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Abstract

The development of coherent missing data models to account for nonmonotone missing at random 

(MAR) data by inverse probability weighting (IPW) remains to date largely unresolved. As a 

consequence, IPW has essentially been restricted for use only in monotone missing data settings. 

We propose a class of models for nonmonotone missing data mechanisms that spans the MAR 

model, while allowing the underlying full data law to remain unrestricted. For parametric 

specifications within the proposed class, we introduce an unconstrained maximum likelihood 

estimator for estimating the missing data probabilities which can be easily implemented using 

existing software. To circumvent potential convergence issues with this procedure, we also 

introduce a Bayesian constrained approach to estimate the missing data process which is 

guaranteed to yield inferences that respect all model restrictions. The efficiency of the standard 

IPW estimator is improved by incorporating information from incomplete cases through an 

augmented estimating equation which is optimal within a large class of estimating equations. We 

investigate the finite-sample properties of the proposed estimators in a simulation study and 

illustrate the new methodology in an application evaluating key correlates of preterm delivery for 

infants born to HIV infected mothers in Botswana, Africa.
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1 INTRODUCTION

Missing data is a major complication which occurs frequently in empirical research. Non-

response in sample surveys, dropout or non-compliance in clinical trials and data excision by 

error or to protect confidentiality are but a few examples of ways in which full data is 

unavailable and our ability to make accurate inferences may be compromised. Missingness 

could also be introduced into a study by design, e.g. multi-stage sampling plans in order to 

reduce the cost associated with measurements for all subjects. In many practical situations, 

the missing data pattern is non-monotone, that is, there is no nested pattern of missingness 

such that observing variable Xk implies that variable Xj is also observed, for any j < k. Non-

monotone missing data patterns may occur, for instance, when individuals who dropped out 

of a longitudinal study re-enter at later time points. The missing data process is said to be 
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missing-completely-at-random (MCAR) if it is independent of both observed and 

unobserved variables in the full data, and missing-at-random (MAR) if, conditional on the 

observed variables, the process is independent of the unobserved ones (Little and Rubin 

2002). A missing data process which is neither MCAR nor MAR is said to be missing-not-

at-random (MNAR).

While complete-case (CC) analysis is the easiest to implement and often employed in 

practice, the method is generally known to produce biased estimates when the missingness 

mechanism is not MCAR (Little and Rubin 2002), although in regression settings, a CC 

analysis remains unbiased provided the missingness process does not depend on the 

outcome given observed covariates included in the regression model (Little and Rubin 2002; 

Little and Zhang 2011). Other commonly used procedures include last-observation-carried-

forward analysis most commonly used in longitudinal studies and other single imputation 

techniques. However, such ad-hoc approaches typically provide valid inferences only under 

restrictive and often unrealistic conditions (Molengerghs et al. 2004; Siddiqui and Ali 1998; 

Little and Rubin 2002). The development of principled methods to appropriately account for 

missing data has been an area of active and on-going research. The assumptions of MAR or 

MCAR, together with separability of parameters governing the missingness mechanism and 

complete data model, provide sufficient conditions for valid inferences based on the 

observed data likelihood (Little and Rubin 2002). Multiple Imputation (MI) is also another 

popular technique to account for missing data since its introduction in the context of survey 

studies (Rubin 1977), and is widely utilized through its incorporation into mainstream 

statistical software (Horton and Lipsitz 2001).

Inverse probability weighting (IPW) (Horvitz and Thompson 1952; Little and Rubin 2002; 

Robins et al. 1994; van der Laan and Robins 2003; Tsiatis 2006) creates a pseudo-

population of complete cases in which selection bias due to missing data is removed. IPW 

estimation does not require specification of the full-data likelihood, but the missingness 

mechanism needs to be modeled. The development of coherent models and practical 

estimation procedures for the missingness probabilities of nonmonotone missing data is 

challenging, even under the assumption that the data is MAR. To the best of our knowledge, 

and as discussed in the seminal missing data book of Tsiatis (2006), there currently is not 

available, a general approach to model an arbitrary nonmonotone missing data generating 

process strictly imposing MAR only. This represents an important gap in the missing data 

literature, which has essentially restricted the use of inverse probability weighted estimation 

to monotone missing data settings.

In this paper, we propose a class of models for arbitrary nonmonotone MAR data patterns. 

In order to estimate the missingness mechanism required for IPW estimation, we present 

two approaches: unconstrained maximum likelihood estimation (UMLE) and constrained 

Bayesian estimation (CBE). The first approach is easily implemented in standard software, 

say using existing procedures in SAS or R. However, despite this appealing feature, as we 

illustrate in the simulation studies, UMLE has a major drawback, in that it is not guaranteed 

to converge in finite sample, even if all regression models are correctly specified. This 

problematic feature of the approach is mainly due to the fact that it fails to impose certain 

natural restrictions of the model. In addition to UMLE, we introduce a CBE approach 
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(Gelfand et al. 1992) which largely resolves any convergence difficulty and is easily 

implemented in standard Bayesian software packages. As IPW may be inefficient in 

practice, we improve its asymptotic efficiency by recovering available information from 

incomplete cases through implementing an augmented IPW (AIPW) estimator which is 

optimal within a very large class of AIPW estimators. The approach, which combines the 

proposed estimators of the nonmonotone missing data process with ideas originating from 

the seminal work of Robins et al. (1994) and further developed by van der Laan and Robins 

(2003) and Tsiatis (2006), holds appeal in its relative simplicity, and in the fact that it 

leverages available information from incomplete cases without having to specify a model of 

the full data distribution. We present a simulation study to investigate the finite-sample 

properties of both constrained and unconstrained inferences in the context of logistic 

regression with nonmonotone missing outcome and covariates, followed by an analysis of 

preterm delivery on a cohort of women in Botswana to illustrate an application of the 

methods.

2 NOTATION AND ASSUMPTIONS

Let L = (L1, …, LK)′ be a random K-vector representing the complete data. Let R be the 

scalar random variable encoding the different missing data patterns. For each of n 
individuals, we observe an independently and identically distributed realization of (R, L(R)). 

For missing data pattern R = m, where 1 ≤ m ≤ 2K − 1, we only observe L(m) ⊆ L. We 

reserve R = 1 to denote complete cases. Let ℙn denote the empirical measure 

ℙn f (O) = n−1∑i f (Oi).

For non-parametric identification of the missing data model, we assume that the missing 

data process is MAR (Robins et al. 1994)

Pr R = m L = Pr R = m L(m) , 1 ≤ m ≤ 2K (1)

so that the conditional probability of having missing data pattern m, which we denote by 

πm(L(m)), depends only on the observed variables for that pattern. Throughout, we also 

make the following positivity assumption

π1(L) > σ > 0 with probability 1, (2)

for a fixed positive constant σ, that is, the probability of being a complete case is bounded 

away from zero. Assumption (2) is necessary for identification of the full data law and 

smooth functionals of the latter (Robins et al. 1994), and ensures finite asymptotic variance 

of the IPW and AIPW estimators.

A key implication of the MAR assumption is that the missing data process is non-

parametrically identified. This also implies that if separate parameters index the missing data 

mechanism and the full data distribution, efficient estimation of the parameters of the 
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missing data process can be obtained by maximizing its partial likelihood, ignoring the part 

of the likelihood corresponding to the full data.

3 ESTIMATION OF MISSING DATA MECHANISM

Although the missingness mechanism is in principle nonparametrically identified under 

assumptions (1) and (2), in practice estimation typically entails specifying parametric 

models as dictated by the curse of dimensionality, since L is typically of moderate to high 

dimension (Robins and Ritov 1997). To motivate our discussion of nonmonotone missing 

data models, we briefly review strategies for modeling some common missing data 

structures. In the simple case of two missing data patterns, i.e. R = 1, 2, the probability of 

being a complete case is 1−π2 (L(2)); and the parameters γ of a model π2(L(2);γ) can be 

estimated by maximizing the likelihood function

∏
i

1 − π2(L(2); γ)
𝟙(Ri = 1)

π2(L(2); γ)
1 − 𝟙(Ri = 1)

.

The two-missing-data-pattern scenario arises in familiar settings such as in regression 

analysis with incomplete data only on the outcome for a subset of the sample.

When M > 2 the missing data is said to be monotone if for some ordering of the variables in 

L, the kth variable is observed only if the k − 1th variable was observed, and therefore one 

can sort the missing data patterns in such a way that L(m+1) ⊂ L(m) for m = 1, …, M − 1. 

Then the missing data mechanism can be modeled using a discrete hazard function (Robins 

et al. 1994; Tsiatis 2006) by defining

λm(L(m)) = Pr(R = m R ≤ m, L) m ≠ 1 .
1, m = 1 .

The discrete hazard λm(·) is a function of L(m) only since

Pr(R = m L)
Pr(R ≤ m L) =

πm(L(m))

1 − ∑ j > mπ j(L( j))

and L(j) ⊂ L(m) for all j > m by the monotone missing data structure. Defining

Km(L(m)) = Pr(R < m |L) = ∏
j ≥ m

1 − λ j(L( j)) , m ≠ 1,

the conditional probability for each missing data pattern is

πm(L(m)) =
Km + 1(L(m + 1))λm(L(m)), m < M .

λm(L(m)), m = M .

and in particular the complete case probability is
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π1(L) = K2(L(2)) = Pr(R < 2|L) = ∏
j ≥ 2

1 − λ j(L( j))

To estimate the hazard functions λm(L(m)), in practice we may run a series of logistic 

regressions of the indicator variable 𝟙(R = m) on L(m) among individuals with R ≤ m, m = 2, 

…, M. Alternatively, one may pool information by allowing λm(L(m)) to share parameters 

across m.

3.1 The failure of standard polytomous regression

For nonmonotone missing data patterns, the nesting of patterns L(m+1) ⊂ L(m) is no longer 

available, and building coherent models for the conditional probabilities of the various 

missing data patterns is challenging even under assumptions (1) and (2) (Robins et al. 1994; 

Robins and Gill 1997; Tsiatis 2006). A straightforward approach to model πm(L(m)) using 

standard polytomous regression for the multinomial missing data process will often have the 

unintended consequence of imposing more restrictive conditions than what MAR 

assumption (1) strictly entails (Robins and Gill 1997), which we illustrate using an example 

of a general bivariate pattern (Little and Rubin 2002, pp. 18–19). Suppose the full data is 

bivariate L = (L1, L2) and one encodes the missing data patterns as follows: R = 1 if L is 

observed; R = 2 if one only observes L(2) = L1; R = 3 if one only observes L(3) = L2; and R = 

4 if neither variable is observed. A standard polytomous logistic regression for R 
corresponds to

Pr{R = m |L} =
exp(γ0m + γ1mL1 + γ2mL2)

1 + ∑k = 2
4 exp(γ0k + γ1kL1 + γ2kL2)

, m = 2, 3, 4. (3)

By the MAR assumption, since for R = 4 neither variable is observed, the probability Pr{R = 

4|L} depends on neither L1 nor L2 so that γ1j = γ2j = 0 for j = 2, 3, 4. Therefore assuming 

model (3) under MAR implies MCAR. In general, it is shown in appendix A.1 using a 

similar argument that the missing data pattern probabilities modeled using polytomous 

logistic regression can at most depend on the intersection of the sets of observed variables 

L(m), m = 2, 3, …, M, which is strictly stronger than the MAR assumption (1). This suggests 

that standard polytomous regression is ill-suited as modeling strategy for nonmonotone 

missing data process under MAR.

As a remedy, Robins and Gill proposed a large class of models for the missing data 

mechanism, which they call the randomised monotone missingness (RMM) processes, that 

are guaranteed to be MAR for a non-monotone missing data mechanism without necessarily 

being MCAR (Robins and Gill 1997). This class of models does not span the space of all 

MAR models and therefore it is indeed possible to test whether the proposed class of models 

includes the true missing data mechanism. However, estimation of the missing data 

mechanism within this class is complex and computationally demanding, even for small to 

moderate sample size and number of different missing data patterns, and no software is 

currently available to implement the approach, which has limited its widespread adoption.
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3.2 Proposed nonmonotone missing data model

Our approach involves modelling the conditional probability for each missing data pattern 

separately as

Pr R = m L = πm(L(m)), m = 2, …, M . (4)

The probability of observing complete data is

Pr{R = 1|L} = π1(L) = 1 − ∑
m = 2

M
πm(L(m)), (5)

which depends on the union set of observed variables ∪m = 2
M L(m). To ground ideas, consider 

as a parametric submodel of (4) the series of simple logistic models

πm(L(m); γm) = 1 + exp −γm(1, L(m))
T −1, m = 2, …, M,

π1(L; γ) = 1 − ∑
m = 2

M
1 + exp −γm(1, L(m))

T −1, γ = (γ2, …, γM) . (6)

By assumption (2), model (6) must satisfy the constraint

1 − ∑
m = 2

M
πm(L(m); γm) > σ with probability 1. (7)

Consider the UMLE estimator of γ, defined as the value which maximizes the unconstrained 

log-likelihood function corresponding to missing data model (6).

∑
i = 1

N
∑

m = 2

M
𝟙(Ri = m)logπm(L(m)i; γm) + 𝟙(Ri = 1)log 1 − ∑

k = 2

M
πk(L(k)i; γk) (8)

with corresponding score equation

ℙn
𝟙(R = 1)
π1(L(1))

− 𝟙(R = m)
πm(L(m))

πm(1 − πm)(1, L(m))
T = 0 (9)

for the parameters γm for missing data pattern m, where γm and (1, L(m))T have the same 

dimension.
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It may be in practice that maximizing (8) fails to converge. This could happen if there is at 

least one individual for whom the empirical version of constraint (7) is not satisfied in the 

process of finding the maximum, in which case the fitted complete case probability may be 

near zero or possibly negative, a real possibility especially at small or moderate sample 

sizes. Thus, we have referred to (8) as an unconstrained log-likelihood function, as it does 

not naturally impose constraint (7).

Note that even if the missingness mechanism were known, constraint (7) which depends on 

∪m = 2
M L(m) can only be observed for complete case individuals. In fact, only complete cases 

need to satisfy the constraint in order to ensure that the UMLE can be computed in practice. 

Thus, one could in principle attempt to maximize the observed data log-likelihood (8) 

together with the observable constraints

𝟙(Ri = 1) ∑
k = 2

M
πk(L(k)i; γk) < 1 − σ∗ for i = 1, 2, …, N, (10)

where σ* is a user-specified small positive constant. Still, this is potentially computationally 

prohibitive, since there are as many constraints as complete case observations.

Instead, in addition to UMLE, we develop a Bayesian constrained estimation approach 

where samples are drawn from the unconstrained posterior conditional distribution for γ and 

only those draws that fall into the constrained parameter space (10) are retained (Gelfand et 

al. 1992). An additional appeal of this approach is that the posterior credible intervals of γ 
are guaranteed to satisfy constraint (10), which is useful if one wishes to perform hypothesis 

testing to identify significant predictors in the missing data regression models. Constrained 

Bayesian estimation has been used previously in several other settings, for instance to 

estimate risk ratio and relative excess risk regressions (Chu and Cole 2010, 2011); however, 

to the best of our knowledge, it has not been used in the current context. To implement the 

approach, we specify a diffuse prior distribution g(γ) for γ = (γ2, …, γM) under model (6) 

and incorporate constraint (10) in the posterior distribution of γ. Under the contrained 

Bayesian model, the posterior distribution of γ is proportional to

f (γ |data) ∝ f (data |γ)g(γ) = ∏
i = 1

N
∏

m = 2

M
πm(L(m)i; γm)

𝟙(Ri = m)
× Ω(γ, Li)

𝟙(Ri = 1)
g(γ) (11)

where

Ω(γ, Li) = 1 − ∑
k = 2

M
πk(L(k)i; γk) × 𝟙 ∑

k = 2

M
πk(L(k)i; γk) < 1 − σ∗ .

We define the CBE estimator of γ as the posterior mode (or mean) from distribution (11).
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We note that in practice there may be some missing data patterns that are sparsely observed. 

In such cases, a simple approach entails combining across patterns with small event 

probabilities and estimating the missingness process under an additional assumption that the 

probability of any pattern within the combined set only depends on the intersection set of 

variables observed for all patterns in the combined set. Although the suggested approach to 

handle sparse patterns may introduce some bias, we do not anticipate the magnitude of this 

bias to be significant provided the combined set of patterns remains relatively rare compared 

to other more prominent missing data patterns.

4 IPW INFERENCE

Suppose we observe n i.i.d. realizations of the vector L, and we wish to make inferences 

about the parameter β0 which is the unique solution of the full data population estimating 

equation

E M(L; β0) = 0 (12)

where expectation is taken over the distribution of the complete data L. Note that we do not 

require a model for the distribution of the full data L; in fact, estimation is possible under 

certain weak regularity conditions (van der Vaart 1998) as long as full data unbiased 

estimating functions exist. In the presence of missing data, the estimating function in (12) 

may only be evaluated for complete cases, which may be a highly selective subsample even 

under MAR. This motivates the use of IPW estimating functions of complete cases to form 

the following population estimating equation

E 𝟙(R = 1)
π1(L) M(L; β0) = 0. (13)

The unbiasedness of the above estimating equation holds by straightforward iterated 

expectations.

The IPW estimating equations framework encompasses a great variety of settings under 

which investigators may wish to account for non-monotone missing data. This includes IPW 

of the full data score equation, where the score function is such an unbiased estimating 

function, given a model f(L|β) for the law of the full data, in which case (13) reduces to

E 𝟙(R = 1)
π1(L)

∂log f (L β)
∂β β0

= 0. (14)

Note that equation (14) does not necessarily correspond to the observed data score equation, 

and will therefore generally not achieve the efficiency bound for the model. Estimation can 

also be extended to classes of semiparametric models which specify only certain marginal 

relationships in L and in which scientific interest focuses on some low dimentional 
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functional β = β(FL) of the distribution FL of the full data L. For instance, in many health 

related applications it is common to specify a model g(X, β) for the conditional mean of the 

outcome response Y given a set of covariates X = (X1, X2, …, XP)T. Here L = (Y, X) and 

either the outcome or any covariate may be missing. Then the parameter of interest can be 

identified by the population IPW estimating equation

E 𝟙(R = 1)
π1(L) [Y − g(X, β0)]h(X) = 0,

where h(X) is a user-specified function of X of the same dimension as β0. Regression 

parameters in semiparametric models for right censored failure time data can likewise be 

identified by similar IPW population estimating equations, e.g. Cox proportional hazards 

regression and Aalen’s additive hazards regression. Analogous estimating equations are also 

available for longitudinal and clustered data. In all cases empirical estimating equations are 

obtained by replacing population expectations with their empirical counterparts, and π1(L) 

with a consistent estimator.

Let π1(L; γ ) = 1 − ∑m = 2
M 1 + exp −γm(1, L(m))

T −1
 where γ = (γ2, …, γ M) is either the 

UMLE (assuming it can be computed) or CBE estimate. Then, an estimate for the parameter 

of interest β0 is given by the solution βipw to the inverse probability weighted estimating 

equation

ℙn
𝟙(R = 1)
π1(L; γ ) M(L; β) = 0. (15)

Subject to standard regularity conditions and assuming that the missing data model given in 

(6) is correctly specified, we show in appendix section A.2 that βipw is consistent and 

asymptotically normal

n(βipw − β0) d N 0, E ∇βΓ(β0, γ0) −1Var[Γ(β0, γ0) − W(β0, γ0)]E ∇βΓ(β0, γ0) −1T
(16)

where Γ(β, γ) = {𝟙(R = 1)/π1(L; γ)}M(L; β), Sγ0
 is the score function (9) for the missing 

data mechanism evaluated at the truth and

W(β0, γ0) = E[Γ(β0, γ0)Sγ0
T ]E[Sγ0

Sγ0
T ]−1

Sγ0
.

The asymptotic variance in (16) can be consistently estimated by replacing the terms under 

expectation with empirical averages evaluated at βipw, γ
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Ê ∇βΓ(β, γ ) −1Var Γ(β, γ ) − W(β, γ ) Ê ∇βΓ(β, γ ) −1T
. (17)

Although the posterior mode (or mean) is asymptotically efficient by the Bernstein-von 

Mises Theorem (van der Vaart 1998), in finite sample the BCE estimate may not necessarily 

correspond to the solution of the score function (9). For inference under the Bayesian 

constrained approach, we therefore apply a finite-sample correction to the variance estimate

Ê ∇βΓ(β, γ ) −1Var Γ(β, γ ) − W(β, γ ) + Ê W(β, γ ) Ê ∇βΓ(β, γ ) −1T
(18)

so that the term in Var[ ⋅ ] has mean zero empirically. The correction term Ê W(β, γ )  is 

expected to vanish as sample size increases. A conservative, albeit more easily 

implementable, estimate of the asymptotic variance in (16) is obtained by the standard 

sandwich variance formula (Robins et al. 1994)

Ê ∇βΓ(β, γ ) −1Var Γ(β, γ ) Ê ∇βΓ(β, γ ) −1T
. (19)

4.1 Improved IPW estimator via augmentation

The efficiency of the IPW estimator introduced in the previous section, which only makes 

direct use of complete cases, can be improved by incorporating information from individuals 

with missing data via augmentation of the IPW estimating equation (Robins et al. 1994; van 

der Laan and Robins 2003; Tsiatis 2006). The approach is based on a result due to Robins et 

al. (1994) who show that under assumptions (1) and (2), all regular and asymptotically linear 

(RAL) estimators based on observed data, of a functional β0, can be shown to be 

asymptotically equivalent to an estimator solving

ℙn
𝟙(R − 1)

π1(L) U(L; β) + A(R, L(R)) = 0. (20)

U(L; β) is an element of 𝕌F, the set of all full data estimating equations of β0, and A(R, 
L(R)) is an element of the space 𝔸 spanned by all scores of the missing data mechanism 

which are of the form

∑
r ≠ 1

𝟙(R = 1)
π1(L) − 𝟙(R = r)

πr(L(r))
tr(L(r)) ,

where tr (L(r)) is an arbitrary q-dimensional function of the observed data L(r) corresponding 

to missing data pattern R = r (Robins et al. 1994). The class of estimating equations obtained 

by varying U(L) over 𝕌F and A(R, L(R)) over 𝔸 is referred to as augmented estimating 

Sun and Tchetgen Tchetgen Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



equations, since it entails augmenting a standard IPW estimating equation by an arbituary 

score function of the missingness process (Robins et al. 1994; Tsiatis 2006). In principle, 

one can therefore construct an efficient estimator by identifying the optimal full data 

estimating function Uopt ∈ 𝕌F paired with the optimal choice of augmentation Aopt ∈ 𝔸 to 

use in equation (20). Unfortunately the optimal index leading to a semiparametric efficient 

estimator is generally not available in closed form and often computationally prohibitive in 

most problems of interest. Instead, we take a more practical approach to improve efficiency.

We consider the restricted augmentation space 𝔸∗ ⊂ 𝔸 formed by the span of a finite vector 

of linearly independent functions

𝟙(R = 1)
π1(L) − 𝟙(R = r)

πr(L(r))
trk
∗ (L(r)):r; k = 1, …, Kr ,

where for each r, tr
∗(L(r)) is a Kr-vector of user defined functions of L(r), r = 1, …, M. It is 

recommended to include in 𝔸∗ scores corresponding to the model used to estimate the 

missing data mechanism, which leads to simplification in estimating the asymptotic variance 

of the resulting estimator (Robins et al. 1994; Tsiatis 2006). Specifically, under model (6), 

𝔸∗ includes the score functions given by (9).

Similarly, we consider a restricted linear subspace 𝕌F ∗ ⊂ 𝕌F spanned by l linearly 

independent full-data estimating equations, where l > q. In the case of logistic regression 

with full data score equation U(β) = (1, X)T {Y – expit [β(1, X)T]} with L = (X, Y), we may 

take 𝕌F ∗ to be the q-dimensional span of estimating functions

[1, X, h(X)]T Y − expit[β(1, X)T]

for any choice of function h(X) of dimension l − q linearly independent of (1, X), e.g. 

including nonlinear transformations of X and interaction terms. The resulting class of 

restricted augmented estimating equations is given by

ℙn
𝟙(R = 1)
π1(L; γ ) C1U∗(L; β) + C2A∗(R, L(R); γ ) = 0 (21)

for any choice of constant matrices C1 of dimensions q × l and C2 of dimensions q × k 

where k = ∑r ≥ 2Kr. U*(L; β) is a l-dimensional vector of basis functions spanning 𝕌F ∗

and A*(R, L(R); γ) is a k-dimensional vector of basis functions spanning 𝔸∗. Using a result 

due to Tsiatis (2006) one can show that the optimal choice of (C1, C2) within the class (21) 

is given by the solution to
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[C1
opt, C2

opt]
U11 U12

U12
T U22

= [H1, H2]

where

U11 = E U∗(β)U∗(β)T
π1(L)

l × l

U12 = E 𝟙(R = 1)
π1(L) U∗(β)A ∗ T l × k

U22 = E A∗A ∗ T k × k

H1 = −E ∂U∗(β)
∂β

T q × l

H2 = 0q × k

The matrices (U11, U12, H1) that involve full data L can be estimated from the complete 

cases only by standard inverse probability weighted empirical averages and the matrix U22 

by an empirical average of the observed data. Constrained Bayesian estimation of the 

missing data process involves centering A* so that it has mean zero empirically. Then the 

optimal AIPW estimator βopt in the restricted class of estimating equations is given by the 

solution to

ℙn
𝟙(R = 1)
π1(L; γ ) C1

opt(β)U∗(L; β) + C2
opt(β)A∗(R, L(R); γ ) = 0, (22)

and a consistent estimator for the asymptotic variance of βopt is given by

Ĥ1(βopt)Û
11

(βopt)Ĥ1
T

(βopt)
−1

(23)

where
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Û11 = (Û11 − Û12Û22
−1

Û12
T )

−1
.

(Tsiatis 2006). Finding the solution βopt to (22) involves estimating the matrices for each 

value of β, which can be computationally intensive. Instead, an estimator asymptotically 

equivalent to βopt is obtained by the simple one-step update of a standard IPW estimator 

βipw:

βopt
∗ = βipw + IF∼ β(βipw) (24)

where

IF∼ β(βipw) = −∑
i

∂
𝟙(Ri = 1)
π1(Li; γ ) M(Li; βipw) / ∂β

−1
× ∑

i
𝟙(Ri = 1)
π1(Li; γ ) Ĉ1

opt(βipw)U∗(Li; βipw) + Ĉ2
opt(βipw)A∗(Ri, L(R), i; γ )

and βipw is the standard IPW solution to (15). It is straightforward to show that under 

standard regularity conditions and in the absence of model misspecification, the influence 

function of βopt
∗  is identical to that of βopt (van der Vaart 1998).

The asymptotic efficiency of the optimal restricted AIPW estimator in relation to the 

semiparametric efficiency bound for a given full data semiparametric model of interest 

depends on how close the span of 𝔸∗ and 𝕌F ∗ is to 𝔸 and 𝕌F respectively. One can show 

that as one suitably enriches the span of 𝔸∗ and 𝕌F ∗ with elements of 𝔸 and 𝕌F so that the 

former two vector spaces increasingly become dense in the latter two subspaces respectively, 

the asymptotic variance of n1/2 βopt − β0  nearly attains the semiparametric local efficiency 

bound for the semiparametric model of the full data and only other restriction that data are 

MAR (Newey 1993).

5 SIMULATION

In this section we report a simulation study to investigate the finite-sample properties of the 

proposed estimators. Full data consists of independent and identically distributed L = (Y, A, 
C) with exposure A, binary outcome Y and confounders C = (C1, C2). We generate missing 

data with 5 possible patterns: R = 1 if L is observed; R = 2 if L(2) = (Y, A, C1) is observed; R 
= 3 if L(3) = (Y, A) is observed; R = 4 if L(4) = (C1, C2) is observed and R = 5 if L(5) = (Y, 
C2) is observed.

The vector (X1, X2, X3) is generated from a multivariate standard normal distribution with 

correlation coefficient ρ = 0.1 between X1 & X2 and ρ = −0.1 between X1 & X3. Then we 
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take A = Φ(X1), C1 = Φ(X2) and C2 = Φ(X3) where Φ(·) is the CDF of the standard normal 

distribution. Finally, the outcome variable Y is generated as

logit Pr(Y = 1 A, C) = β0 + β1A + β2C1 + β3C2

where β = (−0.3, −0.4, 0.3, 0.5). The missing data model follows (6) and is given by

Pr R = 2 L = expit − 1.2 − 1.2Y − 0.6A − 0.3C1

Pr R = 3 L = expit − 1.0 − 0.9Y − 0.8A (25)

Pr R = 4 L = expit − 1.2 − 0.7C1 − 0.8C2

Pr R = 5 L = expit − 1.1 − 1.0Y − 0.8C2 ,

with the probability of being a complete case Pr R = 1 L = 1 − ∑m = 2
5 Pr R = m L . The 

missing data process is generated from a multinomial distribution with the above 

probabilities, and only the corresponding observed data for the sampled pattern contributes 

to estimation. We perform 1000 replicates each with sample size n = 1000 or 2000. Each 

simulation replicate has approximately 50% of complete cases.

The parameters γ in the missing data model (25) are estimated using both the UMLE and 

BCE. The UMLE estimator of γ is implemented using the R function optim with the quasi-

Newton method BFGS. As previously discussed, optimization of the unconstrained 

likelihood is not guaranteed to converge near the boundary values where an observed 

complete case probability may be close to zero, leading to very large derivatives of the log-

likelihood as indicated by the expression for score equation (9). To investigate situations in 

which the procedure fails to converge, we approximate the UMLE solution with the 

derivative-free Nelder-Mead method after a maximum number of iterations. We obtain the 

BCE estimator of γ as the posterior mean of distribution (11) with diffuse priors γj ∼ N (0, 

103) for j = 1, …, 13 and σ* = 10−8. Adaptive Gibbs sampling (Gilks et al. 1995) was 

implemented through BRugs, the R interface to the OpenBUGS MCMC software (Lunn et 

al. 2009). We assessed convergence by visually inspecting the trace plots as well as through 

the Gelman-Rubin convergence statistic (Gelman and Rubin 1992), and included an adaptive 

phase of 104 iterations out of a total of 2 × 104 iterations.

Simple IPW logistic regression of the form (15) estimates the coefficient β of the outcome 

regression, based on estimated complete case probabilities using either UMLE or BCE. We 
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further implement the optimal, one-step update AIPW estimator (24) in the restricted finite-

dimensional linear subspaces 𝔸∗ and 𝕌F ∗ spanned by

𝟙(R − 1)
π1(L) − 𝟙(R = r)

πr(L(r))
πr(1 − πr)trk

∗ (L(r)):r; k = 1, …, kr

and

h(A, C)T Y − expit[β(1, A, C)T]

respectively. The 1 × 9 vector h(A, C) consists of the main effects and interactions for (A, C) 

up to quadratic terms. The Jr-dimensional vectors tr
∗(L(r)) consists of the Jr main effects and 

interactions for L(r) up to quadratic terms, for r = 2, 3, 4, 5.

For comparison, we also implement unweighted complete-case (CC) regression to evaluate 

the magnitude of selection bias, and carry out MLE based on the full data to assess the 

extent of efficiency loss due to missing data. Results for estimation of the effect of exposure 

β1 are summarized in table 1. The results for other coefficients (β0, β2, β3) follow a similar 

pattern as those included in table 1 and are therefore relegated to the supplementary 

materials.

Biases for IPW and AIPW estimators of β1 using UMLE or CBE generally decrease with 

increasing sample size, and biases become negligible at moderate sample sizes. There is a 

slight downward bias of the asymptotic variance estimator compared to the Monte Carlo 

variance at n = 1000, particularly for the AIPW estimator, leading to an empirical coverage 

slightly below the nominal 95% level. However the performance of the asymptotic variance 

estimator and corresponding coverage improves at n = 2000. The asymptotic relative 

efficiency (ARE) of AIPW compared to IPW is approximately 0.70 based on estimated 

asymptotic variances, in agreement with theory.

The CC estimator has substantial bias and poor coverage irrespective of sample size. 

Although the CC estimator may be unbiased when the missing data model only depends on 

regression covariates but not on the outcome, it is clearly biased under the current data 

generating mechanism which allows for arbitrary missing data patterns involving both the 

outcome and covariates. The CC estimator has larger standard errors compared to either the 

IPW or the AIPW estimator.

The proportion of simulation replicates for which the UMLE converged increased slightly 

with a doubling of sample size (57.9% and 64.0% for n = 100057.9% and 64.0% for n = 

2000). Based on the derivative-free approximation to the UMLE solution, we calculated the 

smallest estimated complete case probability in each simulation replicate. These values for 

non-convergence cases hover around zero, suggesting that, as we have previously 

hypothesized, lack of convergence of the UMLE approach may be due mostly to empirical 

complete case probabilities that effectively violate the positivity assumption (2), which may 
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occur by chance particularly in small samples, even when the assumption holds in the 

population.

We note that the bias of the IPW or AIPW estimator using CBE for the missing data model 

is slightly larger than that using UMLE when the latter converges. Similar finite sample bias 

has been reported in previous implementations of the CBE in a log-linear model of risk (Chu 

and Cole 2010). However, even so, as noted above the coverage of 95% confidence intervals 

does not appear to be affected and the finite sample bias appears to vanish relatively fast 

with increasing sample size. Furthermore, the BCE is guaranteed to produce an estimate for 

the complete case probabilities within the parameter space of the model which may be 

subsequently used for IPW or AIPW.

6 APPLICATION

The empirical application concerns a study of the association between maternal exposure to 

highly active antiretroviral therapy (HAART) during pregnancy and birth outcomes among 

HIV-infected women in Botswana. A detailed description of the study cohort has been 

presented elsewhere (Chen et al. 2012). The entire study cohort consists of 33148 obstetrical 

records abstracted from 6 sites in Botswana for 24 months. Our current analysis focuses on 

the subset of women who were known to be HIV positive (n = 9711). The birth outcome of 

interest is preterm delivery, defined as delivery < 37 weeks gestation. 6.7% of the outcomes 

are unobserved. The data also contains a number of predictors of interest with unobserved 

values (Table 2): maternal hypertension in pregnancy (6.5% missing), whether CD4+ cell 

count is less than 200 μL (53.4% missing) and whether a woman continued HAART from 

before pregnancy or not. Our goal is to correlate these factors with preterm delivery. We 

applied the proposed IPW and AIPW estimators in logistic regression as well as performed 

CC analysis. We also provide results for multivariate imputation by chained equations 

(MICE) (van Buuren and Oudshoorn 2000; van Buuren and Groothuis-Oudshoorn 2011) as 

comparison (Table 3).

The IPW estimator of the logic model for preterm delivery uses to estimate the weight a 

missing data model of the form given by (6), which includes only the main effects of 

observed variables L(m) for each missing data pattern m = 2, …, 8. The UMLE converged in 

this dataset. Given the fairly large sample size (n = 9711), the results for IPW are similar 

using UMLE and CBE to estimate the missing data process, consistent with findings from 

both the simulation study and asymptotic theory. Hence, only results for CBE are presented 

for the IPW estimator in Table 3. AIPW estimator is implemented as outlined in the 

simulation study. MICE specifies a univariate imputation model for each of the incomplete 

variables preterm delivery, maternal hypertension and low CD4+ (the variable continued 

HAART treatment is fully observed in the sample and not imputed). The binary variables 

preterm delivery, hypertension and low CD4+ are imputed using logistic regressions, to 

provide a total of M = 50 imputed data sets for linear regression before pooling the results in 

the final analysis. In a separate analysis, the two sparsely observed missing data patterns R = 

3, 4 with 75 and 15 samples respectively are combined into one pattern. The probability of 

observing this combined pattern depends on the set of covariates L(3) ∩ L(4), i.e. low CD4+ 

and continued HAART treatment.
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The IPW and AIPW estimated odds ratio for preterm delivery associated with maternal 

hypertension and continued HAART treatment increased by approximately 15% respectively 

compared to CC estimates. The point estimates of the effect for low CD4+ are similar 

between CC and IPW. The observed ARE of AIPW compared to IPW differs across different 

coefficients: 0.28 for maternal hypertension, 0.53 for low CD4+ and 0.24 for continued 

HAART treatment. The observed ARE of AIPW compared to MICE are 1.00 for maternal 

hypertension, 0.51 for low CD4+ and 1.25 for continued HAART treatment. Point estimates 

from MICE show that the odds ratio for preterm delivery associated with maternal 

hypertension increased marginally by about 4%, but the odds ratios associated with low 

CD4+ and continued HAART treatment decreased by 8% and 7% respectively. The analysis 

which combines missing data patterns R = 3, 4 for IPW/AIPW gives similar results to the 

original analysis.

Differences between MICE and IPW/AIPW estimates may reflect differences of modeling 

assumptions since the former relies on model assumptions about full data univariate 

conditional laws while the latter relies on a model for the missing data mechanism. In the 

current application, neither the conditional distribution of covariates in the full data nor the 

missing data model is of primary scientific interest. Although model compatibility of the 

conditional laws specified in MICE may be an issue (White et al. 2011; van Buuren 2007), 

simulation studies suggest that this may not be a serious problem in practice (van Buuren et 

al. 2006). In general, more efficient estimators can be obtained by specifying a full data 

model. However, in this illustration, the proposed AIPW estimator yields efficiency gains 

relative to IPW comparable to MICE, while at the same time entirely avoiding the need to 

model the full data law.

7 DISCUSSION

We have proposed a simple yet general class of missing data models for nonmonotone MAR 

mechanisms which makes no assumption about the full data distribution. Our models are 

explicit in their dependence on only the observed variables, and the proposed IPW estimator 

can easily be implemented using existing software. The paper makes two important 

contributions, first we describe a simple UMLE approach to estimate the missing data 

mechanism that is straightforward to implement although that may suffer from convergence 

issues in small samples. Our second contribution offers a remedy to failure of UMLE by 

introducing a constrained Bayesian estimator which circumvents any potential convergence 

difficulty encountered with UMLE. Another contribution shows that AIPW can achieve 

substantial gains in efficiency over simple IPW estimators by recovering information from 

incomplete cases, while avoiding having to model the full data distribution.

Assuming no model misspecification, the proposed IPW/AIPW estimators corrects the bias 

of CC analysis and may be used whenever one has available a full data estimating equation 

and the nonmonotone MAR missing data mechanism potentially depends also on the 

outcome. While CBE is guaranteed to produce valid probability weights for subsequent 

estimation of a full data regression or other functionals of interest, we found that there may 

be some finite sample bias in small to moderate samples. However, this bias appears to 

vanish with increasing sample size. The bias may be due to the fact that constraints (10) are 
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imposed on complete-cases only, and thus the constraints may not be satisfied for the 

incomplete cases. The CBE approach could be adapted to impose the constraints over a 

finite range of possible values for the full data L, if bounds for the sample space were 

known.

Lastly, Robins and Gill have argued that the class of RMM models represents the most 

general plausible physical mechanism for generating non-monotone missing data (Robins 

and Gill 1997). Therefore, they have effectively argued that any model within our class that 

is not RMM may be difficult to motivate scientifically. We emphasize that the perspective 

we have presented is completely agnostic as to whether a particular sub-model of MAR may 

be more scientifically meaningful than another; in fact, RMM, like any other submodel of 

MAR, can be accommodated by the proposed approach, but would require placing 

additional constraints while sampling from the posterior, to ensure that one remains within 

the submodel. This will necessarily result in a more complicated fitting procedure, with little 

apparent benefit for bias reduction or efficiency gain. This is because, as well established in 

the missing data literature, it is generally advisable for efficiency considerations in IPW 

estimation under MAR, that one estimates the probability of a complete-case using as richly 

parameterized a regression as empirically feasible (Robins et al. 1994). This implies that 

even if RMM is correctly specified, one would generally benefit from including correlates of 

the full data estimating equation into a model for the missing data mechanism, even if such 

variables do not necessarily correlate with the missing data process. We believe such 

efficiency considerations trump any concern for scientific interpretation of the model for the 

missing data process, particularly since after all, the missing data process is technically a 

nuisance parameter not of primary scientific interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX: PROOFS

A.1 Restrictions imposed by polytomous logistic regression model

Suppose there are M missingness patterns, each with observed variables L(m), m = 1, …, M. 

Choosing pattern j as the baseline category, we model the other missingness pattern 

probabilities as

Pr{R = m |L} =
exp(γm′L(m))

1 + ∑k ∈ {1, …, M}\{ j}exp(γk′L(k))
for m ∈ {1, …, M}\{ j} .

Let LI = ∩m ∈ 1, …, M \ j L(m). then by the MAR assumption, each of the above 

probabilities Pr{R = m|L} depends on L(m) respectively. But they can only depend on LI. If 

not, then the probability for one of the missing data patterns h will depend on variables L(h) \ 

LI that another pattern does not have. This is not possible due to the linked nature of the 

terms in the denominator of the probability expression.
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A.2 Asymptotic results for IPW estimator

The consistency of β can be established under general conditions for 2-step estimators 

(Newey and McFadden 1993) to show uniform convergence of estimating equation (15) in β, 

where we make use of the fact that γ
p

γ. Typically one would need to impose moment 

assumptions on π1(L; γ) and M(L; β) (Wooldridge 2007).

To investigate the asymptotic distribution of β, under suitable regularity conditions expand 

(15) around the true values β0 and subsequently γ0,

n(β − β0) = − 1
n ∑

i = 1

n
∇βΓi(β∗, γ )

−1
1
n ∑

i = 1

n
Γi(β0, γ ) = − 1

n ∑
i = 1

n
∇βΓi(β∗, γ )

−1

× 1
n ∑

i = 1

n
Γi(β0, γ0) + 1

n ∑
i = 1

n
∇γΓi(β0, γ∗) n(γ − γ0)

where β* and γ* are the mean values and Γ(β, γ) = {𝟙(R1 = 1)/π1(L; γ)}M(L; β). When γ
is the maximum likelihood estimator or a Bayes point estimator satisfying conditions in the 

Bernstein-von Mises Theorem, it is an asymptotically linear estimator with the influence 

function

n(γ − γ0) = 1
n ∑

i = 1

n
E[Sγ0

Sγ0
T ]−1Siγ0

+ op(1) (26)

where Sγ is the score function with respect to the missing data model parameters γ. 

Substituting the influence function representation into previous expansion gives

n(β − β0) = − E ∇βΓ(β0, γ0) −1 1
n ∑

i = 1

n
Γi(β0, γ0) + E ∇γΓ(β0, γ0) E[Sγ0

Sγ0
T ]−1Siγ0

+ op(1) .

(27)

In addition, from the assumption that the parameters governing full data and the missing 

data process are separable, under standard regularity conditions we have for observed data O

E[Γ(β, γ)] = ∫ Γ(β, γ) f (O; β, γ)dO = 0
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∂
∂γ

E[Γ, (β, γ)] = ∫ ∂
∂γ Γ(β, γ) f (O; β, γ)dO + ∫ Γ(β, γ) ∂

∂γ f (O; β, γ)dO = 0 E{∇γΓ(γ, β)} =

− ∫ Γ(β, γ)
∂
∂γ f (O; β, γ)

f (O; β, γ) f (O; β, γ)dO = − E[Γ(β,γ Sγ].

Substituting the above equality to (27)

n(β − β0) = − E ∇βΓ(β0, γ0) −1 1
n ∑

i = 1

n
Γi(β0, γ0) − E[Γ(β0, γ0)Sγ0

T ]E[Sγ0
Sγ0

T ]−1
Siγ0 + op(1) .

An application of Slutsky’s theorem shows that

n(β − β0) d N 0, E ∇βΓ(β0, γ0) −1Var[Γ(β0, γ0) − W(β0, γ0)]E ∇βΓ(β0, γ0) −1T
(28)

where

W(β0, γ0) = E[Γ(β0, γ0)Sγ0
T ]E[Sγ0

Sγ0
T ]−1

Sγ0 .

The sandwich estimator is consistent for E ∇βΓ(β0, γ0) −1E[Γ(β0, γ0) ⊗ 2]E ∇βΓ(β0, γ0)}−1T
. 

In the Hilbert space of mean-zero random functions, E[Γ(β0, γ0)Sγ0
T ]E[Sγ0

Sγ0
T ]−1

Sγ0 is the 

projection of Γ(β0, γ0) onto the linear subspace spanned by elements of Sγ0
. Therefore by 

Pythagorean Theorem

E[Γ(β0, γ0) ⊗ 2] − E Γ(β0, γ0) − E[Γ(β0, γ0)Sγ0
T ]E[Sγ0Sγ0

T ]−1
Sγ0

⊗ 2

is positive semi-definite and the sandwich estimator provides conservative estimate for the 

true asymptotic variance.
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Table 3

Analysis for outcome preterm delivery with estimated odds ratios from logistic regression. Wald 95% 

confidence intervals for IPW/AIPW estimators are based on estimated asymptotic variances. The standard 

error for MICE is estimated by Rubin’s formula (Rubin 1987) with M = 50 imputed samples.

Method Hypertension Low CD4+ Cont. HAART

CC 1.29 (1.06, 1.57) 1.12 (0.89, 1.40) 1.31 (1.04, 1.65)

IPW 1.55 (1.20, 2.01) 1.12 (0.84, 1.50) 1.53 (1.18, 1.99)

AIPW 1.41 (1.23, 1.62) 1.08 (0.88, 1.34) 1.47 (1.29, 1.66)

MICE 1.34 (1.17, 1.54) 1.03 (0.77, 1.39) 1.22 (1.09, 1.36)

Analysis combining missing data patterns R = 3, 4

IPW 1.55 (1.20, 2.01) 1.13 (0.85, 1.52) 1.52 (1.18, 1.97)

AIPW 1.40 (1.22, 1.61) 1.11 (0.90, 1.37) 1.46 (1.28, 1.66)
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