ON INTERTWINING BY AN OPERATOR HAVING A DENSE RANGE

Eitoku Goya and Teishirô Saitô

(Received February 28, 1980)

1. Throughout the paper, by an operator we mean a bounded linear transformation acting on a Hilbert space H. The algebra of all operators on H is denoted by $B(H)$.

We formulate an algebraic version of generalized Putnam-Fuglede theorem [3; Theorem 1], and we show that a paranormal contraction T is unitary, if S is a coisometry, if W is an operator having a dense range and if $T W=W S$. This is a generalization of a result due to Okubo [1].

Let $T \in B(H) . \quad T$ is hyponormal (resp. cohyponormal) if $T^{*} T-T T^{*} \geqq 0$ (resp. $T T^{*}-T^{*} T \geqq 0$). T is dominant if range $(T-\lambda) \subset \operatorname{range}(T-\lambda)^{*}$ for all $\lambda \in \sigma(T)$, the spectrum of T. This condition is equivalent to the existence of a constant M_{λ} for each $\lambda \in \sigma(T)$ such that

$$
\left\|(T-\lambda)^{*} x\right\| \leqq M_{\lambda}\|(T-\lambda) x\|
$$

for all $x \in H$. Thus every hyponormal operator is dominant. T is paranormal if

$$
\|T x\|^{2} \leqq\left\|T^{2} x\right\|\|x\|
$$

for all $x \in H$.
2. The following theorem is a version of [3; Theorem 1]. The proof of [3] applies to this version. We include it for completeness.

Theorem 1. Let T, S, and $W \in B(H)$, where W has a dense range. Assume that $T W=W S$ and $T^{*} W=W S^{*}$. Then
(i) T is hyponormal (resp. cohyponormal), if so is S.
(ii) T is isometric (resp. coisometric), if so is S. In particular, T is unitary, if so is S.
(iii) T is normal, if so is S.

Proof. Let $W^{*}=V^{*} B$ be the polar decomposition of W^{*}. Since W has a dense range, W^{*} is injective. Thus $B^{2}=W W^{*}$ is injective, and V is coisometric. From equations $T W=W S$ and $T^{*} W=W S^{*}$, we have

$$
T W W^{*}=W S W^{*}, \quad W W^{*} T=W S W^{*}
$$

Thus, $W W^{*}$ commutes with T, and so B commutes with T. Hence we have

$$
B T V=T B V=T W=W S=B V S
$$

which implies that $T V=V S$ because B is injective. Since V is coisometric, we obtain

$$
T=T V V^{*}=V S V^{*}
$$

From the equations $W^{*} T=S W^{*}$ and $T B=B T$, we have

$$
V^{*} T B=V^{*} B T=W^{*} T=S W^{*}=S V^{*} B,
$$

which implies that $V^{*} T=S V^{*}$. Hence

$$
V^{*} V S=V^{*} T V=S V^{*} V
$$

First we assume that S is normal. Since $S^{*} S=S S^{*}$, we obtain

$$
\begin{aligned}
T^{*} T & =\left(V S V^{*}\right)^{*}\left(V S V^{*}\right)=V S^{*} V^{*} V S V^{*}=V S^{*} S V^{*} V V^{*}=V S^{*} S V^{*} \\
& =V S S^{*} V^{*}=V V^{*} V S S^{*} V^{*}=\left(V S V^{*}\right)\left(V S V^{*}\right)^{*}=T T^{*},
\end{aligned}
$$

whence T is normal.
To prove (i), assume that S is hyponormal (resp. cohyponormal). Since $S^{*} S \geqq S S^{*}$ (resp. $S S^{*} \geqq S^{*} S$), the above computation implies that

$$
\begin{aligned}
& T^{*} T=V S^{*} S V^{*} \geqq V S S^{*} V^{*}=T T^{*} \\
& \text { (resp. } \left.T T^{*}=V S S^{*} V^{*} \geqq V S^{*} S V^{*}=T^{*} T\right)
\end{aligned}
$$

and the assertion of (i) follows.
To prove (ii), assume that S is isometric (resp. coisometric). Again, by the above computation,

$$
T^{*} T=V S^{*} S V^{*}=V V^{*}=I, \quad\left(\text { resp. } T T^{*}=V S S^{*} V^{*}=V V^{*}=I\right)
$$

whence T is isometric (resp. coisometric).
The rest of the theorem is obvious.
Remark. In Theorem 1, if W is injective and has a dense range, V is a unitary operator which implements the unitary equivalence of S and T.

The next theorem is a generalization of [1; Proposition 1].
TheOrem 2. Let T, V, and $W \in B(H)$, where T is a paranormal contraction, V is a coisometry and W has a dense range. Assume that $T W=W V$. Then T is a unitary operator. In particular, if W is injective and has a dense range, then V is also a unitary operator.

Proof. Let $x \in H$ such that $W x \neq 0$, and define

$$
y_{n}=W V^{* n} x \quad(n=0,1,2, \cdots)
$$

Then we have

$$
T y_{n+1}=T W V^{* n+1} x=W V V^{* n+1} x=W V^{* n} x=y_{n}
$$

Since T is a contraction,

$$
\left\|y_{n}\right\|=\left\|T y_{n+1}\right\| \leqq\left\|y_{n+1}\right\|=\left\|W V^{*^{n+1}} x\right\| \leqq\|W\|\|x\|
$$

and hence $\left\{\left\|y_{n+1}\right\|\right\}$ is a monotone increasing convergent sequence. By the paranormality of T, we have

$$
\left\|y_{n}\right\|^{2}=\left\|T y_{n+1}\right\|^{2} \leqq\left\|T^{2} y_{n+1}\right\|\left\|y_{n+1}\right\|=\left\|y_{n-1}\right\|\left\|y_{n+1}\right\|
$$

and

$$
1 \geqq \frac{\left\|y_{0}\right\|}{\left\|y_{1}\right\|} \geqq \frac{\left\|y_{1}\right\|}{\left\|y_{2}\right\|} \geqq \cdots \geqq \frac{\left\|y_{n-1}\right\|}{\left\|y_{n}\right\|} \rightarrow 1 \quad(n \rightarrow \infty)
$$

In particular, $\left\|y_{0}\right\|=\left\|y_{1}\right\|$, that is,

$$
\|W x\|=\left\|W V^{*} x\right\|
$$

Thus

$$
\left\|W V^{*} x\right\|=\|W x\|=\left\|W V V^{*} x\right\|=\left\|T W V^{*} x\right\| \leqq\left\|W V^{*} x\right\|
$$

and so

$$
\left\|W V^{*} x\right\|=\|W x\|=\left\|T W V^{*} x\right\|
$$

Note that these equalities are valid for $x \in H$ such that $W x=0$. Hence

$$
\begin{aligned}
& \left\|T^{*} W x-W V^{*} x\right\|^{2} \\
& \quad=\left\|T^{*} W x\right\|^{2}+\left\|W V^{*} x\right\|^{2}-\left(T^{*} W x, W V^{*} x\right)-\left(W V^{*} x, T^{*} W x\right) \\
& \quad \leqq 2\|W x\|^{2}-\left(W x, T W V^{*} x\right)-\left(T W V^{*} x, W x\right) \\
& \quad=2\|W x\|^{2}-\left(W x, W V V^{*} x\right)-\left(W V V^{*} x, W x\right) \\
& \quad=2\|W x\|^{2}-2\|W x\|^{2}=0
\end{aligned}
$$

for all $x \in H$, and $T W^{*}=W V^{*}$. It follows from Theorem 1 that T is a coisometry. Since T is paranormal, T is unitary by [2; Lemma 3]. The rest is clear by the remark after Theorem 1.

Remark. Our proof of Theorem 2 is a modification of the argument due to Okubo [1]. He proved Theorem 2 under the hypothesis that V is unitary.

Corollary 3. Let $T \in B(H)$ be a paranormal contraction. Let $T W=W V$, where $V \in B(H)$ is a coisometry and $W \in B(H)$ is any non-
zero operator. Then T has a nontrivial invariant subspace.
Proof. Let \mathfrak{M} be the closure of range W. If W does not have the dense range, \mathfrak{M} is a nontrivial invariant subspace of T. If W has the dense range, then T is unitary by Theorem 2 , and T has a nontrivial invariant subspace.
3. As an application of Theorems 1 and 2, we give an alternative proof to the following theorem.

Theorem 4. Let $T \in B(H)$ be a contraction. Let

$$
\mathfrak{M}=\left\{x \in H \mid\left\|T^{* n} x\right\| \rightarrow 0(n \rightarrow \infty)\right\} .
$$

If T is dominant or paranormal, then \mathfrak{M} is a reducing subspace for T such that $\left.T\right|_{\mathfrak{N} \perp}$ is unitary and $\left.T\right|_{\mathfrak{N}}$ is completely non-unitary (i.e., $\left.T\right|_{\mathfrak{N}}$ has no nontrivial reducing subspace on which $\left.T\right|_{\mathfrak{m}}$ is unitary).

This theorem was first proved for dominant operators in [4] and for paranormal operators in [1]. Note that the statements in [4; Theorem 2] contain a slip, because $\left\{x \in H \mid\left\|T^{* n} x\right\| \geqq \varepsilon_{x}>0\right\}$ is not a linear subspace of H.

To prove Theorem 4, we need the following simple lemma.
Lemma 5. Let $T \in B(H)$ be a contraction. Let $\mathfrak{M} \subset H$ be an invariant subspace for T. If $\left.T\right|_{\mathfrak{M}}$ is a coisometry, then \mathfrak{M} reduces T.

Proof. Let $S=\left.T\right|_{\mathfrak{m}}$, and let $x \in \mathfrak{M}$. Then, since S^{*} is isometric

$$
\begin{aligned}
\left\|S^{*} x-T^{*} x\right\|^{2} & =\left\|S^{*} x\right\|^{2}+\left\|T^{*} x\right\|^{2}-\left(S^{*} x, T^{*} x\right)-\left(T^{*} x, S^{*} x\right) \\
& \leqq\|x\|^{2}+\|x\|^{2}-\left(T S^{*} x, x\right)-\left(x, T S^{*} x\right) \\
& =2\|x\|^{2}-2\left\|S^{*} x\right\|^{2}=2\|x\|^{2}-2\|x\|^{2}=0
\end{aligned}
$$

Thus, $T^{*} x=\left(\left.T\right|_{\mathfrak{R}}\right)^{*} x \in \mathfrak{M}$ for all $x \in \mathfrak{M}$, which implies that \mathfrak{M} is invariant under T^{*}.

Proof of Theorem 4. Since $\|T\| \leqq 1$, the sequence $\left\{T^{n} T^{* n}\right\}$ converges strongly to a positive contraction. Let

$$
A=\left(\lim _{n \rightarrow \infty} T^{n} T^{* n}\right)^{1 / 2}
$$

Then, $\mathfrak{M}=\operatorname{ker} A$ and $T A^{2} T^{*}=A^{2}$. Since

$$
\left\|A T^{*} x\right\|^{2}=\left(T A^{2} T^{*} x, x\right)=\left(A^{2} x, x\right)=\|A x\|^{2}
$$

for all $x \in H$, there exists a partial isometry $W \in B(H)$ such that

$$
A T^{*}=W A,\left.\quad W\right|_{\Re}=0
$$

It is easy to see that \mathfrak{M}^{\perp} is invariant under T. Let us write the equa-
tion $A T^{*}=W A$ in matrix from on $H=\mathfrak{M} \oplus \mathfrak{M}^{\perp}$. Then

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & A_{1}
\end{array}\right]\left[\begin{array}{ll}
S_{1} & S_{2} \\
0 & S_{3}
\end{array}\right]=\left[\begin{array}{rr}
0 & 0 \\
0 & W_{1}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & A_{1}
\end{array}\right],
$$

whence $A_{1} S_{3}=W_{1} A_{1}$, or $S_{3}^{*} A_{1}=A_{1} W_{1}^{*}$. Note that $A_{1}=\left.A\right|_{\mathfrak{m} \downarrow}$ is injective and has a dense range, and $W_{1}=\left.W\right|_{\text {m }}$ is an isometry.

Case 1. Assume that T is dominant. Since S_{3}^{*} is dominant and W_{1}^{*} is coisometric, S_{3}^{*} and W_{1}^{*} are unitarily equivalent normal operators by [4; Theorem 1] and the remark after Theorem 1. Thus \mathfrak{M}^{\perp} reduces T by [3; Lemma 2]. Since W_{1} is normal and isometric, W_{1} is unitary and so is S_{3}.

Case 2. Assume that T is paranormal. Since $S_{3}^{*}=\left.T\right|_{m \perp}$ is paranormal, S_{3}^{*} is unitary by Theorem 2. Thus \mathfrak{M}^{\perp} reduces T by Lemma 5.

It is clear that $\left.T\right|_{\mathfrak{M}}$ is completely non-unitary in each case.
Remark. In Theorem 4, A is the projection onto \mathfrak{M}^{\perp}. This was proved in [1] for a paranormal contraction.

Corollary 6. Let $T \in B(H)$ be a dominant or paranormal contraction. If there exists a vector $x_{0} \in H$ such that $\left\|T^{* n} x_{0}\right\| \geqq \varepsilon>0$ for $n=$ 1, 2, 3, \cdots, then T has a non-trivial invariant subspace.

Proof. Let $\mathfrak{M}=\left\{x \in H \mid\left\|T^{* n} x\right\| \rightarrow 0(n \rightarrow \infty)\right\}$. By hypothesis, $\mathfrak{M} \neq H$ or $\mathfrak{M}^{\perp} \neq\{0\}$. By Theorem 4, $T=T_{1} \oplus U$, where $U=\left.T\right|_{\mathfrak{R} \perp}$ is unitary, and thus T has a non-trivial invariant subspace.

References

[1] K. Okubo, The unitary part of paranormal operators, Hokkaido Math. J. 6 (1977), 273-275.
[2] T. Saitô, On a theorem by S. M. Patel, Rev. Roumaine Math. pures et appl. 21 (1976), 1407-1409.
[3] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 25 (1976), 359-365.
[4] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatshefte für Math. 84 (1977), 143-153.
[5] T. Yoshino, On the unitary part of paranormal contractions, preprint.
$\begin{array}{lll}\text { Faculty of Education } & \text { and } & \text { College of General Education } \\ \text { Ryukyu University } & & \text { Tôhoku University } \\ \text { Naha, 903 Japan } & \text { Sendai, 980 Japan }\end{array}$

