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1. INTRODUCTION

The mathematics of Convex Optimization was discussed by several authors
for about a century [2, 3, 4, 5, 9, 10, 15, 17, 23, 24]. In the second half of the
last century, various generalizations of convex functions have been introduced
[2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 16, 18, 19, 20, 22]. The invex(invariant convex), pseu-
doinvex and quasiinvex functions were introduced by M.A.Hanson in 1981 [14].
These functions are extremely significant in optimization theory mainly due to
the properties regarding their global optima. For example, a differentiable function
is invex iff every stationary point is a global minima[6]. Later in 1986, Craven defined
the non-smooth invex functions [11]. For the last few decades generalized mono-
tonicity, duality and optimality conditions in invex optimization theory have been
discussed by several authors but mainly in Rn [6, 11, 12, 14, 18, 19, 20]. The basic
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difficulty of genaralizing the theory in infinite dimensional spaces is that, unlike
the case in finite dimension, closedness and boundedness of a set does not imply
the compactness. However, in reflexive Banach spaces the problem can be allevi-
ated by working with weak topologies and using the result that the closed unit
ball is weakly sequentially compact.
In this paper the concept of invex functions and a class of optimization problems
involving invex functions have been introduced in Hilbert spaces. A general-
ization of the very well known Fritz-John conditions regarding the existence of
optimal solutions of such problems has been proposed. It has been proved that
under the assumption of invexity, these conditions are not only necessary but also
sufficient.

2. PREREQUISITES

Definition 2.1. A subset C of Rn is convex [4] if for every pair of points x1, x2
in C, the line segment

[x1, x2] = {x : x = αx1 + βx2, α ≥ 0, β ≥ 0, α + β = 1}

belongs to C.
The set C is said to be invex [21] if there is a vector function η : C × C → Rn such
that

x1 + λη(x1, x2) ∈ C ∀ x1, x2 ∈ C and ∀λ ∈ [0, 1]

Definition 2.2. Let C be an open convex set in Rn and let f be real valued and
differentiable on C. Then f is convex [4] if

f (x) − f (y) ≥ ⟨∇ f (y), x − y⟩ , ∀ x, y ∈ C

The function f is said to be invex [20] if there is a vector function η : C × C→ Rn

f (x) − f (y) ≥ ⟨∇ f (y), η(x, y)⟩ , ∀ x, y ∈ C

Definition 2.4. Let X and Y be two normed vector spaces. A continuous linear
transformation A:X→ Y is said to be the Fréchet(Strong) derivative [8] of f : X→ Y
at x if for every ϵ > 0, ∃ δ > 0 such that

∥ f (x + h) − f (x) − Ah ∥Y≤ ϵ ∥ h ∥X ∀h with ∥ h ∥X≤ δ

When the derivative exists it is denoted by D f (x).
Proposition 2.1.[17] Let X be a vector space and Y be a normed space. Let S be a
transformation mapping an open Set D ⊂ X into an open set E ⊂ Y and let P be a
transformation mapping E into a normed space Z. Put T = PS and suppose S is
Frechet differentiable at x ∈ D and P is Frĕchet differentiable at y = S(x) ∈ E. Then
T is Frechet Differentiable at x and DT(x) = DP(y)DS(x).
Remark:[4] It is to be noted that in Rn, D f (x) = ∇ f (x).
Definition 2.5. An ordering ≥ on a real vector space V is said to be Archimedean if
v ≥ θV whenever u + λv ≥ θV for some u ∈ V and all λ > 0.
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If u ≤ w and u,w ∈ V then [u,w] will denote the set {v ∈ V : u ≤ v ≤ w}. Such a set
is termed as order interval. A subset of V is order bounded if it is contained in some
order interval.
Remark: The order relation ≥ in Rn is archimedean if x + ny ≥ θ, n = 1, 2, 3, .....
implies y ≥ θ. Most of the orderings that occur in practical problems are
archimedean. Lexicographic orderings in sequence spaces are non-archimedean
orderings.
Theorem 2.1(Banach-Alaoglu).[3] The closed unit ball B(0;1) in a Hilbert space H
is weakly compact.
Theorem 2.2(Eberlin- S̆mulian).[3] Let C be a subset of a Hilbert space H. Then
C is weakly compact iff it is weakly sequentially compact.
Theorem 2.3(Generalized Weierstrass Theorem).[3] Let C ⊂ H is a weakly com-
pact set. Suppose f : C→ R is weakly sequentially lower semi-continuous. Then
f is bounded below and has a minimizer on C.

3. INVEX PROGRAMMING PROBLEM(IP)

Definition 3.1. Let H1 and H2 be two real Hilbert spaces with some archimedean
ordering “ ≥ ” and X ⊆ H1 is an open invex set. The differentiable(Frechet) func-
tion f : X → H2 is invex if there exist a vector function η : X × X → H2 and some
e ∈ H2 with ∥e∥H2 = 1 such that,

f (x) − f (y) ≥ ⟨D f (y) , η(x,y)⟩e ∀x,y ∈ X (1)

Remark: It is to be noted that if H1 and H2 are taken as Rn, then if we choose
e = (1, 1, 1, ........., 1) and η(x, y) = (x − y), f will become a convex function in Rn.

The norm in this case can be taken as (n)
−

1
2 -multiple of the usual euclidean norm.

Example 3.1. Let us consider the function f : L2[0, 1] → L2[0, 1] defined as,

( f (x))(t) = (x − sinx)(t) , x > 0, n ∈N

Clearly, f(x)is non-convex in nature. But it can be verified that f(x) is invex
considering

η(x, y) =
4sin

x − y
2

cos(x) − 1
whenever x , 2nπ and η(x, y) = 0 elsewhere.

Theorem 3.1. Let f : X→ H2 be differentiable. Then f is invex iff every stationary
point is a global minimizer.
Proof: Let f be invex and D f (y) = 0 for y ∈ X. Then clearly, f (x)− f (y) ≥ 0 ∀x ∈ X.
Therefore y is a global minimizer of f over X.
Now, let us assume that every stationary point is a global minimizer. If y is a sta-

tionary point, then (1) is obvious. Otherwise choose η(x, y) =
∥ f (x) − f (y)∥
∥D( f (y)∥2 D f (y))
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and e =
f (x) − f (y)
∥ f (x) − f (y)∥ . It is to be noted that these are not the only choice for η(·, ·)

and e.
Theorem 3.2. Let f : X → H2 and 1 : X → H2 be differentiable invex functions
such that either D f (y) = −λD1(y) for some λ > 0 and f (x)− f (y) ≥ −λ[1(x)− 1(y)]
or D f (y) , −λD1(y) for any λ > 0. Then f and 1 are invex with respect to same
η(·, ·) and e.
Proof: Let us prove the theorem by contradiction. Let f and 1 be invex with
respect to the same η(·, ·) and e. Let us assume that there exist x, y ∈ X and λ > 0
such that D f (y) = −λD1(y) and f (x) − f (y) < −λ[1(x) − 1(y)]. Now, since f and 1
are invex with respect to the same η(·, ·) and e,

f (x) − f (y) ≥ ⟨D f (y) , η(x,y)⟩e
1(x) − 1(y) ≥ ⟨D1(y) , η(x,y)⟩e

Therefore,

f (x) − f (y) + λ(1(x) − 1(y)) ≥ ⟨D f (y) , η(x,y)⟩e + λ⟨D1(y) , η(x,y)⟩e
= ⟨D f (y) + λD1(y), η(x, y)⟩e = θ

Which contradicts the assumption.
It is to be mentioned here that if H1 = H2 = Rn, then using Gale’s Theorem of
the alternatives for linear inequalities, we can very easily prove that the above
conditions are necessary as well.
Example 3.2. The functions f (x) = −2x2 and 1(x) = lo1(x) are invex with respect
to same η(·, ·) and e. One of the several choice for η(·, ·) and e can be x − y and 1
respectively.
Definition 3.2. Let H1 and H2 be two real Archimedean ordered seperable Hilbert
spaces and I be an open invex set in H1. Let f , 1, h : I → H2 be differentiable
(Frechet) invex functions with respect to same η(·, ·) and e. Let us consider the
following basic nonlinear programming problem

Min f (x)
s.t. 1(x) ≤ θH2

h(x) = θH2

x ≥ θH1

Let us refer the problem by Invex Programming Problem and denote the same by
IP.
Example 3.3. Detection Filter Problem (Fortmann, Athans) [13] :

Min{−⟨u, x⟩ : u ∈ L2[0,T]}
s.t. ⟨u, st⟩ − ϵ⟨u, s⟩ ≤ 0 δ ≤ |t| ≤ T
−⟨u, st⟩ − ϵ⟨u, s⟩ ≤ 0 δ ≤ |t| ≤ T

∥u∥ ≤ 1

Where s is the signal function with the assumption that the energy of s equals to
1, i.e., ∥s∥2 = 1.
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Before we proceed to the next section, let us have the following assumption for
the rest of the discussion
Assumption 3.1. Let H be a Hilbert space with an Archimedean ordering “ ≥ ” ,
then θ ≥ x⇒ −cx ≥ θ for all x ∈ H and for all scalar c ≥ 0.

4. MAIN RESULT

The following theorem is a generalization of the very well known Fritz-John
conditions. Under the assumption of invexity, the conditions are not only neces-
sary but sufficient also. The proof of the necessity of the conditions is motivated
by McShane [4]. In our discussion whenever we consider topology, we mean
weak topology.
Theorem 4.1. x∗ ∈ I is a solution of IP iff there exist non-zero scalars λ, µ and ν
such that
(i) λ1(x∗) = θ
(ii)λD f (x∗) + µD1(x∗) + νDh(x∗) = θ
Proof: Let K be a strictly increasing differentiable real valued function defined on
H2 such that K(x) > 0 whenever x > θ and K(x) = 0 elsewhere. It is to be noted
that DK(x) > 0 for x > θ. Since 1 is continuous and I is open , there exist an ϵ0 > 0
such that B(θ, ϵ0) ⊂ I and for 1(x) ≤ θ for x ∈ B(θ, ϵ0). Now define a function

F(x, p) = ∥ f (x)∥ + ∥x∥2 + p{K(1(x)) + ∥h(x)∥2}, x ∈ I and p ∈ Z+ (2)

We assert that for each ϵ satisfying 0 < ϵ < ϵ0, there exist a positive integer p(ϵ)
such that for x with ∥x∥ = ϵ, F(x, p(ϵ)) > θ. If not, then there would exist an ϵ′

with 0 < ϵ′ < ϵ0 such that for each positive integer p, there exist a vector xp with
∥xp∥ = ϵ′ and F(xp, p) ≤ θ. Hence form (2),

∥ f (x)∥ ≤ −{∥x∥2 + p{K1(xp) + ∥h(xp)∥2}} (3)

Now since ∥xp∥ = ϵ′ and since S(0, ϵ′) = {y : ∥y∥ = ϵ′} is weakly compact, then
there exist sub-sequences, which we relabel as xp and p, and a point x0 with
∥x0∥ = ϵ′ such that xp 7→ x0. Since f , 1 and h are continuous, f (xp) 7→ f (x0);
1(xp) 7→ 1(x0); h(xp) 7→ h(x0). Therefore, dividing (3) by −p and letting p→ ∞, we
get, K(1(x0)) + ∥h(x0)∥2 = 0. Hence, by definition of K(·, ·), 1(x0) ≤ θ and h(x0) = θ.
Thus x0 is a feasible vector. Now, by a suitable affine transformation x∗ can be
assumed as θ and f (x∗) = f (θ) = 0. Therefore, f (x0) ≥ f (θ) = 0. Now from (3)
∥ f (xp)∥ ≤ −(ϵ′)2 < 0, which is a contradiction. Hence, the assertion is true.
Again for each ϵ ∈ (0, ϵ0), the function F(·, p(ϵ)) is continuous on the closed ball
B(0, ϵ). Since B(0, ϵ) is weakly compact, F(·, p(ϵ)) attains its minimum on B(0, ϵ) at
an interior point xϵ of B(0, ϵ). Hence

DF(xϵ, p(ϵ)) = 0 (4)
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Now let us assume that

L(ϵ) = 1 + (p(ϵ)DK(1(xϵ)))2 + (p(ϵ)D(∥h(xϵ)∥))2

λ(ϵ) =
D(∥ f (x)∥)√

L(ϵ)

µ(ϵ) =


p(ϵ)DK(1(xϵ))√

L(ϵ)
if 1(θ) = θ

0 else

ν(ϵ) =
p(ϵ)D(∥h(xϵ∥)√

L(ϵ)

(5)

It is to be noted that λ(ϵ) ≥ 0,and µ(ϵ), ν(ϵ) ≥ θ.
Now from (2), (4), (5) we get

λ(ϵ)D f (xϵ) +
D(∥xϵ∥2)√

L(ϵ)
+ µ(ϵ)D1(xϵ) + ν(ϵ)Dh(xϵ) = 0 (6)

Let ϵ→ 0 through a sequence of values ϵk. Then, since ∥xϵ∥ < ϵ, we have

xϵk → θ, λ(ϵk)→ λ, µ(ϵk)→ µ, ν(ϵk)→ ν (7)

Therefore, from (6) and (7) we get λD f (θ) + µD1(θ) + νDh(θ) = θ, and from the
definition of µ, µ1(θ) = θ. This proves the necessity of the conditions.
Let us now consider the sufficiency of the conditions.
f (x) − f (x∗) ≥ ⟨D f (x∗), η(x, x∗)⟩e

= −⟨µD1(x∗) + νDh(x∗), η(x, x∗⟩e
= −{µ⟨D1(x∗), η(x, x∗⟩e + ν⟨Dh(x∗), η(x, x∗⟩e}
≥ −{µ(1(x) − 1(x∗)) + ν(h(x) − h(x∗))}
= −µ1(x)
≥ θ

which proves the sufficiency of the conditions.

5. CONCLUSION

It is quite obvious that using any constraint qualification to assure the positivity
of λ, we can obtain a generalization of the very popular Karush-Kuhn-Tucker
conditions from Theorem 4.1. Thus, the theorem can be extremely useful in
solving a wide class of optimization problems in infinite dimensional Hilbert
spaces.
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