
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 10, 2014

 25-28

Abstract—This paper provides an overview of challenges for

Internet of Things programming. In this article we discuss

system software models and solutions, rather than network

related aspects. It continues our series of publications about

M2M systems, existing and upcoming system software

platforms for M2M applications. We discuss here such issues

for IoT systems as latency, power limitation, reliability

(unreliability), network topology related effects as well as data

processing in IoT applications.

Keywords—IoT, communications, software standards, micro-

service, middleware.

I. INTRODUCTION

In this paper, we would like to discuss some challenges

associated with Internet of Things (IoT) programming. In

this article we discuss system software models and solutions,

rather than network related aspects. This paper continues our

series of publications about software aspects of M2M and

IoT.

In our first paper [1] we discussed the problems with the

unified standards with Machine to Machine communications

(M2M). We concluded that the current development misses

the larger point of how M2M services and products get

created and deployed. In many cases, developers either have

to use some predefined platform and be locked with its

restriction or build a system completely from scratch. For

M2M and Internet of Things products to be successful,

interfaces must be simple. The complexity that lies

underneath should be completely hidden. As seems to us, at

the current stage the existing solutions very often just

increase the complexity.

The complexity of existing approaches we’ve discussed

also in our paper [2]. It raises the following question: do we

really need Application Program Interfaces (API) always, or

our goal could be described as Data Program Interfaces

(DPI)? We can describe DPI as an interface at the edge of

an IoT device that exposes and consumes data. IoT devices

very often do not support commands (instructions). Many of

sensors just provide some data and nothing more. This

simple step (refusal to support API) can seriously simplify

the interaction with the devices. DPI’s are much simpler, of

course. And what is more important – they can create a

unified API for all devices. The process of reading data can

be similar for all devices. As usual, we can pass data

interpretation (translation) to the end-user devices. And our

Article received Sep 20, 2014.

D.Namiot is senior researcher at Open Information Technologies Lab,

Lomonosov Moscow State University. Email: dnamiot@gmail.com

M. Sneps-Sneppe is with ZNIIS. Email: sneps@mail.ru

“unified” reading procedure can simply return some JSON

array.

So, as soon as all the “unified” standards become too

complex, what is the solution? We are strong proponents of

micro-services.

The micro-services approach is a relatively new term in

software architecture patterns. The micro-service

architecture is an approach to developing an application as a

set of small independent services [3]. Each of the services is

running in its own independent process. Services can

communicate with some lightweight mechanisms (usually it

is something around HTTP) [4]. Such services could be

deployed absolutely independently. Also, the centralized

management of these services is a completely separate

service too. It may be written in different programming

languages, use own data models, etc. We think that micro-

services are the natural fit for M2M (IoT) development.

In accordance with this, in our opinion, considering the

individual systems, such as Open IoT [5], for example, a

description of their abilities cannot be the main purpose. The

main point is the allocation of micro-services within them.

And the second goal is, accordingly, the issues of their

independent usage and deployment. Such an analysis with

respect to M2M applications was presented in our paper [6].

IoT and M2M have remote device access in common. But

they are not completely similar, of course. Some of authors

draw the difference in the way IoT and M2M access to the

remote devices. For example, traditional M2M solutions

typically rely on point-to-point communications using

embedded hardware modules and either cellular or wired

networks. In contrast, IoT solutions rely on IP-based

networks to interface device data to a cloud or middleware

platform. It is probably now always true, because the cloud

is not a mandatory stuff for the Internet of Things. Nothing

prevents the application access to remote devices directly,

or, more precisely, get data from remote devices without the

cloud (and without the middleware, by the way). The typical

examples are Bluetooth Low Energy tags, mentioned in [2].

Some authors point to UI (User Interfaces). Obviously, the

UI is a mandatory part for IoT projects and could be missed

in M2M. This definition evolves into a more radical

statement: M2M is simply a part for IoT. For our

programmers-oriented (data access oriented) review this

latest definition is, probably, most suitable.

The rest of the paper is organized as follows. In Section II

we discuss challenges for IoT programming. In Section III

we discuss perspective programming models for IoT

applications.

On IoT Programming

Dmitry Namiot, Manfred Sneps-Sneppe

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 10, 2014

 25-28

II. ON CHALLENGES FOR IOT PROGRAMMING

As the first challenge for the system development in IoT

area, we should mention the power supply. Obviously, it is

the first limitation. It directly affects the algorithms we can

use in our systems. So, solutions (e.g., libraries) for

implementing power-optimized calculations (algorithms)

will prevail. The same is true for network protocols.

We should mention in this context such entity as Dynamic

Power Management (DPM). The main idea behind this

approach is to shut down devices when they don’t need to be

on-line on and to start them up when they need to transmit

(receive) data. As per [8], Dynamic power management

(DPM) is a design methodology for dynamically

reconfiguring systems to provide the requested services and

performance levels with a minimum number of active

components or a minimum load on such components.

Normally, it is a typical task for the operating system

(OS). E.g., a mobile operating system can prefer

accelerometer over GPS for some tasks due to energy

limitations, etc. But complex IoT may orchestrate several

devices, and any individual operating system is simply

unaware about the whole process. So, the whole system

should be able to switch services on and off more

intelligently than each individual device’s OS.

But of course, DPM itself is not free and may cause such

a problem as latency. The latency could be of course a

congenital problem for IoT devices too. E.g. device may

transmit data in discrete time cycles only. The typical

example is the above mentioned BLE tags (iBeacons).

Another typical source of delays is very often the network

topology optimized for IoT system. For example, mesh

networks are immune to the failure of a few nodes [9]. But

as a price for this we will have more hops (read – increased

delay) in data delivery paths. Actually, the scalability for IoT

networks is a big problem. The things could be more

complicated if will admit the fact that many devices may

simply transmit data without requests (e.g., do that by the

timer). It could lead to the wasted bandwidth and increased

delays in communications.

In general, for many cases we have to consider IoT data

as unreliable. It may lead to the additional data curation and

error-correction procedures on the application level [10].

The data curation and data brokering stuff is very

important for IoT applications by the another reason also.

Actually, remote devices (sensors) in case of IoT can

produce a huge amount of data. And it is very important to

have the ability for data projection. We need to select the

right amount of data for the particular task. And one of the

biggest problem here is to find a right (and commonly used)

tool just for data description. Raw data from sensors should

have some meta-data associated with them. Otherwise, there

is no way to develop adaptive algorithm. As soon as the

mapping for data is unknown, we cannot automatically

detect the dependencies for example. And this information is

critical for many algorithms.

Figure 1 illustrates the basic data model behind FI-WARE

project [11]

Figure 1. FI-WARE data model

Obviously, remote devices (sensors) may generate a big

amount of data. So Big Data approach is a natural fit for

IoT. But in case of a huge amount of distributed data

developers need a way for real time processing some sub-

sets. Think, for example about processing sensors data for

some limited retail space. So, there is a huge demand for

some kind of toolchains. Current IoT architectures are

device or network oriented. However, the key value

proposition of IoT is from the interaction of these “Things”

with humans and society. So, for getting the benefits some

form of stream processing for IoT data is practically

mandatory.

It the terms of context-aware computing (“ubiquitous

computing”) IoT makes the software context much larger.

So, the developed applications should have some

mechanisms for dealing with this fast changed data.

III. ON PROGRAMMING MODELS

Lets us see some programming models that could be

suitable for IoT.

Reactive programming (functional reactive programming

- FRP) [12] is a paradigm for programming hybrid systems

(systems containing a combination of both continuous and

discrete components) in a high-level, declarative way. The

key ideas in FRP are its notions of continuous, time-varying

values, and time-ordered sequences of discrete events. The

most important concept underlying functional reactive

programming is that of a signal: a continuous, time-varying

value. That is, a value of type Signal is a function mapping

suitable value of time to a value of a given type.

Conceptually, then a signal’s value at some time t is just a

value for this functional mapping. Being able to define and

manipulate continuous values in a programming language

provides great expressive power. Figure 2 describes the

reactive traits.

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 10, 2014

 25-28

Figure 2. The reactive traits [13]

The next interesting concept is Abstract Task Graph [14].

The Abstract Task Graph (ATaG) is a data driven

programming model for end-to-end application development

of networked sensor systems. An ATaG program is a

system-level, architecture-independent specification of the

application functionality. ATaG model maps the network

graph to an application graph.

ATaG provides a methodology for architecture-

independent development of networked sensing applications.

Architecture independence here is the ability to specify

application behavior for a generic and parameterized

network architecture. The same application may be

automatically adopted for the different network

deployments. Application will work as nodes fail or are

added to the system. Furthermore, it allows development of

the application to proceed prior to decisions being made

about the final configuration of the nodes and network.

Figure 3 describes ATaG program for environment

monitoring [14].

Figure 3. An ATaG program for environment monitoring [14].

 As the next model we would like to discuss the

Computational REST [15]. In this model the traditional

content resources are replaced with computational resources.

The key moments behind the Computational REST are:

- Computations and their expressions are explicitly

named.

- Services may be exposed through a variety of URLs

which offer perspectives on the same computation.

- Interfaces may offer complementary supervisory

functionality such as debugging or management.

- Functions may be added to or removed from the binding

environment over time or their semantics may change.

- Computations may be stateful and stateless.

- Potentially autonomous computations exchange and

maintain state.

- A rich set of stateful relationships exist among a set of

distinct URLs.

- The computation is transparent and can be inspected,

routed, and cached.

- The migration of the computation to be physically closer

to the data store is supported thereby reducing the impact of

network latency.

In this context we should mention also an interesting

model CoReWeb [16]. It presents a web of linked

computational resources.

And at the end, we will describe Flow-Based

Programming (FBR) [17] and the Actor Model [18]. Both

models are based on components where the messages are the

only entities which can affect processes. FBR is actually

very close to the extensions of M2M API proposed in our

paper [19]. Also Actors are very close to the basic

primitives for micro-services [3]:

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 2, no. 10, 2014

 25-28

We can mention the following primitives need for micro-

services architecture [15]:

1) Request/Response calls with arbitrary structured data

2) Asynchronous events should be flowing in real-time in

both directions

3) Requests and responses can flow in any direction,

4) Requests and responses and can be arbitrarily nested.

The typical example is a self-registering worker model

5) A message serialization format should be pluggable.

So, developers may use, for example, JSON, XML, etc.

REFERENCES

[1] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software.

International Journal of Open Information Technologies, 2(6), 29-36.

[2] Namiot, D., & Sneps-Sneppe, M. (2014, June). On software standards

for smart cities: API or DPI. In ITU Kaleidoscope Academic

Conference: Living in a converged world-Impossible without

standards?, Proceedings of the 2014 (pp. 169-174). IEEE.

[3] Namiot, D., & Sneps-Sneppe, M. (2014). On Micro-services

Architecture. International Journal of Open Information

Technologies, 2(9), 24-27.

[4] Uckelmann, Dieter, Mark Harrison, and Florian Michahelles. "An

architectural approach towards the future internet of things."

Architecting the internet of things. Springer Berlin Heidelberg, 2011.

1-24.

[5] Kim, J., & Lee, J. W. (2014, March). OpenIoT: An open service

framework for the Internet of Things. In Internet of Things (WF-IoT),

2014 IEEE World Forum on (pp. 89-93). IEEE.

[6] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software

Platforms. International Journal of Open Information Technologies,

2(8), 29-33.

[7] Alam, M., Nielsen, R. H., & Prasad, N. R. (2013, July). The evolution

of M2M into IoT. In Communications and Networking

(BlackSeaCom), 2013 First International Black Sea Conference on

(pp. 112-115). IEEE.

[8] Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design

techniques for system-level dynamic power management. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, 8(3), 299-

316.

[9] Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh

networks: a survey. Computer networks, 47(4), 445-487.

[10] Tyagi, Sapna, Ashraf Darwish, and Mohammad Yahiya Khan.

"Managing Computing Infrastructure for IoT Data." Advances in

Internet of Things 2014 (2014).

[11] Elmangoush, A., Al-Hezmi, A., & Magedanz, T. (2013, December).

Towards Standard M2M APIs for Cloud-based Telco Service

Platforms. In Proceedings of International Conference on Advances in

Mobile Computing & Multimedia (p. 143). ACM.

[12] Hudak, P., Courtney, A., Nilsson, H., & Peterson, J. (2003). Arrows,

robots, and functional reactive programming. In Advanced Functional

Programming (pp. 159-187). Springer Berlin Heidelberg.

[13] The reactive manifesto http://www.reactivemanifesto.org/ Retrieved:

Sep, 2014

[14] Bakshi, A., Prasanna, V. K., Reich, J., & Larner, D. (2005, June). The

abstract task graph: a methodology for architecture-independent

programming of networked sensor systems. In Proceedings of the

2005 workshop on End-to-end, sense-and-respond systems,

applications and services (pp. 19-24). USENIX Association.

[15] Erenkrantz, J. R. (2009). Computational REST: A New Model for

Decentralized, Internet-Scale Applications DISSERTATION

(Doctoral dissertation, University of California, Irvine).

[16] Monnin, A., Delaforge, N., & Gandon, F. (2012, June). CoReWeb:

From linked documentary resources to linked computational

resources. In Proceedings of the WWW2012 Conference Workshop

PhiloWeb 2012:“Web and Philosophy, Why and What For.

[17] Morrison, J. P. (1994). Flow-based programming. In Proc. 1st

International Workshop on Software Engineering for Parallel and

Distributed Systems (pp. 25-29).

[18] Esposito, A., & Loia, V. (2000). Integrating concurrency control and

distributed data into workflow frameworks: an actor model

perspective. In Systems, Man, and Cybernetics, 2000 IEEE

International Conference on (Vol. 3, pp. 2110-2114). IEEE.

[19] Sneps-Sneppe, M., & Namiot, D. (2012, April). About M2M

standards. M2M and Open API. In ICDT 2012, The Seventh

International Conference on Digital Telecommunications (pp. 111-

117).

