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Abstract 

 
We analyze the impact of a uniform price cap at electricity spot markets on firms investment 

decisions and on welfare. Since investment decisions for those markets are taken in the long 

run, fluctuating demand at the spot market eventually gives rise to high price spikes in case of 

binding capacities. Those price spikes are considered to send accurate signals for investment 

in generation capacities, limiting those spikes by price caps is thought to reduce firms' 

investment incentives. 

We are able to show that this is not true for the case of strategic investment behavior. More 

specifically we analyze a market game where firms choose capacities prior to a spot market 

which is subject to fluctuating or uncertain demand. We derive, that appropriately chosen 

price caps do always increase firms investment incentives under imperfect competition. We 

furthermore characterize the optimal price cap. Based on the theoretical framework, we 

empirically analyze the impact of uniform price caps on the German electricity market. 
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1 Introduction

In recent years price caps have been proposed (and also been used) in order to combat

the exercise of market power in liberalized electricity markets.1 Practitioners and policy

makers seem to perceive them as a powerful tool to discipline market power. In the words

of a Federal Energy Regulatory Commissioner: ”If you cap those prices, you eliminate any

incentive to withhold . . . you may well sell into the market at a capped price as long as

you’re covering your running cost and making a reasonable profit”.2 Traditional theoretical

results confirm this view. In a static framework, price caps have been shown to hinder

the exercise of market power3, since they reduce firms incentives to manipulate prices by

withholding production. When evaluating the impact of price caps in electricity markets,

however, not only competitiveness at the spot market, for given investment decisions matter.

Prior to producing electricity, firms have to build generation facilities (power plants). When

evaluating the desirability of price caps at the spot market firms’ incentives to invest in

such facilities have to be taken into account, as an increasing number of experts in the field

points out.

At electricity spot markets, firms face highly fluctuating demand, which has to be served

by installed capacities. This gives rise to highly volatile prices at those markets, typically

they range from 0€/MWh to more than 1000€/MWh4. As many experts argue, especially

in hours of high demand and tight supply, electricity markets might very likely be subject

to the exercise of market power.5 Price caps have thus been proposed and are currently

used in order to limit market power and reduce extreme price spikes at electricity wholesale

markets. In the short run, for fixed investment choice, those price caps indeed are welfare

enhancing. However, when taking into account firms investment decisions in liberalized

electricity markets, desirability of those price caps is much less clear cut and the questions

involved are not yet well explored in the literature.

1See e.g. Stoft (2002), for the case of electricity markets. They have also been proposed in other

liberalized utilities, first by Littlechild (1983) during the British Telecom privatization.
2Cf. Walsh (2001).
3This is true both for the case of symmetric information between firms and regulator regarding cost of

production as analyzed recently by Pint (1992), or Biglaiser and Riordan (2000), but also under asymmetric

information as analyzed in the literature on incentive regulation, for a survey of the seminal contributions

see Laffont and Tirole (1993), or Laffont and Tirole (2001).
4E.g. wholesale prices at the German market ranged from 0€/MWh to 2489€/MWh in 2006.
5Exercise of market power at electricity spot markets has received much attention in the literature,

compare e.g. Borenstein, Bushnell and Wolak (2002), or Joskow and Kahn (2002) for California, Wolfram

(1999) for the United Kingdom, or Schwarz and Lang (2006) for Germany.
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Recently economists have seriously questioned the desirability of price caps in electricity

markets, arguing that they considerably distort firms investment decisions. Their argument

is clear cut, originating in the findings of the peak load pricing literature6: In a market

without price caps, high price spikes during hours of high demand and scarce supply do

send accurate price signals for investment decisions. Very high price spikes signal scarcity

of supply and will thus lead to increased investment activities. In equilibrium market prices

will be such as to sustain an optimal investment level. Price caps at the spot market distort

those price signals and lower firms investment incentives, putting seriously into question

the desirability of such price caps. In the literature this is often referred to as a problem of

”missing money”. As Paul Joskow (2007) summarizes in a recent contribution: ”As a result,

many economists assume that the primary source of the missing money problem must be the

price caps and related market power mitigation procedures imposed by regulators. That is,

that the efforts to mitigate market power have had the effect of suppressing energy prices too

much, especially during scarcity conditions when prices should be very high.” Indisputably,

taking into account the feed back of a price cap for spot market prices on firms investment

choice is indispensable when evaluating its desirability. The above argument is not based on

the analysis of strategically interacting firms making their investment decisions, but relies

on results obtained under the assumption of perfectly competitive investment behavior7.

If firms are assumed to behave strategically when producing at the spot market (only

then the use of price caps is justifiable, compare Joskow, and Tirole (2007)), it seems

most natural to consider firms to also behave strategically when making their investment

decisions. That is, we analyze strategic firms’ investment incentives prior to a spot market

with fluctuating or uncertain demand (giving rise to price spikes and scarcity pricing) and

the impact of a uniform price cap at that spot market. As we will show, appropriately chosen

price caps (contrary to what has is currently known for the case of perfect competition) do

always increase strategic firms’ investment decisions and overall welfare.

To the best of our knowledge, this has not yet been analyzed in the literature. Most

of the contributions on price caps analyzes static frameworks, among those most focus on

the analysis of cost uncertainty. The case of symmetric information between firms and

regulator regarding cost of production have been analyzed for example by Pint (1992), or

Biglaiser and Riordan (2000). The literature on incentive regulation analyzes the case of

6For a survey see Crew and Kleindorfer(1986)
7The above argument basically rephrases the well known marginal revenue equals marginal cost for the

case of investment decisions.
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asymmetric information in a static framework, for a survey of the seminal contributions see

Laffont and Tirole (1993), or Laffont and Tirole (2001). All those approaches do not take

into account firms investment incentives prior to competing on the regulated spot markets.

As Cowan (2002) and more recently Joskow and Tirole (2007), or Hogan (2006) point out,

those incentives are crucial, however, when evaluating the desirability of such price caps,

since they cap price spikes in those markets and thus distort investment decisions.

Another strand of literature focuses on optimal timing of investment decisions in stochas-

tic continuous time models. The seminal contributions of Dixit (1991) and Dixit and Pindyk

(1994), for the case of perfect competition, has been extended by Dobbs (2004), and in a

recent contribution Roques and Savva (2006) analyze the case of strategically interacting

firms. In this literature, demand typically follows a Brownian process, capacities are as-

sumed to be always fully utilized8. Roques and Savva (2006) show that strategic firms

delay their investment decisions, relative to the case of perfect competition (that is, the

price trigger for capacity addition is higher under strategic interaction, than for a perfectly

competitive industry). They find that introduction of a price cap can reduce this prob-

lem and show that the optimal price cap in their framework is given by the investment

trigger–price of a competitive industry. Development of industry demand in those models

of optimal timing is best interpreted as changes in the level of average market demand where

changed price levels trigger instantaneous capacity adjustment. Those contributions thus

provide very rich insights on the dynamical timing of strategic firms’ investment decisions.

They abstract, however, from scarcity pricing and price spikes due to fluctuating demand

at the spot markets as analyzed in our contribution.

We consider a general two stage framework where firms first decide on investment in

capacities, and then compete at the spot market. Demand at the spot market is either

uncertain or the good is economically non–storable and demand fluctuates. We examine

the effect of a price cap at the spot market on firms investment incentives in an oligopolistic

industry. Our analysis shows, that under imperfect competition9 accurately chosen price

caps are always desirable. In particular, we identify a range of high price caps that always

lead to an increase of investment and welfare as compared to the situation without price

cap. We then derive the optimal price cap and show that it can be uniquely characterized

under rather weak regularity conditions. We show that the optimal cap is increasing in the

8This allows to disregard interaction at the spot market.
9As we approach the case of perfect competition our results match the already known finding that any

binding price cap reduces both Investment and overall welfare.
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number of firms on the market.

After having derived the theoretical results, we fit the model to the German electricity

market in order to also empirically contribute to the debate on price caps in electricity

markets. We find that price caps below 260 €/MWh increase industry capacity for any

market structure based on up to 20 firms. Especially for concentrated markets (up to

4 firms) surprisingly low price caps ranging at around 130 €/MWh lead to a dramatic

increase of industry capacities (for the case of duopoly capacity increases by 30%). Price

caps maximizing overall welfare are even lower, for concentrated markets (up to 4 firms)

they range at around 110 €/MWh. Both our theoretical and our empirical results thus

suggest that for appropriately chosen price caps, welfare can be increased both from a short

run and a long run perspective.

The article is organized as follows: In section 2 we introduce the model. Section 3

contains our results. In section 3.1 we show existence and uniqueness of the equilibrium,

section 3.2 characterizes desirable and section 3.3 optimal price caps. In section 4 we

empirically analyze capacity choice in the German electricity market. Section 5 concludes.

2 The Model

We analyze a two stage market game where firms have to choose capacities under demand

uncertainty, and make output choices after market conditions unraveled. Market prices are

subject to a price cap p̄. We denote by q = (q1, . . . , qn) the vector of outputs of the n firms,

and by Q =
∑n

i=1 qi total quantity produced in the market.

Inverse Demand is given by the function P (Q, θ), which depends on Q ∈ R
+, and

the random variable θ ∈ R which represents uncertainty. The random variable θ ∈ R is

distributed according to a distribution F (θ) with bounded support θ ∈ [θ, θ].10 All firms

have the same constant11 marginal production cost in any demand scenario, denoted by c.

We denote by Q(θ) the quantity where Prices start to be zero.12 The following two

assumptions on demand and cost for each realization of uncertainty θ ∈ R have to be

10While F has bounded support, it will be convenient to assume that P (Q, θ) is defined for all θ ∈ R and

Q ∈ R+.
11The existence and uniqueness results of this article obtain also for non–decreasing marginal cost func-

tions, it would considerably increase the notational burden however, since marginal cost could hit price-caps

for some output levels but not for others.
12In case prices remain positive we can set Q(θ) = ∞. In order to ensure a bounded solution we then

have to assume limQ→∞ P (Q, θ) < c for each θ ∈ (−∞,∞].
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satisfied only for quantities 0 ≤ qi ≤ Q < Q(θ).

Assumption 1 (i) Inverse demand P (Q, θ) is twice continuously differentiable13 in Q

with Pq(Q, θ) < 0 and Pq(Q, θ) + Pqq(Q, θ)qi < 0.

(ii) P (Q, θ) is differentiable in θ, and Pθ(Q, θ) > 0.

(iii) P (Q, θ)qi is (differentiable) strict supermodular in qi and θ, i. e. Pθ(Q, θ) +

Pqθ(Q, θ)qi > 0.

The situation we want to analyze is captured by the following two stage game. At

stage one firms simultaneously build up capacities x = (x1, . . . , xn). Capacity choices are

observed by all firms. Cost of investment K(xi) is the same for all firms and satisfies

Assumption 2 (Investment Cost) Investment cost K(xi) is twice continuously differ-

entiable, with Kx(xi) ≥ 0 and Kxx(xi) ≥ 0.

At stage two, facing the capacity constraints inherited from stage one, firms simultane-

ously choose outputs at the spot market. Since demand uncertainty unravels prior to the

output decision, produced quantities depend on the realized demand scenario. We assume

that in case the price cap is binding the firms’ sales are as equal as possible.14 We denote

individual quantities produced in demand scenario θ by q(θ) = (q1(θ), . . . , qn(θ)), and the

aggregate quantity by Q(θ) =
∑n

i=1 qi(θ).

Finally, we state firm i’s stage one expected profit from operating in a market with price

cap p̄ if capacities are given by x and firms plan to choose feasible15 production schedules

q(θ) for all θ.

πi (x, q, p̄) =

∫ θ

θ

[min{p̄, P (Q(θ), θ)} − c] qi (θ) dF (θ) − K (xi) . (1)

We consider only those cases where, in absence of a price cap, investment is gainful,

i. e. Kx(0) < Eθ[P (0, θ) − c]. Note whenever this condition is not satisfied, firms do not

invest in capacity, independently of price caps at the spot markets.

Furthermore we will consider only those price caps which give rise to positive capacity

choice. For price caps very close to marginal cost of production, firms will not find it

13We denote the derivative of a function g(x, y) with respect to the argument x, by gx(x, y), the second

derivative with respect to that argument by gxx(x, y), and the cross derivative by gxy(x, y).
14Note that this does not imply that no asymmetric equilibria of the game exist. It does imply, however,

that if firms produce equal quantities, they always sell equal quantities if the price cap is binding.
15That is, 0 ≤ qi(θ) ≤ xi for all θ ∈ [−∞,∞], i = 1, . . . , n.
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profitable to invests, since they cannot recover cost of investment. We thus restrict attention

to price caps p̄ ≥ ρ̄0 ≥ c. The lowest price cap which yields positive16 investment ρ̄0 is

defined by:

ρ̄0 =
{
p̄ : Eθ[min{ρ̄0, P (0, θ)} − c] = Kx(0)

}

We are interested in pure strategy Nash equilibria of the game. For any fixed price cap p̄

we denote an equilibrium by x∗(p̄) and the corresponding industry capacity by X∗(p̄).

3 Results

This section contains all our results. When we analyze welfare effects we will refer to total

welfare (W ) and consumer welfare (CW ), which is calculated under the assumption of

efficient rationing of consumers.

3.1 Equilibrium Analysis

In this section we characterize equilibrium capacities in the market game under demand

uncertainty. Moreover, we characterize the solution under perfect competition.

Theorem 1 (Equilibrium Investment) The market game has a unique equilibrium

x∗(p̄) which is symmetric. It is uniquely characterized by

X∗(p̄) =





X :

θ̃p̄(x,p̄)∫

θ̃X(x,p̄)

[
P (X, θ) + Pq (X, θ)

X

n
− c

]
dF (θ) +

θ∫

θ̃p̄(x,p̄)

(p̄ − c) dF (θ) = Kx

(
X

n

)




, (2)

where θ̃X (x, p̄) ∈ [θ, θ] is the demand scenario from which on firms are capacity con-

strained and θ̃p̄(x, p̄) ∈ [θ, θ] is the demand scenario when capacity and the price cap start

to be binding.

Proof See appendix 5. ¤

In order to provide some intuition for the equilibrium–characterization in theorem 1,

we first determine the range of relevant price caps, that is, those price caps which are

binding at least for some realizations of demand. We denote by ρ̄∞ that price cap which in

16To be more precise ρ̄0 yields zero investment, only slightly higher price caps yield positive investment.
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equilibrium is reached 17 only for the highest demand realization θ, it is defined by:

ρ̄∞ =
{
p̄ : p̄ = P (X∗(p̄), θ)

}
.

All higher price caps p̄ ≥ ρ̄∞ are never binding, in other words, the demand realization

where the price cap starts to be binding θ̃p̄ (x, ρ̄∞) is at or above the range of relevant

demand realizations.18 Formally this corresponds to θ̃p̄ (x, ρ̄∞) = θ, which leads to the

elimination of the second term on the LHS of (2). For the absence of price caps, i.e never–

binding price caps, the resulting market game has already been analyzed in Grimm Zoettl

(2008), the first order condition have a straightforward intuition: The LHS is expected

marginal revenue of capacity choice X, whereas the RHS is just marginal cost of capacity

choice. Note that on the LHS expectation is taken only over those demand scenarios where

the additional unit installed would actually be used (i. e. the lower limit of integration is

θ̃X(x), from where on capacity is binding, and not θ). The reason is that additional capacity

only contributes to marginal revenue in scenarios where it is actually used.

We thus observe that only price caps in the range p̄ ∈ [ρ̄0, ρ̄∞] yield truly interior

solutions where firms in equilibrium choose positive capacities and the price cap is binding

for some realizations of demand. Characterization of the corresponding equilibrium in

expression (2) again equates expected marginal revenue of investment with its marginal

cost. As in the case without binding price cap, when calculating expected marginal revenue,

the firm considers only those demand scenarios where the additional capacity is actually

being used (i.e. integration starts at θ̃X). Marginal revenue in scenario θ is given by the well

known expression (P −Pqx−c) until the price cap is binding at θp̄, from there on, marginal

revenue equals to (p̄ − c). Whenever the price cap starts to be binding before capacity is

binding, the left integral of the first order condition (2) cancels, since θ̃x (x) = θ̃p̄ (x, ρ̄∞).

Then firms choose their capacities such that the expected value of p̄ − c over all demand

realizations where capacity is binding equals to marginal cost of investment Kx.

17To be more precise, ρ̄∞ is never binding, but slightly lower price caps are, for high demand realizations.
18Remember θ has been defined on R, the distribution of uncertainty has the support [θ, θ], however.
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After having derived the market solution for strategic firms we now state the benchmark

case of perfect competition.

Theorem 2 (Equilibrium under Perfect Competition) In a perfectly competitive
market the unique industry capacity choice X̂(p̄) is characterized by:

X̂(p̄) =





X :

θ̂p̄(x,p̄)∫

θ̂X(x,p̄)

(P (X, θ) − c) dF (θ) +

θ∫

θ̂p̄(x,p̄)

(p̄ − c) dF (θ) = Kx

(
X

n

)




,

where θ̂X (x) is the demand scenario where capacity and θ̂p̄ (x, p̄) the scenario where both

price cap and capacity are binding.

In a perfectly competitive industry, the welfare maximum is implemented without price cap

at the spot market. All binding price caps strictly reduce capacity and total welfare.

Proof See appendix 5 ¤

It is worthwhile to notice that under perfect competition the price cap can only be met

if production is already binding (that is, if prices do not remain at marginal cost level).

In the oligopoly case, on the contrary, equilibrium prices can hit the price cap before the

capacity starts to be binding due to strategic withholding at the spot market. The lowest

non binding price cap under perfect competition, ̂̄ρ∞ = P (X̂(̂̄ρ∞), θ), will play a crucial

role in our welfare analysis in the following section, it is simply given by the market price

obtained under perfect competition for the highest possible demand realization. Under

perfect competition overall welfare is maximized if no price cap is set. Distortion of this

market outcome by binding price caps will always reduce equilibrium capacity choices and

welfare. We can thus conclude that for a perfectly competitive industry price caps are never

desirable in our framework19. For strategically behaving firms this is not true, however, as

we show in the subsequent section. If firms choose capacities strategically, appropriately

chosen price caps always do increase both equilibrium capacities and overall welfare.

3.2 Desirable price caps under imperfect competition

As derived in theorem 2, under perfect competition, introduction of a binding price cap

always reduce industry capacity and overall welfare. In this section we will characterize

binding price caps which always increase both industry capacity choice and overall welfare

for the case of strategically behaving firms. The following theorem characterizes an interval

19This is in line with current contributions regarding price caps at electricity wholesale markets, compare

for example Joskow (2007)
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of binding price caps which always enhances investment and welfare as compared to the

situation without price cap.

Theorem 3 (Investment and Welfare Enhancing Price Caps) .

(i) Denote by MR the highest marginal equilibrium revenue without price cap20. A price

cap p̄ ∈
[
MR, ρ̄∞

]
increases equilibrium investment, consumer surplus and total wel-

fare, and lowers average prices as compared to the market game without price cap.

(ii) Industry capacity and welfare under imperfect competition, for any price cap p̄ ≥ 0,

remain strictly below the first best solution .

Proof See appendix 5. ¤

Given the equilibrium characterization in theorem 1, the intuition is as follows: Any

price cap at or above the highest possible marginal revenue in an equilibrium without

price cap increases marginal spot market profits of investment in all scenarios where it is

binding (compared to the situation without price cap). In the new equilibrium with binding

price cap, expected marginal spot market profits must again be equal to marginal cost of

investment (Kx). This can only be achieved by decreasing marginal spot market profits

in scenarios with non–binding price cap, i.e. by increasing capacities. The above findings

thus generalize the already known findings of the impact of a price cap on capacity in a

deterministic world with a single spot market. Part of its intuition can be extended to the

case of uncertain demand. 21

Notice, however, that unlike in the deterministic case, we cannot make statements about

monotonicity, in particular we cannot characterize the best price cap in
[
MR, ρ̄∞

]
without

further assumptions on the distribution of uncertainty.22 That is, any price cap in the

interval
[
MR, ρ̄∞

)
is strictly better than no price cap. We are furthermore able to show

that even though the price caps characterized in theorem 3 increase welfare and industry

20I.e. MR = maxθ{P (X∗(ρ̄∞), θ) + Pq(X
∗(ρ̄∞), θ)X∗(ρ̄∞)

n
} − c

21Remember, with a single deterministic spot market, in the absence of a price cap, marginal profits

of the single spot market have to equal marginal cost of investment (i.e. P (X∗) − Pq(X
∗)/n − c = Kx).

All price caps at or above marginal revenue will increase capacity choice. The optimal price cap in the

deterministic framework is suited to implement the first best outcome and is given by marginal revenue, i.e.

p̄ = P (X∗) − Pq(X
∗)/n = c + Kx), i.e. the optimal price cap equals total marginal cost. With uncertain

demand at the spot market this logic can be applied only to the highest demand realizations, typically the

first best outcome cannot be reached, however.
22We address this issue in theorem 5.
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capacity, it is impossible under uncertainty to implement the welfare maximizing solution

by setting any price-cap.

In the subsequent theorem we provide a characterization of the desirable price caps

established in theorem 3 in terms of the highest market price reached under perfect com-

petition. Under relatively mild assumptions on the demand function23 the highest possible

market price reached under perfect competition ̂̄p∞ could lend itself as a welfare enhancing

price cap:

Theorem 4 (Price Cap at the Highest Competitive Price) Suppose demand

can be decomposed such that P (X, θ) = a(θ) + b(θ)P̃ (X). A price cap p̄ ∈
[̂̄p∞, ρ̄∞

]
strictly

increases equilibrium investment, consumer surplus and total welfare, and lowers average

prices as compared to the market game without price cap.

Proof See appendix 5. ¤

Note that from a policy maker’s perspective the result is actually very interesting.

For example in electricity markets, regulators typically have quite detailed information on

demand and cost. Thus, calculating ̂̄p∞ by modeling the competitive benchmark seems

relatively easy, while basically nothing is known for the case of market power. The theorem

nicely connects the two scenarios of perfect competition and oligopoly, giving a clear cut

policy result.

Let us finally notice that theorems 3 and 4 do not contradict the result of theorem 2,

where we established that under perfect competition price caps are never desirable. As we

approach the case of perfect competition (n → ∞), the range of desirable binding price

caps as characterized in both theorems vanishes.

3.3 Optimal Price Caps

As we have shown in section 3.1, we can always identify a range of binding price caps that

strictly increase equilibrium capacity choice of strategic firms and thus are desirable from a

welfare point of view. We have not yet determined however which price cap performs best

in this regard. In this section we thus characterize the price caps which maximize industry

capacity choice for a given market structure.

23These do not seem necessary, but they allow for a very intuitive proof.
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In the following theorem we characterize the price cap that maximizes equilibrium in-

vestment. In order to do so we need to make regularity assumptions on the distribution of

θ.24

Theorem 5 (Optimal Price Cap) Suppose that demand can be decomposed such that

P (X, θ) = θ + P̃ (X) and that the hazard rate h(θ) := f(θ)
1−F (θ)

is increasing.25 Then there

exists a unique price cap p̄∗ which maximizes investment, it is uniquely characterized by:

−Pq(X
∗(p̄∗), θ̃p̄)

X∗(p̄∗)

n
=

1 − F (θ̃p̄)

f(θ̃p̄)
. (3)

p̄∗ is increasing in the number of firms n, it is furthermore an upper bound for the welfare

maximizing price cap.

Proof See appendix 5. ¤

Let us point out the trade off that has to be solved at the investment maximizing price

cap. Recall from theorem 1 that firms choose the quantity that just equates expected

marginal revenue of investment with marginal cost. Lowering a given price cap affects

expected marginal revenue and thus, the firms’ investment decisions. We observe two

effects: On the one hand, lowering the price cap by an increment decreases marginal revenue

in all scenarios where the price cap has been binding. The expected marginal loss equals

[1−F (θ̃p̄)]. On the other hand, the price cap becomes binding also in lower demand scenarios

and thereby marginally increases expected revenue by −Pq(X
∗, θ̃p̄)xif(θ̃p̄).26 Condition (3)

as stated in theorem 5 balances those two effects. Note that the first effect lowers investment

incentives, while the second effect encourages investment. At high price caps, the first effect

is necessarily small (since the range of demand scenarios for which the price cap is binding

is small), such that the second effect always dominates. Note that it depends on the exact

distribution of θ whether the investment–maximizing price cap lies in
[
MR, ρ̄∞

)
, or below.

It is furthermore worthwhile to notice that the investment maximizing price cap constitutes

an upper bound on the welfare maximizing price cap that is, overall welfare is maximized

for price caps which always lie below p̄∗ as characterized in theorem 5. The reason is that

24Recall that in theorem 3 and 4, we could not make statements about monotonicity without further

assumptions on the distribution.
25In order to prove the theorem it is sufficient to assume Pqθ = 0, such that demand can be decomposed

such that P (Q, θ) = v(θ) + P̃ (Q). Then, the hazard rate of the transformed random variable v(θ) would

have to be increasing. In the theorem we present a slightly less general statement for easier exposition.
26Note that marginal revenue in scenario θ without binding price cap is Pq(X

∗, θ)xi +P (X∗, θ) and thus,

a binding price cap p̄ = P (X∗, θ̃p̄) increases marginal revenue in scenario θ̃p̄ by −Pq(X
∗, θ̃p̄)xi > 0.
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decreasing the price cap below p̄∗ on the one hand decreases investment but, on the other

hand, eliminates the incentive to withhold in additional demand scenarios such that the

average quantity sold may increase and thus, also total and consumer welfare. Price caps

higher than p̄∗ lead to lower investment without having the desirable effect on the firms’

withholding decisions.

All those findings are illustrated in the empirical part in section 4, where we analyze

the impact of price–caps on capacity choice in the German electricity market.

4 Empirical Analysis: Price caps and Capacity Choice

in the German Electricity Market

In this section we demonstrate how our theoretical insights can be used to assess (long run)

capacity and welfare effects of price caps. In the following we analyze the impact of a price

cap on the German wholesale electricity market on firms investment decisions and overall

welfare. We quantify the capacity and welfare effects of the introduction of price caps at

the spot market for different degrees of market concentration.

Our aim is to fit the theoretical model as closely as possible to the data of the German

Electricity market for the year 2006 and to compute resulting investment in gas turbine

generation capacity for the scenarios with and without price cap. Note that this approach

yields total industry capacity under the assumption that each firm’s marginal generating

unit is always a gas turbine. Since investment in the last unit of capacity (which, of course,

determines total capacity) is always a marginal decision, we do not need to specify the

inframarginal technology mix for the empirical analysis. Note however, that we need to

assume that firms are symmetric in size (but not necessarily with respect to their infra-

marginal technology mix). Since mark-ups in the Cournot model generally increase if firms

become asymmetric, our results yield a lower bound for the extent of market power for a

given number of firms.

In order to use our theoretical model for the analysis we chose to make the following

specifications. We assume linear fluctuating demand P (Q) = θ − bQ

We furthermore determine average production cost and investment cost and can model

firms capacity choice for different degrees of market power and different price-caps by mak-

ing use of the solutions obtained in theorems 1 and 2.

In order to assess the robustness of our results we do not perform the analysis for single

parameter values, but rather for plausible ranges of parameter distributions. This concerns
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the following parameters of the model: The demand elasticity (determined by the slope of

the demand function, b), marginal cost of production, c, and marginal investment cost, k.

From the possible ranges of those parameters, our algorithm selects one random combination

in each iteration. The resulting distributions of capacities and welfare differences give an

impression of the sensitivity of our results to changes in the parameters. In the following

we provide some details on the relevant ranges of our cost and demand parameters.

Market demand: To construct fluctuating market demand, we depart from hourly mar-

ket prices (from the European Energy Exchange (EEX)27) and hourly quantities consumed

(from the Union for the Co-ordination of Transmission of Electricity (UCTE)28) for the year

2006. We chose the value of b in line with other studies on energy markets. Most studies
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Figure 1: Fitting a smooth distribution to observed frequencies (for b=0.0055). MLE’s of

a shifted Weibull distribution are given by α̂ = 2.004 and β̂ = 193.434.

that estimate demand for electricity29 find short run elasticities between 0.1 and 0.5 and

long run elasticities between 0.3 and 0.7.30 The relevant range of prices is around P = 100

€/MWh and corresponding consumption is approximately Q = 50 GW. In our simulations

27See www.EEX.com
28See www.UCTE.org
29See, for example, Lijsen (2006) for an overview of recent contributions on that issue.
30E.g. Beenstock et al. (1999), Bjorner and Jensen (2002), Filippini Pachuari (2002), Booinekamp (2007),

and many others.
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we thus use a uniform distribution of b on the interval [0.004, 0.007], which corresponds to

elasticities between 0.5 and 0.29.

In order to illustrate our results concerning investment maximizing price caps as ana-

lyzed in section 3.3 we fit a shifted Weibull distribution over the observed frequencies. In

figure 4 this is illustrated for the parameter b = 0.0055, which yield the following maximum

likelihood estimates for the parameters: .

Production cost: The major components of variable production cost are gas prices31 and

prices for CO2 emission allowances.32 The average TTF gas price in 2006 was 20 €/MWh

and CO2 permissions traded on average for 9.30 €/MWh.33 The efficiency of gas turbines

currently ranges at around 37, 5%.34 The resulting daily production cost for the year 2006

was on average 66.30 €/MWh. In order to assess robustness of our results, however we

consider uniformly distributed errors (±10%) and thus consider average marginal cost to

be in the interval [59.67, 72.93] €/MWh.

Investment Cost: Since we analyze investment incentives based solely on one year, we

break down investment cost to annuities.35 In order to take construction time of gas turbine

plants into account we consider investment cost on the basis of data from the year 2000.

We assume perfect foresight, i.e. all cost components have been predicted accurately by the

firms at the time of their investment decision. We base investment cost on the following

two studies: First, a study on the German energy market commissioned by the German

Parliament (2002), with scenarios for investment decisions summarized in Weber and Swider

(2004) [in the following GP/WS]. Second, Energiereport III, a study conducted by the

Institute of Energy Economics (EWI) in Cologne and Prognos (2000) for the German

Ministry of Economics [in the following EWI/P].

The relevant annuity is determined as follows: Total investment cost ranges between

279 €/KW (GP/WS) and 300 €/KW (EWI/P). Annual fixed cost of running a gas turbine

31Daily values from the Dutch Hub TTF, corrected for transportation cost.
32Daily data taken from the EEX. The emission-coefficient for natural gas is set by the German ministry

of environment at 56t CO2/TJ which corresponds to 0.2016t CO2/MWh. Compare Umweltbundesamt

(2004).
33Recall that we do not use the averages but the daily values in our simulation.
34See 2006 GTW Handbook or EWI and Prognos (2005).
35The results will thus only yield a benchmark for current profitability of investment. Provided, however,

that yearly demand is increasing over time (and that strategic timing of investment is not an issue) our

procedure should yield accurate predictions, even though once installed capacities cannot be removed the

subsequent year.
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is already included in GP/WS, and is given by 8 €/KWa in EWI/P. This value is corrected

by the average availability of gas turbines, which, in Germany, is given by 94%.36 Based

on a financial horizon of 20 years and an interest rate of 10 % this yields annuities of

34863 €/MWa (GP/WS) and 45998 €/MWa (EWI/P). Finally, the free allotment of CO2

allowances granted to new power plants results in a de facto reduction of the annuity by the

net value of the allocated allowances. Calculating their value on the basis of the average

market price in 2006 yields 6305.3 €/MWa. The range of relevant annuities which we use

in our simulation is consequently given by [28558, 39692] €/MWa.

Results: We determine industry capacity choice for different number of firms, and for

different price caps. The left graph of figure 4 shows mean values (solid black lines) and

95% confidence intervals for industry capacity choice as a function of price caps (for different

number of firms).
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Figure 2: Left: Industry capacity choice over spot market price caps for different degrees of

concentration. Right: Price caps maximizing investment over market concentration. Means

and 95%-confidence intervals.

We observe that especially for concentrated markets surprisingly low caps lead to a dra-

matic increase of industry capacities (in the case of duopoly industry capacity is increased

by up to 30%). Observe furthermore that, in line with the findings of theorem 2 (and the

existing literature, e.g. see Joskow (2007)), for the case of perfect competition any binding

36Compare VGB Powertech (2006).
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price cap leads to reduced industry capacity. The right graph of figure 4 gives investment

maximizing price caps as a function of the number of firms in the industry. We observe

that price caps below 260 €/MWh increase industry capacity for any market structure

based on up to 20 firms. For concentrated markets we find surprisingly low investment

maximizing price caps at around 130 €/MWh for the case of up to 4 firms in the industry.

Finally, confirming the findings of theorem 5 The locus of those price caps is increasing in

the number of firms.

We then analyze the impact of price caps on overall welfare.
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Figure 3: Left: Welfare over spot market price caps for different degrees of concentra-

tion. Right: Price caps maximizing welfare over market concentration. Means and 95%-

confidence intervals.

The left graph of figure 4 shows mean values (solid black lines) and 95% confidence

intervals for Welfare37 as a function of price caps (for different number of firms). The

right graph of figure 4 gives welfare maximizing price caps as a function of the number

of firms in the industry. We observe that price caps below 250 €/MWh increase industry

capacity for any market structure based on up to 20 firms. For concentrated markets we

find surprisingly low welfare maximizing price caps at around 110 €/MWh for the case of

up to 4 firms in the industry.

The empirical results thus clearly confirm our theoretical findings. Under imperfect

37Notice that all values are normalized with respect to welfare generated in the first best scenario, which

is given by roughly 100 bn €.
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competition, price caps at the spot market, if appropriately chosen have a positive impact

on industry investments and overall welfare. Our empirical results for the case of the Ger-

man Market document, that it is a very large range of price caps having those beneficial

properties. Those price caps not only do increase welfare in the short run for fixed invest-

ment decisions but also have a positive impact on welfare in the long run, when investment

decisions are considered to be chosen endogenously by strategic firms.

5 Conclusion

In this article we have analyzed the impact of price caps at electricity spot markets on

investment decisions of strategic firms. In the short run, when firms investment decisions

can be assumed to remain fixed, there is undisputed consensus regarding the impact of such

price caps. They reduce firms incentives to withhold production and are thus considered

to be a powerful tool to discipline market power. In the long run, however, in liberalized

electricity markets, firms can decide on their investment in generation facilities. Interven-

tions at the spot markets designed to mitigate wholesale market power, should take this

into account, as an increasing number of experts in the field point out.38

It was the aim of the present article to thoroughly model the impact of a uniform price

cap on the capacity choice of strategic firms in such markets, contributing to this ongoing

debate. We analyzed a two stage market game where strategic firms choose their capacities

prior to the spot market. Demand at the spot market is assumed to be either fluctuating

or uncertain.

In section 3 we first characterized the market equilibrium for a given price caps. We

then show that appropriately chosen price caps not only increase welfare at the spot market

but do also enhance investment choice in equilibrium, whenever firms have market power.

Finally we have characterized price caps which maximize equilibrium capacity for a given

market structure. Those caps are found to be increasing in the number of firms and vanish

in the limit, when approaching the case of perfect competition.

In section 4 we have empirically analyzed overall capacity choice in the German electric-

ity market and determined the impact of introducing a price cap at the wholesale market.

We find a surprisingly large interval of price caps leading to an increase of equilibrium

capacity choice for almost any market structure39.

38e.g. compare Hogan (2005), Joskow (2007).
39That is for any number of firms with n ≤ 20 and all price caps p̄ ≥ 130/MWh lead to an increase of

equilibrium capacity.
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Our insights crucially enrich the ongoing discussion regarding price caps in electricity

spot markets. In the current perception, price caps distort the price signals of the market

and always lead to reduced investment incentives (compare Joskow (2007))40. A policy

maker, when considering the introduction of such price caps would thus always face the

tradeoff between increasing welfare at the spot market against undesirable reduction of

investment in the long run. Our results reveal, however, that this is not necessarily true,

when explicitly modeling firms investment incentives in such a market. Both our theoretical

and our empirical results suggest, that for appropriately chosen price caps, welfare can be

increased both from a short run and a long run perspective without tradeoff to be solved.
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Appendix

Proof of Theorem 1

Existence and Uniqueness In a compagnion paper, Grimm Zoettl (2008), we show that

the market game in absence of a price cap has a unique equilibrium which is symmetric.

Now consider the following modified demand function that captures the situation that firms

face for a given price cap.

P̄ (Q, θ) =

{
p̄ if 0 ≤ Q ≤ Qp̄(θ)

P (Q, θ) if Q > Qp̄(θ),
(4)

where Qp̄(θ) = {Q : P (Q, θ) = p̄}.

Note that P̄ (Q, θ) does not satisfy assumption 1 of Grimm Zoettl (2008) and thus, the

proof does apply to the case of a price caps at the spot market only after slight extensions.

We have to deal with two issues:
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(i) The fact that P̄q(Q, θ) = 0 for Q ∈ [0, Qp̄(θ)]. This implies that, given θ, the equilib-

rium at the second stage is not necessarily unique, which leads potentially to multiple

equilibria of the overall game. Our assumption that for a binding price cap, pro-

duction is as equal as possible (see section 2) overcomes this problem. It can be

interpreted either as (i) a special equilibrium selection41, or (ii) as analyzing only a

special class of equilibria of the overall game, focusing on symmetric outcomes at the

second stage.

(ii) Furthermore demand P̄ (Q, θ) is kinked at Qp̄(θ). This implies that firms’ stage two

profits are not twice continuously differentiable. It straight forward that this kink

does not pose any problems when carrying through the proof along the lines of Grimm

Zoettl (2008), due to concavity of the kink. Since computations are mainly redundant

to the proof conducted there, (the only difference being the concave kink) they are

not reported in detail again.

We conclude that the market game has a unique equilibrium which is symmetric.

Characterization of Equilibrium As we have shown, no asymmetric equilibria exist

in our framework. We can now focus on the symmetric case and characterize equilibrium

capacity choice.

Let us first consider profits for each realization of θ, given capacity choices x and p̄.

Recall that firms at the spot markets can produce at most their overall capacity choice made

in stage one. For ease of exposition denote by Q̂(θ) the unrestricted Cournot equilibrium

quantity in scenario θ, which may exceed capacity X of the firms. For the moment without

taking into account price caps, denote by Q∗(x, θ) equilibrium production in scenario θ,

i. e. Q∗(x, θ) = min{Q̂(θ), X}.

Depending on the level of the price cap p̄ Profits in scenario θ are given as follows:

πi(x, p̄, θ) =

{
(P (Q∗(x, θ), θ) − c) q∗i (x, θ) if p̄ ≥ P (Q∗(x, θ), θ)

(p̄ − c) Qp̄(x,θ)
n

if p̄ < P (Q∗(x, θ), θ)
, (5)

where Qp̄(x, θ) = min(X, {Q : p̄ = P (Q, θ)}) Note that if capacity is binding we obtain

Q∗(x, θ) = X, otherwise Q∗(x, θ) < X. If capacity is binding, two cases are possible: (i) the

firms do not have an incentive to withhold, but the price cap is not yet met; (b) the price

41Note that this would be the unique equilibrium at the second stage if even for a binding price cap,

inverse demand would have an (infinitely small) slope.
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cap is effective and the firms produce at the capacity bound42. Let us denote by θ̃X(x, p̄)

the demand scenario from which on the firms are capacity constrained and by θ̃p̄(x, p̄) the

demand realization where firms are capacity constrained and the price cap is met at the

spot market. θ̃p̄(x, p̄) and θ̃X(x, p̄) are implicitly defined as follows:

θ̃p̄(x, p̄) = {θ : p̄ = P (X, θ)}

θ̃X(x, p̄) = min
(
θ̃p̄(x, p̄), {θ : Pq(X, θ)q + P (X, θ) = 0}

)

Since in θ ∈ [θ̃X(x, p̄), θ] the price is monotonically increasing in θ, profits in this interval

are given by

πi(x, p̄, θ) =

{
(P (X, θ) − c) xi for θ ∈ [θ̃X(x, p̄), θ̃p̄(x, p̄)]

(p̄ − c) xi for θ ∈ [θ̃p̄(x, p̄), θ]
, (6)

Denote spot market profits whenever capacity is not binding by π0
i (p̄, θ) =

πi(x, p̄, θ)|θ<θ̃X(x,p̄).
Now we can finally write down a firm’s expected profit at stage one,

πi(x, p̄) =

θ̃X(x,p̄)∫

θ

π0
i (p̄, θ)dF (θ) +

θ̃p̄(x,p̄)∫

θ̃X(x,p̄)

(P (X, θ) − c) xidF (θ) +

θ∫

θ̃p̄(x,p̄)

(p̄ − c)xidF (θ) − K(xi).

Differentiation yields the first order condition (note that π0
i (p̄, θ) does not depend on xi

and that the derivatives of the integration limits cancel out due to Leibnitz’ rule)

dπi(x, p̄)

dxi

=

θ̃p̄(x,p̄)∫

θ̃X(x,p̄)

[P (X, θ) + Pq(X, θ)xi − c] dF (θ) +

θ∫

θ̃p̄(x,p̄)

(p̄ − c) dF (θ) − Kx(xi) = 0. (7)

From (7) the characterization of the unique and symmetric equilibrium of Theorem 1

can be easily derived. If the price cap does not bind in any demand scenario, we obtain

θ̃p̄(x, p̄) = θ and the second integral on the LHS of the first order condition cancels out. If

θ̃p̄(x, p̄) < θ, the price cap is binding in some demand scenarios. Two cases are possible:

(1) capacity is binding before the price cap is met (θ̃X(x, p̄) < θ̃p̄(x, p̄)), or capacity and

price cap become binding in the same demand scenario (θ̃X(x, p̄) = θ̃p̄(x, p̄)).

42Note that if at a certain θ the price cap is binding and firms are capacity constrained, then the price cap

is also binding for all higher demand scenarios. This is not necessarily true if only the price cap is binding

but firms produce below their capacity bound. Assumption 1, part (iii), guarantees that the Cournot

quantity Q̂(θ) is increasing in θ. It does not guarantee, however, that equilibrium prices are increasing in

θ. Consequently, as θ increases, the price cap might be binding for low realizations and non–binding for

higher ones.
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Proof of theorem 2

The proof of existence and uniqueness for the case of perfect competition follows the same

lines as the proof in case of oligopoly. Note that under perfect competition firms do not

strategically choose production for the spot markets but always produce at marginal cost

given by c whenever capacity is not binding, and rise only whenever capacity is binding. Let

us denote by θ̂X(x) = {max θ : P (X, θ) = c} the demand scenario from which on capacity

is binding and by θ̂p̄(x, p̄) = {θ : p̄ = P (X, θ)} the demand realization where the price cap

is met. Obviously, under perfect competition we always obtain θ̂X(x) < θ̂p̄(x, p̄), since the

price cap can only be met if the prices rise above marginal cost of production (i. e. capacity

is binding). The profit function under perfect competition is given by43

πi(x, p̄) =

θ̂p̄(x,p̄)∫

θ̂X(x,p̄)

(P (X, θ) − c) xidF (θ) +

θ∫

θ̂p̄(x,p̄)

(p̄ − c) xidF (θ) − K(xi).

Thus, the first order condition of a perfectly competitive firm (that cannot affect the market

price by changing its quantity) is given by

θ̂p̄(x,p̄)∫

θ̂X(x,p̄)

(P (X, θ) − c) dF (θ) +

θ∫

θ̂p̄(x,p̄)

(p̄ − c) dF (θ) = Kx

(
X

n

)
. (8)

From (8) the characterization of industry capacity X̂(p̄) in theorem 2 follows immediately.

In order to prove the last part of the theorem, we derive the welfare optimum and show

that it coincides with the solution under perfect competition in the absence of a price cap.

Welfare given x and p̄ is

W (x, p̄) =

θ̂X(x,p̄)∫

θ

Q∫

0

(P (s, θ) − c) dsdF (θ) +

θ∫

θ̂X(x,p̄)

X∫

0

(P (s, θ) − c) dsdF (θ) − nK

(
X

n

)

Thus, welfare is maximized at

XFB =





X :

θ∫

θ̂X(x,p̄)

(P (X, θ) − c) dF (θ) = Kx

(
X

n

)




. (9)

43Note that for θ < θ̂X(x, p̄) profits are equal to zero.
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Note that this coincides with the solution under perfect competition for θ̂p̄(x, p̄) = θ, i. e. for

a non–binding price cap. Pointwise comparison of expressions (8) and (9) directly reveals

that for any fixed X the LHS of (8) is smaller than the LHS of (9) for all binding price

caps. This yields lower industry capacity choice under perfect competition for any biding

price cap than in the first best solution.

Proof of Theorem 3

1) Capacity: First we show X∗(p̄) > X∗∞ for all p̄ ∈ [MR, ρ̄∞]. Denote equilibrium

production in absence of a price cap by X∗∞ := X∗(ρ̄∞), which solves the following first

order condition:

θ∫

θX(x∗∞)

[
P (X∗∞, θ) + Pq (X∗∞, θ)

X∗∞

n
− c

]
dF (θ) − Kx

(
X∗∞

n

)
= 0 (10)

Remember MR is defined to be given by MR =
[
P (X∗∞, θ) + Pq (X∗∞, θ) X∗∞

n
− c

]
θ=θ

,

which is the highest value the integrand of expression (10)can take. In order to prove that

a price cap p̄ ∈ [MR, ρ̄∞] increases equilibrium capacity choice, we compare pointwise the

first order condition without price cap (given above by (10)) with the first order condition

with binding price cap as given by expression (2):

θp̄(x∗,p̄)∫

θX∗

(x∗)

[
P (X∗, θ) + Pq (X∗, θ)

X∗

n
− c

]
dF (θ)+

θ∫

θ̃p̄(x∗,p̄)

(p̄ − c) dF (θ)−Kx

(
X∗

n

)
= 0 (11)

By construction of MR, for any fixed value X0, the LHS of (11) is strictly bigger than

the LHS of (10). Since profits of firms along the symmetry line are concave and cost of

investment weakly convex, both expressions (11) and (10) are strictly decreasing in X.

This implies however that condition (11) can only be satisfied for strictly bigger investment

levels than (11), which proofs X∗(p̄) > X∗∞ for all p̄ ∈ [MR, ρ̄∞].

2) Welfare: In order to show that total welfare always increases if a price cap price cap

p̄ ∈ [MR, ρ̄∞] is chosen (as compared to no price cap) just need to show that from a welfare

perspective capacities chosen by strategic firms for a given price-cap are always below the

welfare maximizing level and thus any increase in total capacity increases welfare.

Welfare maximizing capacity choice solves expression (9) and equilibrium investment of

strategic firms for any binding price cap solves (11). As above we observe that for any fixed
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investment level X0, the LHS of (9) is strictly bigger than the LHS of (11), since the LHS

of both expressions are decreasing in capacity choice X, first best capacity choice is strictly

bigger than capacity choice of strategic firms for any price cap.

3) Consumer Surplus: Since production is always increasing for any price cap p̄ ∈

[MR, ρ̄∞] (as compared to no price cap), consumer surplus also increases.

4) Average Prices: We show that average prices decrease in the relevant range. For a

given X∗(p), average prices are uniquely given by

E

[
P

]
=

∫ θX(x∗(p̄))

θ

0dF (θ)

+

∫ θp̄(x∗(p̄),p̄)

θ̃X(x∗(p̄))

P (X∗(p), θ)dF (θ) +

∫ θ

θp̄(x∗(p̄),p̄)

pdF (θ). (12)

If we lower price caps from ρ̄∞ to some p̄0 ∈ [MR, ρ̄∞], average prices are affected as follows.

For the limits of integration in (12) we obtain θX(x∗(p̄)) and θp(x∗(p̄)) increase. For the

integrands we obtain P (X∗∞, θ) > P (X∗(p̄), θ) and ρ̄∞ > p̄0. Thus, average prices decrease.

Proof of Theorem 4

We proof the theorem by showing that ̂̄p∞ = MR under the assumptions of the theorem.

This allows then to apply theorem 3. In other words we show that in absence of a price

cap, the perfectly competitive equilibrium price just equals marginal equilibrium revenue:

P (X∗

PC , θ) = P (X∗∞, θ) + Pq(X
∗∞, θ)

X∗∞

n
∀ θ ∈ [θ̃X(x∗∞) = θX(x∗∞), θ],

Thus, setting the highest price observed in the perfectly competitive benchmark is equiva-

lent to setting the lowest price from the interval of welfare increasing price caps identified

in theorem 3.

In order to do so we show that in absence of a price cap the equilibria of the market game

under perfect competition and the Cournot market game can be characterized by the same

condition. To this end, define T (XFB) := P̃ (XFB) and T (X∗∞) := P̃ (X∗∞)+ P̃q(X
∗∞)X∗∞

n

(recall XFB denotes first best equilibrium quantity, while X∗∞ denotes the market outcome

in the absence of a price cap). Observe that the unique equilibrium production in both
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cases is characterized by the following equation,

θ∫

θ̃T

(a(θ) + b(θ)T − c) dF (θ) = Kx, (13)

where θ̃T = {θ : a(θ) + b(θ)T = c}.

Thus both, the solution under perfect competition and under imperfect competition

involve an identical value T ∗ solving (13). For all θ ∈ [θT ∗

, θ] we obtain

a(θ) + b(θ)T ∗ = P (X∗

PC , θ) = P (X∗∞, θ) + Pq(X
∗∞, θ)

X∗∞

n
.

Proof of Theorem 5

We prove theorem 5 by setting dX∗(p̄)
dp̄

equal to zero. We then show that for an increasing

hazard rate and Pxθ = 0, X∗(p̄) is quasiconcave by proving d2X∗(p̄)
dp̄2

∣∣∣
dX∗(p̄)

dp̄
=0

< 0.

Preliminaries As a first step we derive properties and slopes of θ̃p̄(x, p̄). Notice that at

the demand realization where the price cap is met in equilibrium we obtain

P (X, θ̃p̄(x, p̄)) ≡ p̄

We first calculate the partial derivative by differentiation with respect to p̄ given some fixed
X,44

∂θ̃p̄(x, p̄)

∂p̄
=

1

Pθ(X, θ̃p̄)
= 1.

Now we derive the total derivative at X∗(p̄),

Pq(·)
dX∗(p̄)

dp̄
+ Pθ(·)

dθ̃p̄(x∗(p̄), p̄)

dp̄
= 1 ⇔

dθ̃p̄(x∗(p̄), p̄)

dp̄
= 1 − Pq(X

∗, θ)
dX∗(p̄)

dp̄
. (14)

Characterization of p̄∗ Since expected profits are strictly concave for all p̄, we can apply
the Implicit Function Theorem in order to derive dX∗(p̄)

p̄
. Differentiation of the first order

condition

θ̃p̄(x∗,p̄)∫

θ̃X(x∗)

[
P (X∗, θ) + Pq (X∗, θ)

1

n
X∗ − c

]
dF (θ) +

θ∫

θ̃p̄(x∗,p̄)

(p̄ − c)dF (θ) − Kx

(
X∗

n

)
= 0.

44Note that Pθ = 1 under our assumptions.
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with respect to p̄ yields

dX∗(p̄)

dp̄
= −

∂2πi(x, p̄)

∂xi∂p̄

/
∂2πi(x, p̄)

∂xi∂X

=

[
Pq(X

∗, θ̃p̄)

Pθ(X∗, θ̃p̄)

X∗(p)

n
f(θ̃p̄) + 1 − F (θ̃p̄)

] /
−

∂2πi(x, p̄)

∂xi∂X
, (15)

Notice that it may happen that θ̃p̄ (x∗, p̄) = θ̃X (x∗, p̄), in which case

−Pq(X
∗, θ̃p̄)

X∗

n
= −Pq(X

∗, θ̃X)
X∗

n
= P (X∗, θ̃X) − c = P (X∗, θ̃p̄) − c = p̄ − c

(we denote this type of equilibrium by EXII , and the other type by EXI in the following).
Rewriting equation (15) using the hazard rate yields

EXI :
dX∗(p̄)

dp̄
=

[
Pq(·)

X∗(p)

n
+

1

h(θ̃p̄)

] /[
−

∂πi(x, q∗)

∂xi∂X

1

f(θ̃p̄)

]
(16)

EXII :
dX∗(p̄)

dp̄
=

[
− (p̄ − c) +

1

h(θ̃p̄)

]/[
−

∂πi(x, q∗)

∂xi∂X

1

f(θ̃p̄)

]
(17)

Define ξ(p̄) =
[
−∂πi(x,q∗)

∂xi∂X
1

f(θ̃p̄)

]
. Note that ξ(p̄) > 0 since profits (along the symmetry line)

are concave. Thus, dX∗(p̄)
dp̄

= 0 gives exactly the characterization of the price caps that

maximize industry capacity choice as stated in the theorem.

In order to show existence and uniqueness of these maximizers, however, we also need to

show that second order conditions are satisfied, namely d2X∗(p̄)
dp̄2

∣∣∣
dX∗(p̄)

dp̄
=0

< 0. Differentiation

of (16) and (17) with respect to p̄ yields45

EXI :
d2X∗(p̄)

dp̄2
=

1

ξ(p̄)2

[(
dX∗(p̄)

dp̄

(
Pqq

X∗(p̄)

n
+ Pq

)
−

hθ(θ̃
p̄)

h2(θ̃p̄)

dθ̃p̄

dp̄

)
ξ(p̄) −

dX∗(p̄)

dp̄
ξ(p̄)ξp̄(p̄)

]

EXII :
d2X∗(p̄)

dp̄2
=

1

ξ(p̄)2

[
−

(
1 +

hθ(θ̃
p̄)

h2(θ̃p̄)

dθ̃p̄

dp̄

)
ξ(p̄) −

dX∗(p̄)

dp̄
ξ(p̄)ξp̄(p̄)

]

We get

EXI :
d2X∗(p̄)

dp̄2

∣∣∣∣
dX∗(p̄)

dp̄
=0

= −
1

ξ(p̄)

hθ(θ̃
p̄)

h2(θ̃p̄)
< 0

EXII :
d2X∗(p̄)

dp̄2

∣∣∣∣
dX∗(p̄)

dp̄
=0

= −
1

ξ(p̄)

(
1 +

hθ(θ̃
p̄)

h2(θ̃p̄)

)
< 0

Thus, under our assumptions all (local) extrema are necessarily maxima. Since we have

local minima at p = ρ̄0 and p = ρ̄∞, we conclude that the above condition characterizes the

unique capacity maximizing price cap.

45Notice that Pxθ = Pθθ = 0 and that dθ̃p̄

dp̄
= 1 at dX∗(p̄)

dp̄
= 0. Moreover, dX∗(p̄)

dp̄
ξi(p̄) is just the enumerator

of expressions (16) and (17).
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Finally show that the optimal price cap p̄∗ is weakly increasing in the number of firms.
In order to do so we depart from the unique characterization of the optimal price cap as
derived above, given by expressions (16) and (17) applying the envelope theorem:

EXI :
dp̄∗(n)

dn
= −

∂

∂n

[
Pq(X

∗, θ̃p̄)
X∗

n
+

1

h(θ̃p̄)

]/
∂

∂p̄∗

[
Pq(X

∗, θ̃p̄)
X∗(p)

n
+

1

h(θ̃p̄)

]

EXII :
dp̄∗(n)

dn
= −

∂

∂n

[
− (p̄ − c) +

1

h(θ̃p̄)

]/
∂

∂p̄∗

[
− (p̄ − c) +

1

h(θ̃p̄)

]

Since at p̄ = p̄∗ we obtain dX∗(p̄)
dp̄

= 0 this simplifies to give:

EXI :
dp̄∗(n)

dn
= −PqX

∗
−1

n2

/
−hθ(θ̃

p̄)

h(θ̃p̄)2
dθ̃p̄

dp̄∗
> 0

EXII :
dp̄∗(n)

dn
= 0

Whenever we have an equilibrium of type I, i.e. first capacity is binding then the price

cap, then the optimal price cap is strictly increasing in the number of firms. Notice that

the above expression is positive since hazard rate is assumed to be increasing hθ > 0 and

for higher price caps the price cap starts to be binding for higher demand realizations, i.e.
dθ̃p̄

dp̄∗
> 0. Whenever we have an equilibrium of type II, i.e. the price cap is already binding

when capacity starts to become binding then neither equilibrium capacity choice nor the

optimal price cap are a function of the number of firms. Notice however for high enough

number of firms we will always have an equilibrium of type I.
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