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I. INTRODUCTION AND SURVEY OF RESULTS 

A linear, constant, finite dimensional dynamical system is thought of as being 

represented by a triple of matrices (F,G,H), where Fis an n x n matrix, Gan 

n x m matrix, and Han p x n matrix; i.e. there are m inputs, p outputs and the 

state space dimension is n. The dynamical system itself is 

(I. I) Fx + Gu, y Hx 

or, if one prefers discrete time systems 

(I. 2) 

A change of coordinates in state space changes the triple of matrices (F,G,H) 

into the triple (SFS-I, SG, HS- 1). Let DS denote the space of all triples 
2 

(F,G,H); i.e. DS is affine space of dimension np + n +nm. 

Then we have just defined an action of GLn on DS. This paper is concerned with 

the following type problems. To what extent does the quotient DS/GLn exist ? 

Does the quotient have a nice geometric structure ? Do there exist globally 

defined algebraic continuous canonical form~ for triples (F,G,H)? 

Most of the paper is concerned with the input aspect only, i.e. instead of 

studying triples (F,G,H) under the action (F,G,H) 5 = (SFS-I ,SG,HS- 1) we study 

pairs (F,G) under the action (F,G) 5 = (SFS- 1,SG). Let~ be the affine space 

of all pairs (F,G) and IScr the open subvariety of all completely reachable 

pairs. It turns out that the orbit space IScr/GLn has a nice geometric structure. 

In fact, it is a quasi-projective algebraic variety. Moreover this variety 

M = IS /GL turns out to be a fine moduli space for algebraic families of -m,n ~er n 
completely reachable pairs (suitably defined). I.e. the points of M 

-"ID,n 
correspond bijectively to equivalence classes of completely reachable pairs 

and there exists over M a universal family from which every family can be 
-m,n 

obtained (uniquely) by pullback. 
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However, if there are two or more inputs the underlying bundle of this universal 

family is non trivial and this ruins all chances of finding continuous algebraic 

canonical forms for .:!i_cr This in turn also implies the nonexistence of 

continuous algebraic canonical forms for IS, DScr and DS. There exist of course 

(many) discontinuous canonical forms. (To keep the non existence result in 

proper perspective: the Jordan canonical form for square matrices is also not 

continuous). 

In this paper we shall work over an arbitrary field k, which, for convenience, 

can be taken to be algebraically closed. However, all the constructions 

performed yield varieties defined over k itself. The category of varieties 

over k is denoted Schk. Much of the material which follows is also contained 

in [2] in one way or another. The emphasis and presentation are different, 

however; here we stress the underlying ideas rather than the algebraic 

geometric techniques. Also this paper contains additional new material, 

notably subsections 3.9, 6.1, 6.3, 7.1, 7.2, 7.3, 7.4, 7.5. 

2. GRASSMANN VARIETIES 

Let A denote the affine space of all n x s matrices, where s > n; i.e. A 
-n, s -n,s 

is affine space of dimension ns. Let Areg denote the (Zariski) open dense 
-n,s 

subvariety of ~n,s consisting of matrices of maximal rank. The group GLn acts 

(and Areg) by multiplication on the left: (S,A)~ SA. on A 
-n,s 

The orbit space 
-n,s re . . . 

A g/GL has a nice geometric structure; it is a smooth 
-n,s n 

projective algebraic variety of dimension n x (s-n), known as the Grassmann 

variety of n-planes in s-space, and denoted G . This interpretation arises 
-n,s 

as follows. Let A be an n x s matrix of rank n. The n rows of A span an 

n-dimensional subspace of affine space of dimension s, and, clearly, the rows 

of SA span the same subspace. 

The (canonical) projective embedding of G is obtained as follows. 
-n,s 

A selection a of {l, ..• ,s} is a subset of size n. For each selection a and 

n x s matrix A, let Aa be the submatrix· of A consisting of those columns of A 

which are indexed by an element of a. Let N = (n) - I the number of selections s , 

minus I. We now define a morphism from G to projective N-space 
-n,s 

(2. I) 

where det denotes determinant. This is an embedding and exhibits Qn,s as 

a closed subvariety of !'._N 

Choose a selection a. The open subvariety of Qn,s where det(Aa) f 0 is isomorphic 

to affine n x (s-n) space: a point x E Qn,s corresponds to the unique n x s 

matrix Ax for which (i) (Ax)a = In, the n x n unit matrix and (ii) the rows of 



Ax span the linear subspace x. 

For further details concerning G , 
-n,s 

defining G as a closed subvariety 
-n,s 
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e.g. for a description of the equations 
N of! cf. e.g. [4]. For more details concerning 

G from the differential topological point of view cf. e.g. [3]. 
-n,s 

3. THE COARSE MODULI SPACE M 
-m,n 

Let IS denote the affine space of all pairs of matrices (F,G). The group 
-1 

GLn acts on IS by (F,G) + (SFS ,SG). 

3. I. The M:>rphism ! and Completely Reachable :Pairs. 

We define the morphism R from IS to ~n,(n+l)m by 

(3.1.1) R(F,G) (G FG ... FnG) 

The pair (F,G) is said to be completely reachable if R(F,G) has rank n. Let 

~r denote the Zariski open subvariety of IS consisting of the completely 

reachable pairs. It follows that R induces a morphism 

(3.1.2) R: IS + Areg 
-er n, (n+l )m 

Note that R is a GLn-invariant morphism. I.e. 

(3. I. 3) R(SFS- 1,SG) SR(F,G) 

3.2. Nice Selections and Successor Selections. 

In section 2 we have seen that selections play on important role in the 

description of the quotient A /GL . In view of (3.1.3) it is to be expected 
-n,s n 

that they will also be important in the case of GLn acting on ~· Certain 

selections of the (n+l)m columns of the R(F,G) play a special role. To define 

them we number the (n+l)m columns by pairs of integers (lexicographically 

ordered) as follows 

01, ••. , Om; 11, ... , Im; ••• nl, ... , nm 

A selection a is called nice if (:iJ) Ea • (i!j) Ea for all i' < i. 

Given a nice selection a its successor selections are obtained as follows: take ----
any (i,j) E {01, ... ,nm} such that (i,j) ~a but (i!j) Ea for all i' <i. Now 

take away from a U (i,j) any of the original elements of a. The result is a 

successor selection. Note that a successor selection may be nice but need not be. 

Example, take m = 4, n = 6 
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* 
x x x 0,1 0,4 

x 
* 

x 

x * 

* 

6, l 6,4 

The crosses constitute a nice selection. Its successor selections are obtained 

by adding one of the stars and deleting one of the crosses. 

3.3. Lemma. 

If (F,G) is a completely reachable pair then there is a nice selection a such 

that det(R(F,G)a) # 0. 

3.4. Successor Indices. 

Leta be a nice selection. The successor indices of a are those elements 

(i,j) € {01, ... ,nm} such that (i!j) Ea for all i' < i. I.e. in the example 

of subsection 3.2 the *'s mark the successor indices of the nice selection 

given by the x's. 

We now define an algebraic morphism w :Amn ~ IS as follows. Let o(a) be the 
et - -

set of successor indices of the nice selection a. The subset a U o(a) has 

precisely n + m elements. Give this subset the ordering induced by the 

(lexicographic) ordering of {01, ••• ,nm}. Write an element x E Amn as an array 

of m columns of length n; let xi denote the i-th column in this array. We now 

assign to each element (i,j) of et U o(a) a column c(i,j) of length n as follows: 

if (i' j) is the Jl.-th element of a then c(i,j) = eR., the R.-th unit vector. If 

(i ,j) is the £.-th element of cr (a) then c(' ') = XR.' the R..-th column of x. 
l. .J 

Writing G. (resp. Fi) for the i-th column of G (resp. F) we now define wa by 
l. 

w(J. (x) (F ,G), where 

G. column assigned to i-th element of a U o(a) 
l. 

F. column assigned to (m+i)-th element of a U o(a). 
l. 

Thus in the example of subsection 3.2 we have 

Gl = xl' G2 = el, G3 = e2, G4 = e3 

FI e4' F2 X2' F3 = es, F4 = e6, F = 
5 X3' F6 = X4 

Note that if wa(x) (F,G), then R(F,G)a =unit matrix, and if (i,j) is the Jl.-th 

element of o (a) then R(F ,G) (. . ) , the ( i ,j )-th column of R(F, G), is equal to x0 , 

l. 'J x. 

the Jl.-th column of x. (This is easy to check; if (i,j) € a U o(a) is the (m+Jl.)-th 

element of a U o(a) then (i-1,j) is the R.-th element of a). 



52 

3.5. Lemma. 
reg 

R~a : !::_mn + An,(n+l)m is an embedding which as image the subvariety of ~~~n+l)m 

consisting of the matrices of the form R(F,G) for which R(F,G)a =In, then x n 

unit matrix. 

Proof. Follows from 3.4 above. 

3.6. Lemma. 

Let a be a nice selection. Denote with Ua the subvariety of ~r consisting of 

all completely reachable pairs (F,G) for which det(R(F,G)a) # O. 

Then U ~ GL x Anm. 
a n 

Proof. Let (F,G) EU . There is a unique invertible matrix S such that 
-! a 

(S R(F,G)) = I , then x n unit matrix. In fact S = R(F,G)a. Further 

s- 1R(F,G) =aR(S-YFS,S-IG). Now apply lemma 3.5. 

3.7. The Coarse Moduli Space M 
~- -~~- -~~- -~~ -m,n 

It follows directly from lemma 3.6 that the quotients Ua/GLn exist for all nice 

selections a. (Note also that Ua is GLn-invariant). To construct the quotient 

~r/GLn it therefore suffices to patch the various affine pieces 

V = U /GL ~ Amn together. This is done as follows: let a,B be two nice 
a a n 

selections. Let 

The open subvarieties VaB of Va and v6a of v8 are now identified by means of 

the isomorphisms ~aB : VaB + v8a defined by 

where x' is the unique point of v8a such that 

This is a well defined isomorphism in view of lemma 3.5. Patching together all 

the Va for all nice selections a gives us, in view of lemma 3.3, a prescheme 

M of which the points correspond bijectively to the orbits of GL in IS 
-m,n n -er 
This does not yet show that ~.n is a variety. However, using the same general 

techniques it is not difficult to write down equations for M 
-m,n 
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More precisely: the assignment: orbit(F,G) + (det(R(F,G) ) E G ( I) c EN, 
y y -n, n+ m -

where y runs through all selections,embeds ~.n in Gn,(n+l)m C!_N. One now writes 

down a set of homogeneous equations. 

(3. 7. I) 

(one equation for each pair: (nice selection a, successor selection of a)). The 

variety M as a subvariety of PN (or G ( I) ) then consists of those points 
-m,n -n, n+ m 

(x) satisfying the equations (3.6.1) such that moreover for at least one nice y y 

selection a, x f. 0. Thus M is a quasi projective variety. Cf. [2] for 
a -m,n 

more details. (Note also that the affine pieces +patching data description 

of M given above is compatible with the affine pieces + patching data 
-m,n 

description of G ( I) indicated in section 2. 
"4:l, n+ m 

3.8. Example. 

!!2 2 is obtained 
' 4 

to! . Let va,v 13 ,vy 

by patching together three affine pieces Va,v 13 ,vy, all isomorphic 

be the affine pieces corresponding respectively to the 

nice selections a = {01,02}, 13 = {01,ll} • y = {02,12}. 

Take coordinates (a 1,a2,a3,a4) for Va, (b 1,b2,b3,b4) for v13 , (c1,c2 ,c3,c4) for 

VY arranged in columns (a 1,a2) and (a3,a4), etc ...• 

Then we see that 

Val3 {a E Vaia3 f. O} 

v13 a {b E v13 ib2 f. o} 

and the identification isomorphism is given by 

bi 
-1 

bz 
-I 

-ala3 a3 

b3 a2a3 - ala4 b4 al + a4 

Further 

v {a E Vaia2 f. 0} 
ay 

v {c E \I c2 f. O} 
ya 

with identifications 

-1 
cl -a2 a4 c = 

3 a2a3 -. ala4 

-I 
c2 a2 c4 = al + a4 

And finally 
{b E v13 lbi + 

2 
VSy b1bzb4 - b2b3 f. 0} 

2 2 

\13 {c E \I c1 + clc2c4 - c2c3 + O} 



with identifications 

3.9. Warning. 

We have seen that IS /GL = M . 
-er· n -m,n 
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Now DS = IS 
--er --er 

x Apn and the action. 

on DS is such its restriction to IS 
-er --er 

is faithfull. It does not follov.i 

this that DS /GL = M x Apn as is incorrectly claimed in subsection. 
-er n -m,n -

of [2]. (This would be the case if IS were isomorphic to M x GLn; t 
-er -m,n 

however, is not true if m .::_ 2). The following example may serve to illu.s 

the difficulty involved. 

Let GL 1 act on A2 x A1 as follows 

A(xl,x2,y) = (Axl,AXz,AY) 

Let A2 = {x E A2 jx1 ~ 0 or x2 ~ O}. The quotients A2 /GL 1 and 
- reg - - reg 

CA;eg x AI) /GL 1 both exist and are respectively equal to P1, the project 

line, andf_~{pt}, the projective plane minus the point (0,0,1). Thus we 

(A2 /GL ) x AI = PI x AI 
-reg l -

(A;eg~I)/GLI = !'._2..__{pt} 

But the algebraic varieties R_2'{pt} and £_1 x A1 are ~ isomorphic. 

Remark. It is true that the geometric quotient DScr/GLn exists and it i.s 

quasi-projective variety as we expect to show in a subsequent note. 

4. FAMILIES OF DYNAMICAL SYSTEMS 

The next topic we take up is that of a family of input pairs (F,G) pararnt 

by a variety S. The notion of a (locally trivial) vectorbundle is assum~< 

be known (cf. e.g. [I] Ch.2 for the algebraic case, or [3] for the topol..c 

version). 

4.1. Families of Completely Reachable Pairs over~ Variety. 

As a first primitive approximation of a family of completely reachable :i;:>c 

parametrized by a variety S we could define a family over S to be a mor:i;:>l 

S +~er· This turns out not to be suffiently general. Cf. 6.2 below. A D 

general concept is: a family L of pairs over a variety S consists of 

(i) an n-vectorbundle E over S 

(ii) a vectorbundle endomorphism F: E + E 

(iii) m sections g1, ..• ,gm: S + E 
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Given a point s E S we have over s 

(i)s the fibre E(s) which is a vectorspace of dimension n 

(ii)s a vectorspace endomorphism F(s): E(s) + E(s) 

(iii)s m vectors g 1(s), •.. , ~(s) in E(s) 

i.e. after choosing a basis in E(s) we have a pair (F,G). The family E is said 

to be completely reachable if these induced pairs over the points of S are all 

completely reachable, i.e. if the vectors 

i 
F(s) g.(s), i =I, .•• , n; j 

J 

span all of E(s) for all s E S. 

I, .. ., m 

A family in the sense of a morphism S + IScr corresponds to a family l: over S 

for which the bundle E is isomorphic to S x !_n, the trivial n-vectorbundle over S. 

Two families E, E' over S are said to be isomorphic if there exists a 

vectorbundle isomorphism ~: E + E' such that ~F = F'~ and such that ~gi = gi· 

Remark. There is another possible definition of families of input pairs; however, 

this other definition is not "rigid" enough for "fine moduli scheme" purposes. 

Cf. [2] for details. 

4.2. The Functor: Isomorphism Classes.£!. Families of Input Pairs. 

Let l: be a family of input pairs over a variety S, and let f: T + S be a 

morphism of varieties. Let l: = (E,F,g 1, ••• ,~).We now define an induced 
I 

family f'l: 9ver T by pulling everything back along f. I.e. 
f f f T I f I 

f'E = (f'E,f'F,f'g 1, ••• ,f'g ), where f.E is the induced bundle over T, f'F the 
m I 

induced endomorphism over T and if we identify (f'E)(t) with E(f(t)) then 
I I 

(f"gi)(t) = gi(f(t)). (The bundle f'E has as its fibre overt the fibre of E over 
I 

f(t); these fibres are fitted together in the obvious way). The family f'l: 

is completely reachable if (and only if) the family E is completely reachable. 

We now define a functor°f : Schk +Sets from varieties over k to the category 
m,n 

of sets as follows. 

°F (S) 
m,n 

°Fm n (f) 
' 

set of isomorphism classes of complete~y reachable families of 

pairs with m inputs and state space dimension n 
I 

'f (S) + °f'. (T) is the mapping induced by l: ..+ f'l: if 
m.,n m,n 

f: T + S is a morphism in Schk. 

5. THE FINE MODULI SCHEME M 
-m,n 

5.1. M is a Coarse Moduli Scheme. -m,n ~ - ~~~ ~~~ ~~~ 

Let Ebe a completely reachable family of pairs over a variety S. Then for every 

s E S we have (after choosing a basis in E(s)) a completely reachable pair 

(F(s) ,G(s)). 
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The pair (F(s),G(s)) is unique modulo a choice of basis in E(s) and hence 

defines a unique point of M . Thus we find a continuous algebraic map 
-m,n 

f~ : S + M • This map f~ only depends on the isomorphism class of E. It turns 
" -m,n " 

out that we have defined a morphism of functors <I>: <f + Schk( ,M-m n), 
m,n , 

<l>(S)(E) = (f : S + M ). Note also that <l>(Spec(k)) is an isomorphism. Finally 
l: -m,n 

one can prove that every functor morphism~:~ + Schk( ,M) into a 
m,n -- -

representable functor factors uniquely through <I>, via a morphism h: M + M. -m,n 

I.e. M is a 
--m,n 

coarse moduli scheme. (Cf. [2], [5] or [6) for a definition of 

this notion). 

In fact, more is true: M is a fine moduli scheme, which by definition means 
-m,n 

that the functor morphism <I> above is an isomorphism of functors. Or in other 

words: there exists a universal completely reachable family Eu over M such that 
--m,n 

for every family i:: over a variety S there is a unique morphism f: S + M 
-m,n 

such that f!Eu = i::. The next thing to do is to construct this universal family 

i::u. 

5.2. Construction of the Universal Family Eu. 

Let VN = Amn be the affine piece of M corresponding to the nice selection CL. 
...... -m,n 

Over VN we take the trivial bundle E = V x An. Let w : V + IS be the 
~ CL CL - CL CL --er 

morphism defined in subsection 3.4. Write WCL(x) = (FCL(x),GCL(x)). We now define 

the bundle endomorphism FCL ECL + ECL by the formula Fa(x,v) = (x,Fa(x)v) and 

the sections gla' ..• , gmCL VCL + ECL are defined by giCL(x) = (x,i-th column of 

GCL(x)). 

We now construct the universal family Eu by patching together the partial 

families (E ,F ,g 1 , ••• ,g ). This is done as follows. Let E = E jv , 
CL CL CL IDCL CLS a aS 

E0 = E0 jV0 and let~ 0 : V + V0 be the isomorphism constructed in 3.7 above . 
.,CL " .,CL CL., CLS .,CL 

We now define the isomorphism ~ : E + E by the formula as CLS Sa 

(5. 2. I) 

It is easy to check that these isomorphisms are compatible with the endomorphisms 

FN,F 0 and the sections g. ,g. , i = I, ... , m1 so that we find a family 
~ " I.et is 
u u u u u ul 

E = (E ,F ,g1, ... ,~) such that E V = (E ,F ,g 1 , ..• ,g ) and hence 
• UCL CL CL CL ffiCL 

such that 

the point of ~.n corresponding to E (s) is precisely s. I.e. f 
i:u 

the morphism induced by the family i::u over M (cf. 5.1 above), is 

morphism. 
-m,n 

5.3. Theorem. 

M is a fine moduli space with universal family i::u. -m,n 

(For a proof cf. [2]) 

M + M , 
-m,n -m,n 

the identity 
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5.4. Remark. 

Let E be the canonical n-bundle over the Grassmannian G ( 1) , i.e. 
-n, n+ m 

{( (n+I)ml } E = x,v) E G ( +I) x A v E x , where x is interpreted as an 
. . -n! n m - (n+l)m 

n-d1mens1onal linear subspace of A 

embedding induced by the GLn-invariant 

Then R!E = Eu the underlying bundle of 

Let R: M + G ( l) be the 
-m,n -n, n+ m 

embedding R: IS + Areg( +l) • 
-er -n0 n m 

the universal family E over M . 
-m,n 

6. CANONICAL FORMS 

In this section we discuss the existence and nonexistence of canonical forms. 

6.1. Triviality of Eu and the Existence of Canonical Forms. 

Suppose that Eu, the underlying bundle of the universal family Eu, were trivial; 

i.e. there is an isomorphism x: Eu + M x An. Let e.: M + M x An be the 
-m,n J. -m,n --m,n 

section ei(x) = (x,ei) where ei is the i-th unit (column) vector in An. If there 

were such an isomorphism x we would have a canonical basis, viz. 
-1 -1 u u {x e 1(x), ... ,x en(x)}, in every fibre E (x) of E which varies continuously 

with x. Let (F (x),G (x)) be the matrices corresponding to Eu(x) with respect 
x x 

to this basis. Let rr : IS + M be the natural projection. Then 
-er -m,n 

(F ,G) i-+ rr (F ,G) = x t-+ (F (x) ,G (x)) 
x x 

would be a globally defined continuous algebraic canonical form on IS 
-er 

Inversely, suppose there were a globally defined continuous 

form on IS , say (F,G)~ (F,G). We can now define a family 
-er 

algebraic canonical 

l:c over M as 
=°1,n 

c CCC c c nc 
follows, E = (E ,F ,g1, ••• ,g ), where E = M x A, F (x,v) = (x,F v), 

m -m,n - x 

g:(x) = (x,i-th column of G ) where (F ,G ) is any pair such that rr(F ,G ) 
l x x x x x 

x. 

Because Eu is universal there is a unique morphism f: M + M such that 
--m,n -m,n 

f!Eu =Ee. But because rr(F ,G) = x, f is the identity morphism (cf. section 5.1), 
x x 

which would imply that Ee~ Eu, i.e. that Eu is trivial. 

We have therefore proved 

Theorem. The existence of a globally defined, continuous algebraic canonical 

form for IS is equivalent to the triviality of Eu, the underlying bundle of 
-er 

the universal family Eu over M 
-m,n 

6.2. Nonexistence of Canonical Forms for IS 
~~~~- -~- ~- -er 

Let i: G ( I) + PN be the canonical embedding of the Grassmannian into 
-n, n+ m -

projective space (cf. section 2). Let L be the canonical line bundle over !'._N, 

i.e. L(x) = the affine line which x represents. Let E be the canonical n-bundle 
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over Qn,(n+l)m· Then 

I 

(6. 2. I) i 0 L 

where R denotes the n-th exterior product. 

Let R: M + G ( I) be the embedding induced by R. By 5.4 we have that 
-m,n -n, n+ m 

_, l ' 

R"E = Eu. Hence REu ~ R0 i"L, which is a very ample 

of Reu + M separate the points of M (cf. [I] 
-m,n -m,n 

linebundle. Hence the sections 

Ch.II). Hence if Eu were 

trivial, then ~Eu would be the trivial line bundle and sections of the trivial 

+ A1• I.e. if Eu were line bundle correspond bijectively to morphisms M 
-m,n 

trivial then the morphisms M + A1 would separate points. It is easily 
-m,n -

seen 

(cf. [2] for details) from the affine pieces+ 

that there are not enough morphisms M + A 1 

patching data description of ~m n 

to do this when m > 2. Thus Eu ' 
-m,n -

is not trivial and there does not exist a continuous canonical form for IS if 
--er 

m > 2. The nontriviality of Eu justifies the definition of family which we have 

used. 

6.3. Nonexistence of Canonical Forms (continued) 

There is an easier way to prove the nonexistence of canonical forms for ~er 

Suppose there existed a continuous canonical form fro IS , say (F,G) + (F,G) 
2 I -er 

then we haven morphisms a .. : M +A defined as follows 
l.J -m,n 

a .. (x) = (i,j)-th entry of (F ,G ), 
y x x 

where (Fx,Gx) is any pair such that 

n(Fx,Gx) = x. These morphisms would separate the points 

be done by morphisms to ~l if m .?:._ 2, hence a continuous 

of M . But this cannot 
-m,n 

canonical form does not 

exist for IS if m > 2. A fortiori there does not exist a continuous canonical 
-er 

form for IS if m > 2. 

There is a GLn-invariant embedding ~er+ ~r' viz. (F,G) + (F,G,O) where 0 

denotes an appropriate zero matrix. Hence there also does not exist a continuous 

canonical form for DScr and DS if m > 2. If m = I there does exist a global 

continuous canonical form for .!£.er and DScr Summing up, we have 

6.4. Theorem. 

If m =I, there is a globally defined continuous algebraic canonical form for 

IS and DS 
-er -er 

If m .?:._ 2, there is no globally defined canonical form for~. Iser' DS, DScr 

7. CONCLUDING REMARKS AND OPEN QUESTIONS. 

7.1. The moduli space M is not complete (for all m,n); i.e. it is not a 
rrn·n 

closed subvariety of P (or G ( l) ). Let M be its closure. E.g. F1 -n, n+ m -m,n 
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F. iei' i 2, . . . ' n; Gl = tne + e2+ + e G. = 0, i = 2, m . Then 1. I n' 1. 
... ' 

I 

n-1 I n 
t 0 0 t 0 0 I I 0 0 

l 

0 0 2 0 0 I 2n 0 0 

R(F,G) 
I 

I 
I n 

0 0 ' n 0 0 In 0 0 
I I 
I 

which as t goes to 0 specializes to an element of Areg which is not of the 
-n,(n+l)m 

form R(F' ,G') for any (F',G') E IS (in view of lemma 3.3) and which hence 
-er 

gives rise to a point in M which is not in M 
-m,n -m,n 

The question arises whether it is possible to interpret the missing points, i.e. 

the points of M '- M ,as (generalized?) dynamical systems? 
-m,n -m,n 

7.2. The group GL of basis changes in injllt space acts on M If m < n, then 
m -ro,n 

there is an open dense subset U of M such that the stabilizer of this action 
. -m,n 

is GL 1 (diagonally embedded in GLm) for all x E U. (So what we really have is 

an action of PGL 1 on M ). By general theorems (cf. [5]) we then know that a 
m- -ill,n 

geometric quotient V/GL exists for a suitable dense open subset V of M . 
m -m,n 

Problem: calculate the maximal V and describe the quotient V/GLm. In particular 

(in view of canonical forms) one would like to know whether the points of 

V/GLm can be separated by morphisms to A 1 • 

7. 3. Let V be the subvariety of M corresponding to the nice selection a. • 
a. 411,n -I 

There is a global continuous algebraic canonical form for TI Va, where 

TI : IS + M is the natural projection, viz (F,G) + ~a.TI(F,G), where ~a. 
-er -m,n 

is the morphism defined in 3.4 above. The V are also maximal subvarieties 
-I a. 

for which a canonical form exists for TI V 

of M 
-m,n 

a 

for which a canonical form exists for 

However, not every subvariety V 

TI- 1v, is contained in one of the Va., 

a a nice selection. E.g. let 13 be a not nice selection and 

W = {(F,G) EIS jdet R(F,G) 13 f 0}. Then there is a canonical form on w13 • 
S -er 

(NB. w13 can be nonempty as the family) 

shows. This family also shows that w13 need not be contained in any of the Va, a 

a nice selection. The following could be true, let A be a linear form in the 

expressions det(R(F,G) 13 ), where S runs through all selections. Let WA be the 

subvariety of ~er where !< is f o. If V c IS is a subvariety for which a 
-er 

canonical form exists, then V is contained in one of the WA. 
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7.4. What kind of morphisms between the various M does the partial 
-m,n 

realization algorithm induce? This could be interesting also because of 7.1. 

7.5. We have seen in theorem 6.4 that there is no canonical form on DS or DS 
-er 

if m .::_ 2. Let DS be the subspace of DS consisting of completely 
-cr,co 

reachable and completely observable linear dynamical systems. The nonexistence 

of a canonical form for ~er does not imply the nonexistence of a canonical 

form for DS , and, a priori, a canonical form for DS could exist 
~cr,co --c.r,co 

also for m .::_ 2. Indeed, such a canonical form does exist if p = I 

(p is the number of outputs), n and m arbitrary. The geometric quotient 

DS /GL does exist, cf. also section 3.9 above, but in this case there 
-cr,co n 
also exists an embedding of DS /GL in an affine space, so that the 

-cr,co n 
argument of 6.3 above cannot be used to prove nonexistence of canonical forms. 

Possibly one shall have to use results like 6.1 to decide whether DS 
-cr,co 

admits a global continuous algebraic canonical form or not. 
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