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On Interpretability of Almost Linear Orderings

AKITO TSUBOI and KENTARO WAKAI

Abstract In this paper we define the notion of m-linearity for m ∈ ω(m > 1)

and discuss interpretability (and noninterpretability) of m-linear orders in struc-
tures and theories.

1 Introduction We say that a structure N is (∅)-interpretable in a structure M
if N is (∅)-definable in Meq. We also say that a structure N is (∅)-interpretable
in a theory T if N is (∅)-interpretable in some model M of T . (For the defini-
tion of eq-structures, see Shelah [5] or Hodges [2].) In [3], Nies and Hodges stud-
ied interpretability of linear orderings and showed that no infinite linear order is ∅-
interpretable in the theory of M × M, where M × M is defined so that an atomic for-
mula R((a1, b1), . . . , (an, bn)) holds in the structure if and only if R(a1, . . . , an) ∧
R(b1, . . . , bn) holds in M. Though they proved their result as a lemma for deriving a
recursion theoretic result, whether a theory interprets a certain kind of order or not will
be itself an interesting problem in model theory. Let m > 1. In this paper, an ordered
set (M,<) will be called an m-linear order if there are no incomparable m elements
in M. So, by definition, 2-linearity coincides with linearity. Intuitively speaking, if
m < n then an m-linear order can be considered closer to a linear order than an n-linear
order. In Section 2, we treat interpretability with parameters and prove the following.

Result 1.1 Let T be the theory of an infinite m-linear order (M,<). Then an infi-
nite linear order is interpretable in T .

Thus if we allow parameters, the interpretability of linear order and the interpretabil-
ity of m-linear orders are essentially the same. However, as is shown in Section 3, if
we do not allow parameters, the situation is different.

In Section 3, we treat ∅-interpretability. We will consider reduced powers∏
F M of M and their interpretability of m-linear orders. (See [2] or Chang [1] for the

definition of reduced power.) If M = (M,<) is a linear order and F is an ultrafilter,
then

∏
F M � M, so

∏
F M is also a linear order. However, the statement that < is a
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linear order is not expressible by a Horn sentence; it may not be preserved in reduced
products. In fact if F is not an ultrafilter, then < is no longer a linear order in

∏
F M.

This can be seen as follows. Choose a subset A of the domain I of F with A /∈ F and
Ac /∈ F. For two elements a and b in M with a < b, let f : I → M and g : I → M
be functions defined by: f (i) = a (i ∈ A), f (i) = b (i /∈ A), g(i) = a (i /∈ A),
g(i) = b (i ∈ A). Then f and g are not comparable in

∏
F M. In this section, we

show that if F satisfies a certain condition, then no linear order exists in
∏

F M even
in the sense of ∅-interpretability. Among others we show the following.

Result 1.2 Let M be any structure. Let F be a filter over I with generators
{Ai}i<κ ⊂ F such that A j ⊂ Ai holds for any i < j < κ. Suppose that the cardinality
of

⋂
F is 0 or ≥ m. Then no infinite m-linear order is ∅-interpretable in the reduced

power
∏

F M.

Since the mth power of a structure can be considered as a reduced power via a filter
generated by an m-element set, so the result by Hodges and Nies [3] stated above is a
corollary to Result 1.2. On the other hand, we can show that after naming one element
in a given infinite linear order (M,<), an (m + 1)-linear order is ∅-interpretable
in the mth power Mm = M × · · · × M. (So Mm is an example in which an infinite
(m + 1)-linear order is ∅-interpretable but m-linear orders are not.) We will also
show that if F is the Fréchet filter over an infinite set then no infinite m-linear order
is ∅-interpretable in

∏
F M.

2 Interpretability In this paper, we assume that m ∈ ω and m > 1.

Definition 2.1 An ordered set will be called m-linear if each subset of cardinality
m has two comparable elements.

Example 2.2 Let M be a linear order and N an n-element poset. If we impose lex-
icographic orders on M × N and N × M, then they both become (n + 1)-linear.

In Ikeda [4], the notion of almost ℵ0-categoricity was introduced and it was shown
that if an almost ℵ0-categorical theory has exactly three countable models then a
dense linear ordering is interpretable in the theory. The first author of the present pa-
per thought that by starting from an m-linear order one can construct a theory with a
finite number of countable models and without linear ordering. Such a theory gives a
counterexample to the conjecture stated in [4]. However, it was not the case. In fact
we can show the following.

Theorem 2.3 Let T be the theory of an infinite m-linear order (M,<). Then an
infinite linear order is interpretable in T.

Proof: We write a ⊥ b for a 	≤ b and a 	≥ b. We show the following statement by
induction on m < ω.

(∗) If M is an ℵ0-saturated model of T in which an infinite m-linear order is
interpretable, then an infinite linear order is interpretable in M.

If m = 2, then the notion of m-linear order coincides with that of linear order. So let
m > 2 and suppose that we have shown (∗) for m − 1. We need to show (∗) for m.
Let n(M) = sup{|SM

a | : a ∈ M}, where SM
a = {b ∈ M : b ⊥ a}. If n(M) ≥ ℵ0, then by
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compactness, there is an element a ∈ M with |SM
a | ≥ ℵ0. (SM

a ,<) is clearly (m − 1)-
linear order. By the induction hypothesis, an infinite linear order is interpretable in
SM

a . (This is the only part where we need parameters. Hence if n(M) < ℵ0, then an
infinite linear order is interpretable in M without parameters.) Hence we may assume
that n(M) < ℵ0. Now we prove (∗) for m by induction on n(M). If n(M) = 0, then
M is in fact a linear order and we are done. So suppose that we have shown (∗) for
M with n(M) < n. Let M be an ℵ0-saturated m-linear order. Suppose n(M) = n. We
put Ma = {b ∈ SM

a : b is a minimal element of SM
a }. Now define a binary relation ≤∗

on M by a ≤∗ b if and only if a ≤ b or a ∈ Mb.

Claim 2.4 ≤∗ is transitive.

Suppose a ≤∗ b ≤∗ c. We have four cases to be considered. In each of the cases, we
will show a ≤∗ c.

Case 1: a ≤ b ≤ c. In this case, we have a ≤ c by the transitivity of ≤.

Case 2: a ≤ b, b ∈ Mc. First suppose a 	⊥ c. If c < a, then we would have c < b,
contradicting b ∈ Mc. So we have a ≤ c. Next suppose a ⊥ c. Then by the minimality
of b in Mc, we have a = b. Hence a ∈ Mc.

Case 3: a ∈ Mb, b ≤ c. First suppose a 	⊥ c. If c < a, then we would have b < a,
contradicting a ∈ Mb. So we have a ≤ c. Next suppose a ⊥ c. For showing a ∈ Mc,
let d < a. We need to show d 	⊥ c. By the minimality of a in SM

b , we have d 	⊥ b. If
b ≤ d, then we would have b < a, contradicting a ∈ Mb. So we have d < b. Hence
d < c. Thus a is minimal in SM

c , that is, a ∈ Mc.

Case 4: a ∈ Mb, b ∈ Mc. First suppose a 	⊥ c. c < a does not occur, because a is
minimal element of SM

b . So we have a ≤ c. Next suppose a ⊥ c. We show a ∈ Mc

in this case. Let d < a. We need to show d 	⊥ c. Since a is minimal in SM
b , d 	⊥ b. If

d < b, then d 	⊥ c by the minimality of b in SM
c . If b ≤ d, then we would have b < a,

contradicting a ∈ Mb.

Now define an equivalence relation E(xy) by x ≤∗ y ∧ y ≤∗ x. Let a/E denote the
equivalence class {b ∈ M : E(ba)}. M/E = {a/E : a ∈ M} becomes an order struc-
ture by a/E ≤∗ b/E ⇐⇒def a ≤∗ b. We write a/E <∗ b/E for a/E ≤∗ b/E and
a/E 	= b/E.

Claim 2.5 a < b =⇒ a/E <∗ b/E.

Suppose a < b. Clearly a/E ≤∗ b/E. Moreover, a < b implies b 	≤ a and b 	∈ Ma.
Hence we have b/E 	≤∗ a/E.

Claim 2.6 The order M/E is infinite.

By Ramsey’s Theorem and the fact that M is an infinite m-linear order, there is an
infinite set {ai : i < ω} with ai < a j for all i < j < ω. By Claim 2.5 above, we have
ai/E 	= a j/E for i < j < ω. Thus M/E is infinite. By the induction hypothesis for
proving that M/E interprets an infinite linear order, it is sufficient to show the fol-
lowing.

Claim 2.7 n(M/E) < n(M).
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Let b/E ∈ M/E and a1/E, . . . , al/E be an enumeration of the set SM/E
b/E . By

Claim 2.5, ai ⊥ b for each i = 1, . . . , l. If l ≥ n(M), then there must be some i with
ai ∈ Mb. But then we have ai/E ≤∗ b/E, contradicting the fact that ai/E ∈ SM/E

b/E .
�

3 Noninterpretability

Definition 3.1 Let F be a filter over a set I.

1. Let B be a subset of I. Then FB denotes the set {X ∩ B : X ∈ F}. (FB is clearly
a filter over B unless FB = P (B).)

2. We will say that F is m-good if there is a bijection τ : I → I and a subset B ⊂ I
such that

(a) X ∈ F ⇐⇒ τ(X) ∈ F, for all X ⊂ I,

(b) I is the disjoint union of {τi(B) : i < m}.

Theorem 3.2 Let M be any structure, F a filter over a set I. If F is m-good, then
no m-linear order is ∅-interpretable in the reduced power

∏
F M.

First let us remark the following.

Remark 3.3 Let M be an L-structure and n ∈ ω. As usual, Mn denotes the nth
power of the structure M, that is, the direct product of n copies of M. There is another
notion of power of a structure. For an nm-ary L-formula ϕ, let Rϕ be a new m-ary
relation symbol. We define an {Rϕ : ϕ ∈ L}-structure M(n) by

(1) the universe of M(n) is {(a1, . . . , an) : a1, . . . , an ∈ M};
(2) M(n) |= Rϕ(a1, . . . , am) ⇐⇒ M |= ϕ(a1, . . . , am).

Let a ∈ (M(k))n. Then a has the form ((a1, j)1≤ j≤k, . . . , (an, j)1≤ j≤k). We define
the mapping σ : (M(k))n → (Mn)(k) by σ(a) = ((ai,1)1≤i≤n, . . . , (ai,k)1≤i≤n). Then
σ gives an isomorphism between {Rϕ : ϕ ∈ L}-structures (M(k))n and (Mn)(k).
For example, if ϕ is a k-ary formula in L (so Rϕ is a unary predicate), then we
see the following hold: (M(k))n |= Rϕ(a) ⇐⇒ M(k) |= Rϕ((a1, j)1≤ j≤k) ∧ · · · ∧
Rϕ((an, j)1≤ j≤k) ⇐⇒ M |= ϕ((a1, j)1≤ j≤k) ∧ · · · ∧ ϕ((an, j)1≤ j≤k) ⇐⇒ Mn |=
ϕ((ai,1)1≤i≤n, . . . , (ai,k)1≤i≤n) ⇐⇒ (Mn)(k) |= Rϕ(σ(a)).

Proof: By the assumption of F, there are B ⊂ I and τ : I → I witnessing the
m-goodness of F. We claim that

∏
F M � (

∏
FB

M)m. We define f :
∏

F M →
(
∏

FB
M)m by f ((ai)i∈I/F) = ((bi, j)i∈B/FB)1≤ j≤m, where bi, j = aτ j−1(i). We will

show that
∏

F

M |= ϕ(a1, . . . , ak) ⇐⇒ (
∏
FB

M)m |= ϕ( f (a1), . . . , f (ak))

holds for any atomic formula ϕ(x1, . . . , xk). For simplifying the notation, we assume
k = 1 and put a = a1. Suppose that (

∏
FB

M)m |= ϕ( f (a)) holds. If we put X j = {i ∈
τ j−1(B) : M |= ϕ(ai)}, then we have X j ∈ Fτ j−1(B) for all 1 ≤ j ≤ m. Hence there
is Yj ∈ F such that Yj|τ j−1(B) = X j for all 1 ≤ j ≤ m. So {i ∈ I : M |= ϕ(ai)} =
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⋃
1≤ j≤m X j ⊃ ⋂

1≤ j≤m Yj ∈ FJ . Thus
∏

F M |= ϕ(a) holds. The other direction is
easily shown.

By what we have just shown, to finish our proof of the theorem, it is sufficient
to show the following claim, which can be proven by refining arguments in [3].

Claim 3.4 Let M be any structure. Then no infinite m-linear order is ∅-inter-
pretable in the structure Mm.

Temporarily we say that a binary relation on A is a k-linear preorder on A if (i) it
is a preorder on A and (ii) it has no pairwise incomparable k elements. Then by Re-
mark 3.3, it is sufficient to show that no m-linear preorder on Mm with infinitely many
incomparable elements is ∅-definable in Mm.

By the way of contradiction, assume that there is such a preorder ≤ definable in
Mm. For elements a, b ∈ Mm, let a ∼ b denote the relation a ≤ b ∧ b ≤ a. We may
assume that the domain of ≤ is Mm itself. We may also assume that M issufficiently
saturated and homogeneous.

Subclaim 3.4.1 Let two tuples a1, . . . , am−1, am and a1, . . . , am−1, b have the same
type in M. Then there is a permutation σ of {1, . . . , m} such that

fσ((a1, . . . , am−1, am)) ∼ (a1, . . . , am−1, b),

where fσ is the automorphism of Mm defined by f ((x1, . . . , xm))= (xσ(1), . . . , xσ(m)).

We may assume that am is different from any of a1, . . . , am−1. Choose f ∈ Aut(M)

which maps the tuple a1, . . . , am−1, b to the tuple a1, . . . , am−1, am. Let g ∈ Aut(Mm)

be the permutation of coordinates defined by g((x1, . . . , xm)) = (xm, x1, . . . , xm−1).
Now let h ∈ Aut(Mm) be the automorphism defined by

h((x1, . . . , xm)) = g((x1, . . . , xm−2, f −1(xm−1), f (xm))).

The following are easily shown.

1. hi((a1, . . . , am−1, b)) = (am−i+1, . . . , am, a1, . . . , am−i) if i < m,
2. hm((a1, . . . , am−1, b)) = (a1, . . . , am−1, b), and
3. (a1, . . . , am−1, b), h((a1, . . . , am−1, b)), . . . , hm−1((a1, . . . , am−1, b)) are

distinct.

So by m-linearity, there are two distinct numbers i, j ∈ m such that

hi((a1, . . . , am−1, b)) ≤ h j((a1, . . . , am−1, b)).

Since h is an automorphism of the structure Mm, we may assume i = 0. Then we have

(a1, . . . , am−1, b) ≤ h j((a1, . . . , am−1, b)) ≤ · · · ≤ h jk((a1, . . . , am−1, b))

for any k ∈ ω. Let k = m in the above inequality. Then, using property 2, we have

(a1, . . . , am−1, b) ≤ h j((a1, . . . , am−1, b)) ≤ (a1, . . . , am−1, b).

This together with property 1 concludes our proof of Subclaim 3.4.1.
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Now choose an indiscernible sequence I = (āi)i∈ω in M such that for all i <

j, āi < ā j holds in Mm. Let aij denote the jth coordinate of the m-tuple āi. So āi =
ai1, . . . , aim.

Subclaim 3.4.2 There is a permutation σ of {1, . . . , m} such that

(a11, . . . , amm) ∼ fσ(am+1,1, . . . , am+m,m),

where fσ is the automorphism of Mm defined by f ((x1, . . . , xm))= (xσ(1), . . . , xσ(m)).

For i = 0, . . . , m, we define b̄i = bi1, . . . , bim by

bij =
{

bij = a j, j if j ≤ m − i
bij = am+ j, j if j > m − i

.

By the indiscernibility of I, b̄i’s have the same type in M. So by Subclaim 3.4.1, we
have permutations σ1, . . . , σm such that for each i ∈ {1, . . . , m},

b̄i−1 ∼ fσi (b̄i).

This completes our proof of Subclaim 3.4.2, since b̄0 = a11, . . . , amm and b̄m =
am+1,1, . . . , am+m,m.

Let σ be one of the permutations chosen in Subclaim 3.4.2. By the indiscerni-
bility of I, all the elements fσk (amk+1,1, . . . , am(k+1),m) ∈ Mm (k ∈ ω) belong to the
same ∼-class. Choose k > 0 with σk = id. Then

(a11, . . . , amm) ∼ (amk+1,1, . . . , am(k+1),m).

Now, for each i ∈ {1, . . . , m}, let gi be a mapping such that gi(a j+i,i) = a j,i for all
j ∈ ω. By the indiscernibility of I, gi can be extended to an automorphism of M. Put
g = (g1, . . . , gm), then g is an automorphism of Mm. So we have (a01, . . . , a0m) ∼
(amk,1, . . . , amk,m), contradicting our choice of I. �
Recall that the Fréchet filter over an infinite set I is the set F = {X ⊂ I : I − X is
finite}. We will say that a filter F has a descending system of generators if there is
{Ai : i < κ} ⊂ F such that: (i) Ai ⊃ A j for all i < j < κ and (ii) for all X ∈ F there
is i < κ with Ai ⊂ X.

Corollary 3.5

(1) If F is the Fréchet filter over I, then no m-linear order is ∅-interpretable in∏
F M.

(2) If F has a descending system of generators and the cardinality of
⋂

F is 0 or
≥ m, then no m-linear order is ∅-interpretable in

∏
F M.

Proof: It is enough to show that F is m-good.

(1) Let Bi(i < m) be a disjoint partition of I such that |Bi| = |I| and τ : I → I a bi-
jection such that τ(Bi) = B(i+1)mod m. Then B0 and τ witness the m-goodness.

(2) Notice that if m > n then an n-linear order is obviously an m-linear order. So,
for proving the corollary, we may assume that the cardinality of

⋂
F is 0 or m

or infinity.



ALMOST LINEAR ORDERINGS 331

Let {Ai : i < κ} be a descending system of generators of F and I0 = ⋂
F. We may

assume that A0 = I. Let I1 = I − I0. By our assumption on |I0|, there is a bijection
τ0 : I0 → I0 and disjoint subsets X1, . . . , Xm of I0 with

⋃
1≤i≤m Xi = I0 and τ0(Xi) =

X(i mod m)+1 for 1 ≤ i ≤ m.
We may assume that each |(Ai − Ai+1) ∩ I1| is infinite, or a multiple of m by

replacing Ai’s if necessary. Hence there is a bijection τ1 : I1 → I1 and disjoint subsets
Y1, . . . , Ym of I1 with

⋃
1≤i≤m Yi = I1 and τ1(Yi ∩ A j) = Y(i mod m)+1 ∩ A j for 1 ≤ i ≤

m and j < κ. Let τ = τ0 ∪ τ1 and B = X1 ∪ Y1. Then τ and B witness the m-goodness.
�

Example 3.6 Let M = (M,≤, a) be an infinite linear order with a named ele-
ment a. We show that there is a ∅-definable (m + 1)-linear order in Mm. First
we may assume that in M there are infinitely many elements greater than a. Let
ϕ(x) be the formula expressing (i) a ≤ x and (ii) any two elements between a and
x are comparable. Then an element (a1, . . . , am) ∈ Mm satisfying ϕ(x) has the form
(a, . . . , a, b, a, . . . , a), that is, there is i0 (∈ {1, . . . , m}) with ai = a for all i 	= i0 and
ai0 = b ≥ a. So ϕ(x) determines an infinite set. It is clear that if m + 1 elements are
given, then we can choose two comparable elements from them.
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