them for 
sake of completness. The covariance function R(t) of the process { Z j is defined 
by R(t) = EZs+tZs. We shall denote the elements of R(t) by Ru(t), i.e., R(t) = 
= (Rij(t))

2j_i. Since the elements RtJ(0) of the matrix R(0) occur very often, we use 
the notation Ru = Ko(0) for i, j = 1, 2. 

Theorem 2.1. Let U = -B^BX. Then 

(2.1) 80R(0) B0 - B,R(0) B[ = D2 , 

(2.2) Rk = UR(k - 1) for k 2_ 1 . 

Proof. We multiply (1.3) from the right by Z;+ 1_* and then we take expectation. 
Since EYt+1Z't+i_k = 0 for k _z 1, we get (2.2) immediately. 
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Multiplying (1.3) from the right by Z't+i a n c j taking expectation, we obtain 

(2.3) BoR(0) + B 1 R ( - l ) = E y r + 1 Z ; + 1 . 

Multiplying (1.3) from the right by Y't+i and taking expectation we have 

EB 0 z ( + 1 y; + 1 = D 2 . 

From here 
E V ( + 1 Z ; + 1 = ( B - > D 2 ) ' . 

Because 
R ( -1) = [R(1)]' = - [ B - ' B ^ O ) ] ' 

and R(0) is symmetric, (2.3) is equivalent to (2.1). • 

From (2.2) we have, of course, 

R(fc) = UkR(0), k = 1 . 

The only problem is to get the solution R(0) from (2.1). This can be done by one of 
the following two methods. The first method is based on a system of linear equations 
which we get grom (2.1) when we compute the elements of the matrices on the both 
sides. Because R(0) and D are symmetric, we get three equations for three unknown 
variables Rll9 R129 R22. The second method is a modern one and it uses some 
properties of the Kronecker product A ® B of the matrices A and B, If A = (a^-), 
B = (bij) then A ® B = (a^B). We shall use the following fundamental properties 
of the Kronecker product: 

(2.4) (A ® B)"1 = A1 ® B 1 whenever A1 and B1 exist ; 

(2.5) AXA2 ® BtB2 = (Ax ® Bt) (A2 ® B2) whenever the products exist. 

Further it is known that if A and B are m x m and n x n matrices with eigenvalues 
£l9 . . . , £ m and dl9...95n9 respectively, then the eigenvalues of A ® B are cj^. 
(i = 1, . . . , m ; j = 1, . . . , n ) . 

Let A = (al9 ...,an), where o1? . . . ,ow are columns of A. Then the symbol vec A 
means 

vec A = ( a i , . . . , < ) ' -

If >A, B, and C are matrices such that the product ABC exists, then it can be proved 
(see Neudecker [5]), that 

(2.6) vec ABC = (C ® A) vec B . 

Theorem 2.2. The elements Rtj of the matrix R(0) are given by the formula 

vec R(0) = [(B0 ® B0) - (B, ® B , ) ] " 1 vec D2 , 
where 

vec R(0) = ( R n , R12, R12, 1?22)
r , vec D2 = ((j2, 0, 0, <72)' . 
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Proof. The assertion follows from (2.1) using (2.6). It remains only to prove that 
the matrix B0 ® B0 — B1 ® Bt is regular. Applying (2.4) and (2.5) we have 

B0®B0- -!&-!= (B0 ® B0) [/ - (Bo1 ® B-1) (B. ® B.)] = 

= (B0 ® B0) (J - B- 1 B 1 ® Bo ̂ 0 = (B0 ®B0)(I-U®U). 

The eigenvalues of U ® U are Aj, A1A2, A1A2, A2, and thus 

\X\ - U ® U\ = (A - A?) (A - AiA2)
2 (A - X2

2) 

does not vanish for A = 1. Therefore, / — U ® U is regular. The regularity of 
B0 ® B0 is obvious, since B0 is regular and (B0 ® B 0 ) _ 1 = B~x ® BQ1 exists. • 

3. INTERPOLATION OF Zs 

In this section we solve the problem of interpolation, when all variables from one 
period are missing. In the case of model (1.2) it means that we want to interp
olate the variables X2s_i and X2s when all other variables Xt (t 4= 2s — V t =j= 2s) 
are known. In fact, we shall see that it is sufficient to know only X2s_3, X2s_2, 
X2S+19 x2s+2. 

Theorem 3.1. The best linear interpolation Z* Of the random vector Zs based 
on {Zt, t =# s} is 

(3.1) Z: = FZs_l+GZs+l, 

where 

(3.2) F = -(B'0D~2B0 + B i D - % ) - 1 B[D 2B0 , 

(3.3) G = -(B'0D-2B0 + B.D^B^1 B0D
 2BX . 

The residual variance matrix V is 

(3.4) V = Var (Z, - Z*) = R(0) - F[R(1)]' - G R(l) . 

Proof. We use the form (1.5) of our model. According to formula (18) in [1] 
the best linear interpolation Z* is given by 

Zs = ~~ "ss L"s,s-lZs-i + Hss+ iZs+ iJ , 

where 
H — A' A 4- A' A H — A' A H — A' A 
"ss — **0M0 T" « i « i , r f s , s - l ~" M 1 M 0 > " s . s + l — M 0 M 1 * 

Inserting for A0 and At from (1.6) we get formula (3.1). Further, using the ortho
gonality properties, we obtain 

Var (Z, - Z*) = E(ZS - Zs*) (Z, - Z*)' = EZ,ZS - EZS*ZS. 

This yields (3.4). Q 
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Of course, an equivalent formula for the residual variance matrix can be obtained 
from the relation 

Var (Z s -Z s * ) = EZsZs ' -EZs*Zs*'. 

The elements of V will be denoted by Vtj (i9j = 1, 2). 

4. INTERPOLATION OF A SINGLE VALUE 

The main point of this paper is to derive a formula for the best linear interpolation 
when one value of the process {Xt} satisfying (1.2) is missing. A solution is based 
on the following theorem. 

Theorem 4.1. Let J f be a Hilbert space of random variables with vanishing 
mean and fflx its Hilbert subspace. Let /?, yl9 ..., ym e J>f. Denote Jf2 the Hilbert 
subspace generated by yl9 ..., ym. Put y = (yl9 ..., ym)'. Let $ be the projection of j8 
onto J f t and let y be the vector of the projections of the components of y onto J f x. 
Let y = y — y. If Eyf is a regular matrix, then the projection f$* of /? onto the 
Hilbert subspace J f x + ffl2 is 

P* = P + (Epf)(Eyf)-1y. 

Proof. See Luenberger [4], p. 92, Theorem 3. • 

Let X2s_1 be the missing value of the process {Xt}. All the other variables Xt 

(t + 2s — 1) are supposed to be known. (However, it is sufficient to know only Xt 

for t = 2s — 3, 2s — 2, 2s, 2s + 1, 2s + 2.) The best linear interpolation of K2s_1 

will be denoted by X2s_i. We use Theorem 4.1, where /? = X2s_l9 m = 1, y = yx = 
= X2s. Then 

0, y)' = Z* = (X2s.u X2s)', y = X2s- X2s. 

Obviously, 

Eyf = E(*2s - X2s)
2 = V22 . 

Further, 

m = EX2^1(K2s-i2s). 
Denote fu and gtJ the elements of the matrices F and G, respectively (i,j = 1, 2). 
Then 

^2s — f21^2S-3 + f22^2 S - 2 + g21^2S+l + g22^2S+2 
and 

m' = Rl2 - (/21 + g2l) -Rll(l) - f22 *ia( l ) " g22 *2l(l) -

Therefore, the final formula for interpolation is 

%2s-l = ^ 2 S - l + 

+ V22\Rl2 - (f2l + g21) « n ( l ) - j 2 2 R12(l) - g22 R21(l)] (X2s - X2s), 

where {X2s_uX2s)' = Zs* from (3.1). 
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The čase, when only X2s is missing and all variables Xt for t =f= 2s are known, is 
quite analogous. We get 

^2s = X2s + 

+ nV[-l l2 - (jl2 + 012)«22(1) ~ j l 1 *2 l( l ) - 011 * « ( - ) ] (*2«-l - * 2 , - l ) • 
The methods described in this páper can be generalized to n ^ 2, p ^ 2. It seems, 

however, that it is more useful to derive formulas for a given particular model rather 
than to try to write down cumbersome formulas for the generál čase. 
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Souh rn 

O INTERPOLACI V MODELECH PERIODICKÉ AUTOREGRESE 

JIŘÍ ANDĚL, ASUNCIÓN Rubio 

Modely periodické autoregrese jsou vhodné pro statistickou analýzu sezónních časových rad. 
Některé postupy (napr. extrapolace) jsou pro ně zcela analogické jako v případě klasických 
autoregresních modelů. Odvození interpolačních vzorců však vyžaduje použít speciálních netri
viálních metod. Ty jsou v práci demonstrovány na modelu druhého rádu, který má délku periody 
rovnu dvěma. 

Pe3K>Me 

OB H H T E P n O J I J ^ H H B nEPMOAHHECKHX n P O ^ C C A X ABTOPErPECCHH 

JIŘÍ ANDĚL, ASUNCIÓN RUBIO 

HeKOTOptie npoHeaypbi B nepHOAHnecKHX npoueccax aBTOperpeccHH CTPOHTCH TaK me KSLK 
B KJiaccHHecKOíí MOAejiH aBTOperpeccHH — HanpHMep 3KCTpanonHHHH. B npo6jreMe HHTepnonHHHH 
Ha^o npHMeHHTb cneHHajibHLie MeTOzibi. B craTbe 3TO noKa3aHO AJIH npoueccoB BTOporo nop$UTKa 
c nepHOAOM 2. 
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