
J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 158–172, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On ISOA: Intentional Services Oriented Architecture

Colette Rolland1, Rim Samia Kaabi1, and Naoufel Kraiem2

1 Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
2 Ecole Nationale des Sciences de l’Informatique, 2035 Manouba, Tunis, Tunisia

rolland@univ-paris1.fr, rim-samia.kaabi@malix.univ-paris1.fr,
Naoufel.Kraiem@ensi.rnu.tn

Abstract. Despite the growing acceptance of SOA, service-oriented computing
remains a computing mechanism to speed-up the design of software
applications by assembling ready-made services. We argue that it is difficult for
business people to fully benefit of the SOA if it remains at the software level.
The paper proposes a move towards a description of services in business terms,
i.e. intentions and strategies to achieve them and to organize their publication,
search and composition on the basis of these descriptions. In this way, it
leverages on the SOA to an intentional level, the ISOA. We present ISM, the
model to describe intentional services, and to populate the service registry. We
highlight its intention driven perspective for service description, retrieval and
composition. Thereafter, we propose a methodology to determine intentional
services that meet business goals. Finally, we introduce agent architecture to
support model driven execution of intentional services.

Keywords: Service-oriented computing, service-oriented architecture, inten-
tional service-oriented architecture, intentional service modelling, intention-
driven service composition.

1 Introduction

Service-Oriented Computing (SOC) is the computing paradigm that utilizes services
as fundamental elements for developing software applications [1][2]. SOC relies on
the Service-Oriented Architecture (SOA) [3] that is a way of reorganizing a portfolio
of previously developed applications into services that are self-describing, platform
agnostic computational elements performing functions, accessible through standard
interfaces and that can be assembled in complex compositions based on standard
messaging protocols. As shown in Fig.1, the basic SOA defines an interaction
between three kinds of software agents [4], namely, the service provider, the service
client and the service registry involving the publish, find and bind operations.
Services are offered by service providers that procure the service implementations
and supply their descriptions to a service registry. The service registry publishes
services by making their descriptions. The service client uses the find operation to
retrieve the service description matching his functional needs and uses it to bind with
the service provider and invoke the service.

 On ISOA: Intentional Services Oriented Architecture 159

Service
provider

Service client
Service
registry Find

BindPublish

Fig. 1. Function-driven SOA

SOA is a way of designing a software system that is function-driven. Services
perform functions implemented in software, wrapped with formal documented
interfaces which provide the mechanism by which services can communicate with one
another in compositions to perform higher level functions. The service interface (that
provides the signatures of the available operations) is central to the SOA view as it is
the only thing, which is exposed to the client to invoke the function.

However, it shall be noticed that interface descriptions are low level, technical
statements (cf. WSDL statements [5]) that are understandable by software
professionals but far to be comprehensible by business people. At the same time, the
notion of a service is familiar to the management world [6] and with the growing
acceptance and popularity of SOA, computing systems now aim to extend far beyond
the firewall to automate enterprise-wide business processes, covering sales, supply
chain, manufacturing, delivery, payment, human resources, and more. To attain this, it
is necessary to adapt SOA to a mainstream practitioners’ level and bridge the gap
between high level business services and low level software services [7], [8].

The position adopted in this paper is to suggest a move from the function-driven
SOA to intention-driven SOA. Whereas the former lies on a functional view of
services, the latter proposes to spell out the purpose, the intention behind a service. As
a consequence, interfaces of these services will bring out the business goal that the
service allows to fulfil instead of defining the signatures of basic operations that can
be invoked on class objects. This will avoid the current mismatch of languages
between low level services expressions such as WSDL statements and business
perceived services. We refer to these services as intentional services and present in
this paper ISM, a model for intentional service modelling.

While complying with the SOA model, our model, the intentional SOA, ISOA is a
proposal for leveraging the 3-SOA tuple <Publish, Find, Bind> to an intentional level
matching the business mainstream needs. In adapting the roles and operations of the
SOA model, the ISOA (Fig. 2) introduces two main departures:

(i) in the interaction, business agents replace software agents,
(ii) intentional service descriptions replace functional software service descriptions.

The ISOA implies that business centric organizations offering e-business services
shall describe their services in an intentional manner, and publish them to an e-
business service registry that makes these descriptions available in an intentional
service registry. Business agents who are searching for services use an intention
matching mechanism to retrieve service descriptions fitting their needs and use them
to bind to the e-business provider.

160 C. Rolland, R.S. Kaabi, and N. Kraiem

E-business
provider

Business
agent

Intentional
service
registry Goal Driven Find

Bind
and Adapt

Objectify
and Publish

Fig. 2. Intention-driven SOA

In this paper, we use the three roles mentioned in the ISOA architecture to
structure the discussion on ISOA. For the registry, we introduce the notion of
intentional service, highlight its relationship with software services and present ISM,
a model for intentional service modelling. We show that an intentional service
description shall include variability, i.e. propose alternative variations of a given
component service. The model gives to us the capability to populate the intentional
service registry. This is the subject of section 2.

It is for the e-business provider to define the services that are to be provided in the
business. We propose to represent business intentions in a graphical representation
called Map. This Map takes the form of an intention/strategy graph with intentions as
nodes and strategies to achieve them as edges. The e-business provider derives the
services that can be published from a map following a set of guidelines. This role of
the provider is considered in section 3.

Finally, in carrying out his role, the business agent must be provided with the
appropriate execution architecture particularly to handle variability. In section 4, we
outline an agent architecture for service execution.

2 Populating the Registry with Intentional Services

In this section we consider the Intentional Service Registry. The aim is to develop a
model that defines the contents of the Registry. Towards this end, we clarify the
notion of an intentional service and present the Intentional Service Model, ISM, to
model different types of intentional services.

2.1 Intentional Service Model

An intentional service is a service captured at the business level, in business
comprehensible terms and described in an intentional perspective, i.e. focusing on the
intention it allows to achieve rather than on the functionality it performs. Fig. 3
presents ISM using UML notations. As shown by the colors used in the Figure, there
are three different aspects in the description of an intentional service, namely the
service interface, the service behavior and the service composition. We describe the
three in turn.

First, central to the Figure is the fact that a service permits the fulfillment of an
intention, given an initial situation and terminating in a final situation. These three
elements constitute the interface of an intentional service; the intention replaces the

 On ISOA: Intentional Services Oriented Architecture 161

- Code
- Commentary

Final Situation

Initial Situation

Post-condition

Atomic

Variant Composite

1..*

Pre-condition1
0..*

0..*

0..*

0..*

Intention

1..*
1..*

0..* 0..*
11

0..*

1

1..*

1..*

0..*

satisfies

Class

-Attribute

Class

-Attribute

Service Interface

Service Behavior

Service Composition

Legend
Service Interface

Service Behavior

Service Composition

Legend

Service

State

Aggregate

Relation

Fig. 3. Intentional Service Model

operations that are part of a typical software interface whereas the initial and final
situations are the input and output parameters structured as business object classes.

We view an intention in the same sense as a goal. A goal is ‘an optative’ statement
[9], that expresses what is wanted i.e. a state that is expected to be reached or
maintained. Thus, Make Room Booking is the intention to make a reservation for
rooms in a hotel. The achievement of this intention leaves the system in the state,
Booking made. If Accept Payment is the intention of a service then the initial situation
refers to the booking and customer classes whereas the final situation comprises the
payment class in addition.

Second, the behavior of the service is specified through its pre and post conditions
that are the initial and final sets of states characterizing the initial and the final
situation respectively. In the Accept Payment service example, <booking.state =‘OK’
∧ customer.status=‘registered’> and <booking.state=‘paid’ ∧ payment.status = ‘done’
> are the pre and post-conditions respectively.

Finally, services are classified as aggregate or atomic. The former are composed
of other services whereas the latter are not. Atomic services have intentions that are
fulfilled by SOA level functional services. In contrast aggregate services have high-
level intentions that need to be decomposed in lower level ISOA services till atomic
intentional services are found. Therefore, it can be understood that aggregate
intentional services lie on an intention-driven composition that is necessary to bridge
the gap between the actual functionality (captured in the atomic service) and the high
level perception of business executives for a service fulfilling their strategic/tactical
intentions.

Fig. 3 shows that aggregate services are further refined. Aggregation of services
can involve variants, i.e. services which are alternative to the others or result from
simple composition, leading to composite services.

Composite services reflect the precedence/succession relationship between their
intentions. For example, in the room booking case, Make Room Booking must precede

162 C. Rolland, R.S. Kaabi, and N. Kraiem

Accept Payment. The composition of this two services leads to the satisfaction of the
intention Make Confirmed Booking. This form of composition is grounded on the
AND goal decomposition as used in goal modelling [10].

The composition is denoted “•” when there is a sequential order between
component services and “//” when they can run in parallel. Every service in a
composition can be executed repeatedly, this is denoted by the “*” symbol. Thus, the
composite service to fulfil the Make Confirmed Booking intention is defined as
follows:

S Make Confirmed Booking = • (S Make Room Booking, S Accept Payment)

Introduction of variability in intentional service modelling is justified by the need
to introduce flexibility in intention achievement and adaptability in intentional service
execution. There are three types of variants in ISM, namely alternative, choice and
multi-path.

An alternative variation corresponds to an XOR relationship between the service
intentions involved. For example, assume that Accept Payment can be achieved in
exclusively one of the following ways, By electronic transfer or By credit card or By
cash. This leads to define the service S Accept Payment as a variant aggregate with three
alternative components. We use the symbol “⊗” to denote alternative and therefore:

S Accept Payment = ⊗ (S Accept Payment by electronic transfer, S Accept Payment by credit card, S Accept

Payment by cash)

A choice variation corresponds to an OR relationship between the service
intentions involved. For example, assume that Investigate Candidate Booking can be
achieved either On the Internet or By visiting a travel agent or by both. The aggregate
service S Investigate Candidate Booking is therefore defined as variant with two components S
Investigate Candidate Booking on the Internet and S Investigate Candidate Booking by visiting a travel agent. We use the
symbol “ν” to denote the choice variation and therefore:

S Investigate Candidate Booking = ν (S Investigate Candidate Booking on the Internet, S Investigate Candidate Booking

by visiting a travel agent)

Finally a multi-path variation occurs when several compositions of an intentional
service allow to achieve the same intentional service. Let us assume in our example
that it is possible that the customer gets a booking as a reward for loyalty to the hotel
chain. Thus, there are two paths to providing the intentional service Make a
Confirmed Booking: one by achieving the sequence of intentional services Make a
Booking, Accept payment and the other one Get a Rewarded Booking. The multi-path
is denoted “∪” and the multi-path service S Make Confirmed Booking is defined as follows:

S Make Confirmed Booking = ∪ (• (S Make Room Booking, S Accept Payment), S Get a Rewarded Booking)

The foregoing demonstrates that services are defined recursively; an aggregate
service being possibly composed of other aggregate services; besides, components of an

aggregate service can be related directly through composition links (., //, *) or in a more
complex manner through relationships (∪,⊗,ν). Relationships between intentional
services introduce variability in the composition. Overall, services are defined in an
intention-driven manner focusing on the ‘whys’ of the functionality provided by the

 On ISOA: Intentional Services Oriented Architecture 163

underlying SOA level software service. Moreover, composition is itself intention-driven
and grounded in XOR, OR, AND relationships among intentional services. Thus,
whereas the service interface exhibits the ‘whys’ of the service, its actual implemented
functionality is embedded in the related atomic services.

Now, consider the issue of populating the Intentional Service Registry. Evidently,
every service must be available in the Registry. That is, every atomic and aggregate
service is kept here. For an aggregate, information about composition links and
relationships is kept. This enables (Fig. 2) retrieval of complete aggregate services,
their binding and adaptation to conform to the task at hand. Retrieval is based on
intention matching and thereafter on situation and condition matching. That is, given
the need to find a service with intention I, the registry is searched to retrieve a service
with the same or similar intention. Once such a service is found, one drills down to
assure oneself that the pre and post conditions match. Finally, the initial and final
situations yield the input and output parameters.

3 Discovering Services for Publication

We believe that the services that populate the Registry arise in the business of
organizations. Services to be provided relate to business objectives and, indeed, help
to achieve these. This requires that a model of the business can be developed using
which the E-business provider (Fig. 2) discovers services for publication. In this
section, we propose the use of the Map formalism [11] to represent businesses in
intentional terms and provide guidelines to determine services from this
representation. We use Materials Management (MM) to illustrate service publication
(see [11] for full details of the MM map).

3.1 Capturing Business Intentionality in Maps

Map is a representation system that was originally developed to represent a process
model expressed in intentional terms. It provides a representation mechanism based
on a non-deterministic ordering of intentions and strategies. We will use it here as a
means for modelling intention-driven composition of services.

A map is a labelled directed graph with intentions as nodes and strategies as edges.
An edge enters a node if its strategy can be used to achieve the intention of the node.
There can be multiple edges entering a node.

An intention is a goal that can be achieved by the performance of a process. For
example, the MM map in Fig. 4 has Purchase Material and Monitor Stock as
intentions. Furthermore, each map has two special intentions, Start and Stop, to
respectively start and end the process.

A strategy is an approach, a manner to achieve an intention. In Fig.4, By reorder
point planning is a manner to place an order to Purchase Material, any time the stock
of this material falls under the reorder point.

A section is the key element of a map. It is a triplet as for instance <Start,
Purchase Material, Manual Strategy> which couples a source intention (Start) to a
target intention (Purchase Material) through a strategy (Manual strategy) and
represents a way to achieve the target intention Purchase Material from the source
intention Start following the Manual Strategy.

164 C. Rolland, R.S. Kaabi, and N. Kraiem

Sections in a map are related to each other by four kinds of relationships namely
multi-thread, bundle, path and multi-path relationships.

Bundle relationship: Several sections having the same pair of source and target
intention, which are mutually exclusive are in a bundle relationship. For example in
Fig.4, the Planning strategy is a bundle consisting of the Reorder point strategy and
Forecast based strategy. Similarly, the Inventory balance strategy is a bundle of
periodic, continuous and sampling strategies.

Multi-thread relationship: It is possible for a target intention to be achieved from a
source intention in many different ways. Each of these ways is expressed as a section
in the map and these sections are in a multi-thread relationship with one another. In
Fig.4 the Planning strategy and the Manual strategy are in a multi-thread
relationship. The difference between a multi-thread and a bundle relationship is that
of an exclusive OR of sections in the latter versus an OR in the former.

Path relationship: This establishes a precedence/succession relationship between
sections. For a section to succeed another, its source intention must be the target
intention of the preceding one. For example the two sections, <Start, Purchase
Material, Manual strategy >, <Purchase Material, Monitor Stock, Out-In strategy >
constitutes a path.

Multi-path: Given the three previous relationships, an intention can be achieved by
several combinations of sections. Such a topology is called a multi-path. In general, a
map from its Start to its Stop intentions is a multi-path and contains multi-threads. For

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodica

b
c

d

1

2
3

1

1

2

1

3

4 6

5

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Out-In
strategy

Bill for
expenses
strategy

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodica

b
c

d

1

2
3

1

1

2

1

3

4 6

5

Start

Stop

Accept
delivery

Enter goods
In stock

Reconciliation by
PO recovery

Okay
strategy

Recon-
ciliation
of unit
difference

Reconciliation
of under/over

delivery

Rejection strategy

Completeness
strategy

Out-in direct
consumption strategy

Out-in storage
based strategy

a 1

2

3

2

1

1
1

4

b
c

d

Fig. 4b. Map refining bc1 section

Fig. 4a. The Material Management Map

Fig. 4. The Material Management Map (Fig. 4a) and the Map refining bc1 section (Fig. 4b)

 On ISOA: Intentional Services Oriented Architecture 165

example, there is a multi-path to achieve the intention Purchase Material; either the
path from Start to Monitor Stock via Purchase Material can be followed or the direct
path from Start to Monitor Stock can be used.

Finally, it is possible to refine a section of a map into an entire map at a lower level
of abstraction. For example, Fig. 4 shows the refinement of the section <Purchase
Material, Monitor Stock, Out-in strategy> as a map (Fig. 4a). This refinement
mechanism leads to model business intentionality as a hierarchy of maps.

3.2 Deriving Intentional Services from Maps

Having represented business intentionality as maps, we now proceed to determine
services and their composition according to the ISM. We propose three key
guidelines1 to do this:

1- associate every section to an atomic service,
2- calculate all the paths of a map using an adaptation of the MacNaughton and

Yamada’s algorithm [12],
3- determine the aggregate services using the following correspondences

between sections relationships in maps and service composition operators in
ISM <path – composite>, <bundle – alternative>, <multi-thread – choice>,
<multi-path – multi-path>. Since the entire map is, in general, a multi-path, it
corresponds to an aggregate service.

We consider the three steps in turn and illustrate them with the MM map.

3.2.1 Associating Map Sections to Atomic Services
The first step consists of associating every section of a map to an atomic service. This
correspondence leads in the case of the MM example, to services shown in Table1 in

Table 1. Services of the MM map

MM map sections Intentional Services
ab1 S Purchase Material with reorder point strategy
ab2 S Purchase Material with forecast strategy
ab3 S Purchase Material Manually
bc1 S Receive stock of purchased material
ac1 S Receive stock by bill for expenses
cc1 S Move stock
cc2 S Evaluate value of stock
cc3 S Inspect stock
cc4 S Conduct Physical Inventory continuously
cc5 S Conduct Physical Inventory by sampling
cc6 S Conduct Physical Inventory periodically
cd1 S Verify invoice against delivery

1 For sake of clarity, we deal here with guidelines for one single map whereas the entire process

must deal with a hierarchy of maps. Rule 1 above needs then to be adapted (non refined
sections are associated to atomic services) and an iteration step for every refined map shall be
added.

166 C. Rolland, R.S. Kaabi, and N. Kraiem

correspondence with each of the 12 sections of the MM map. For sake of conciseness
we use an abbreviated notation to refer to a section. We refer to each intention by a
letter and to each strategy between a pair of intentions by a digit starting from 1 (see
Fig. 4). Therefore, ab3 is the reference of section <Start, Monitor Stock, Manual
strategy> between the source intention Start, the target intention Monitor Stock, with
the Manual strategy coded 3.

It can be seen that the name of each service reflects the business intention that can
be achieved as well as the strategy to achieve it.

3.2.2 Calculating all Paths
We sketch an algorithm that automatically generates paths in the map and therefore,
allow us to determine aggregate services as well as their nature, composite or variant.
This algorithm is an adaptation of the MacNaughton and Yamada’s algorithm [12] to
calculate paths in a graph. This algorithm uses the different types of relationships
between sections in a map that we introduced earlier.

The MacNaughton’s algorithm is based on the two following formula:
Let s and t be the source and target intentions, Q the set of intermediary intentions

including s and t and P the set of intermediate intentions excluding s and t.
The initial formula Ys,Q,t used to discover the set of all possible paths using the

three operators that are the union (“∪”), the composition operator (“.”) and the
iteration operator (“*”) is:

Ys, Q, t= • (X*s, Q\{s}, s, X .s, Q\{s, t}, t, X*t, Q\{s, t}, t)

And given a particular intention q of P, the formula Xs,P,t applied to discover the set
of possible paths is:

Xs,P,t= ∪ (Xs, P\{q}, t , •(Xs, P\{q}, q, X*q, P\{q}, q, Xq, P\{q}, t))

We specialize the Xs,P,t into paths, multi-paths, multi-threads and bundle
relationships that we note as follows:

Bundle relationship between two intentions k and l is denoted Bkl = ⊗(kl1, kl2
…kln) where the kli are the exclusive sections related by the bundle relationship. In
Fig. 4, the bundle of planning strategies is Bab =⊗(ab1, ab2).

Multi-thread relationship between two intentions k and l is denoted MTkl =∨ (kl1
kl2, kln) where the kli are the sections related by the multi-thread relationship. Thus,
the multi-thread between Start and Purchase Material in Fig. 4 is MTab =∨ (Bab, ab3).

Path relationship between two intentions k and l is denoted Pk,Q,l where Q designates
the set of intermediary intentions used to achieve the target intention l from the source
intention k. A path relationship is based on the sequential composition operator “.”
between sections and relationships of any kind. As an example, the path relationship in
Fig. 4 between Start and Monitor Stock is denoted Pa,{b},c = •(MTab, bc1).

Multi-path relationship between two intentions k and l is denoted MPk,Q,,l where
Q designates the set of intermediary intentions used to achieve the target intention l
from the source one k. A multi-path relationship is based on the union operator “∪”
between alternative paths. Thus, the multi-path in Fig. 4 between Start and Stop is
denoted MPa,{b},c= ∪ (ac1, Pa,{b},c}).

 On ISOA: Intentional Services Oriented Architecture 167

The initial formula generating all the paths between the intentions a and d of Fig. 4
map, is:

Ya,{a,b,c,d},d= •(X*a,{b,c,d},a, Xa,{b,c},d, X*d,{b,c},d)

The identified paths are summarized in Table 2.

Table 2. List of sections relationships

Type of relationship Identified relationships
Path Pa,{b},c= • (MTab, bc1)

Pa,{b,c},d= • (MPa,{b},c, MTcc
*, cd1)

Multi-Path MPa,{b},c= ∪ (ac1, Pa,{b},c})
Bundle Bab= ⊗(ab1, ab2)

Bcc= ⊗(cc4, cc5, cc6)
Multi-Thread MTab= ∨(Bab, ab3)

MTcc= ∨(cc1, cc2, cc3, Bcc)

3.2.3 Determine Aggregate Services
Now, we establish a correspondence between section relationships in the map and
aggregate service types. This correspondence is as follows: <path – composite>,
<bundle – alternative>, <multi-thread- choice>, <multi-path- multi-path>. Table 3
presents the variant and composite services associated to the MM map. These are
expressed with the set of variant and composite operators, namely ∨, ⊗, ∪, •, *
introduced earlier in section 2.

Table 3. Components of the aggregate service S Satisfy Material Need Efficiently

Aggregate Types Services
Variant services S Purchase Material Planning strategy = ⊗ (S PM reorder point strategy, SPM with forecast strategy)

S Conduct Physical Inventory = ⊗ (S CPI continuously, S CPI by periodically, S CPI by sampling)
S Purchase Material = ∨ (S Purchase Material Manually, S Purchase Material Planning Strategy)
S Monitor Stock = ∨ (S Conduct physical inventory, S Inspect stock, S Move stock, S Evaluate value of

stock)
S Receive stock = ∪ (S Receive stock by bill for expenses, S Receive stock normally)

Composite
services

S Satisfy Material Need Efficiently = • (S Receive stock, S Monitor Stock*, S Verify invoice against

delivery)
S Receive stock normally = • (S Purchase material, S Receive stock of purchased material)

It is to be noted that the entire MM map is associated to a composite service S Satisfy

Material Need Efficiently having the intention Satisfy Material Need Efficiently. This
aggregate service is a composition of three services, S Receive stock, S *Monitor Stock, and S
Verify invoice against delivery. The first one of these is a multi-path with the intention to
Receive Material in stock. The second is a set of variant services to achieve the
intention Monitor Stock. The third one is an atomic service intended to Verify invoices
against delivery.

168 C. Rolland, R.S. Kaabi, and N. Kraiem

4 Adapting Services

Since an aggregate service captures a full range of variants to achieve the root service
intention, when the business agent (Fig. 2) desires to use the service he has selected
there is an adaptation issue. The issue of adaptation is that of determining which
variant services and which combination of variant services are relevant to the
situation at hand.

We again believe that adaptation must be driven by business intentions and
identified two different ways in which adaptation can be done:

− Design time adaptation permits a selection of a combination of variants that might
result in only one composite service; i.e. one path from Start to Stop in the map.

− Run time adaptation allows to leave a large degree of variability in the adapted
aggregate service and the desired variant services can then be selected
dynamically at enactment time.

This section describes how the different combinations of services in an ISM
aggregate service can be mapped to an agent architecture that monitors the navigation
through service relationships and thus allows dynamic service selection at run time.

4.1 The Agent Architecture

In order to monitor the navigation among the composition of services and offer to the
business agent the choice of variants he/she wants to execute, we build a hierarchy of
agents to managing service relationships and handing over the execution of atomic
services. The hierarchy is composed of two kinds of agents: control and executor agents.

− An executor agent is a self-contained unit that implements an atomic service; this
can be done by handing over the control to a traditional service composition
engine such as the BPEL4WS engine [13].

− A control agent controls the selection and execution of a given composition, i.e. a
path in a map (executors or/and other control agents). We distinguish four kinds of
control agents for each of the four operators “∪” (multi-path), “.” (path), “∨”
(thread) and “⊗” (bundle) control agents. They respectively control the selection
and execution of the paths related by multi-path, path, multi-thread and bundle
relationships.

In order to build the hierarchy, we defined mapping rules that are briefly sketched
in the following. We first introduce one executor for each atomic service. As can be
seen in Fig. 5, there is a one to one correspondence between atomic services and
executors. For example, the service ab1 is mapped to an executor having the same
name. Executor agents are the leaves of the hierarchy.

Higher levels correspond to control agents. There is a kind of control agent for
each kind of service relationship. For example, in Fig. 5, the multi-thread relationship
MTab (see Table 2) is associated to a multi-thread control agent having the same
name. We first identify control agents using a one-to-one correspondence and then,
make some simplifications, for example, a path relationship composed of one atomic
service in not mapped to a control agent.

 On ISOA: Intentional Services Oriented Architecture 169

Stop

Planning
strategy

Start

Purchase
Material

Monitor
Stock

Quality
inspection
strategy

Inventory
balance
strategy

Valuation
strategy

In-In strategy

Manual
strategy

Payment
control
strategy

Reorder Point
strategy

Forecast
based
strategy

Continuous
Sampling

Periodic

a

b

c

d

1

2
3

2

1

3

4 6

5
Bill for
expenses
strategy

1

Pa,{b,c},d

MPa,{b},c

MTcc

ac1

Pa,{b},c

MTab

ab3

Bab

ab1 ab2 bc1 cc1 cc2 cc3

Bcc

cc4 cc5 cc6 cd1

1

Out-In
strategy

Executor level

b level

c level

d level

Fig. 5. Agent architecture

Control agents are organized at different levels. Each level is responsible for the
achievement of a service intention. The top level of the hierarchy corresponds to the
Stop intention and is responsible of the achievement of the goal of the whole
aggregate service (map). The next level is related to the intention preceding the Stop
intention. The bottom level of the hierarchy is composed of the executor agents. The
hierarchy of Fig. 5 is composed of four levels related to the intentions of the MM
map. The control agents of each level control children agents belonging to the same
level or to the levels below.

4.2 Service Agent Support

Clearly, the ISOA departs from the usual SOA binding mechanism in providing an
enactment mechanism that permits dynamic selection of services at run time. This is
compatible with the business-oriented view of the ISM and the need for business
agents to adapt decision making ‘on the fly’. We believe that it is possible for
business people to perform this adaptation. This is because knowledge of the business
characteristics and an analysis based on these is enough to make the adaptation
decision.

5 Related Work

Generally speaking, research on service description, composition and adaptation is
relevant for our work [3].

Typical descriptions of services are based on finite state formalisms, e.g., in [14]
[15] services are represented as state charts, in [16] services are modeled as Mealy
machines and in [17], services are represented as finite state machines. The ISM
shares with these approaches the need to describe service to ease their retrieval but

170 C. Rolland, R.S. Kaabi, and N. Kraiem

departs from their function driven perspective to propose an intention drive of service
description. As a consequence, ISM service descriptions will bring out the business
intention that the service allows to fulfill and pre and post conditions instead of
defining the signatures of operations that can be invoked on class objects. We believe
that this contribute to avoid the current mismatch of languages between low level
services descriptions such as WSDL statements and business perceived services.

Our description of intentional services has some similarities with semantic
descriptions as found in [18][19][20]. Annotations which provide these semantic
descriptions are compared to ontology elements in order to enrich usual retrieval
mechanism. However, none of these semantic descriptions seem to be based on goal
matching.

Our approach borrows from goal driven approaches in Requirements Engineering
[21][22] the idea of goal decomposition and goal refinement through AND/OR
graphs. This leads to an intention driven service composition: an ISM aggregate
service has a high level, strategic intention as its key characteristic and its
composition is reflecting the intention decomposition into sub-intentions that can be
themselves fulfilled thanks to a composition of lower level sub-intentions etc. till
operational intentions related to atomic services are found. By contrast most proposals
are based on the idea of flow-composed services in which services are black boxes
exchanging input/output parameters [23][17][24].

A large body of research work [25][26][14][15][16] deals with service execution:
(i) the peer-to-peer architecture in which the individual service interact among
themselves and with the client directly, and (ii) the mediated architecture in which the
control over the available services is centralized. Our approach fits best to the peer-to-
peer perspective but needs specific mechanism to cope with the adaptation issue.

From a methodological viewpoint, our proposal is close to [27] as both share the idea
to capture service needs from exploring business goals. In [27] a revised Tropos design
process is used to support service discovery and composition by offering a roadmap that
relates stakeholder goals to collections of services available in different directories.

6 Conclusion

In this paper we introduced the notion of intentional service as one described in terms
of the business goal it allows to fulfill. We also showed that ISOA service
composition is intention driven and reflects business needs. This is in accordance with
our view that business executives must be provided with a description of services
available in a service portfolio that is adapted to their own perceived needs.

The paper considered in some detail the three roles of our ISOA architecture:

− E-business provider, who looks at a business, identifies its intentions, derives
and publishes services in the intentional service registry.

− Intentional service registry where services are available. The descriptors of
services and the typology of services being kept are modeled in the ISM.

− Business agent who retrieves services from the registry and dynamically
navigates through aggregate services composition graphs using the agent
architecture. The appropriate aggregate variant is thus available for execution.

 On ISOA: Intentional Services Oriented Architecture 171

Whereas the three roles of ISOA correspond to the service provider, registry and
client roles of the SOA, it is to be noted that ISOA services, aside from supporting
business intentions, are also more complex than SOA ones. This is because of
aggregate variants that provide flexibility to the business agent in performing the task
at hand. In contrast SOA services are fixed and are available on a ‘take it or leave it’
basis.

The proposed approach is still work in progress. Current research aims at
developing (a) an intention driven search mechanism for the selection of services on
the basis of the business goal they allow to fulfil and (b) a software tool to guide the
discovery of aggregate service through maps.

References

1. Papazoglou, M-P., Giunchiglia, F., Kraemer, B., Traverso, P.: Service Oriented
Computing Network, The new computing paradigm for the network world (2003)

2. Papazoglou, M-P.: Service-Oriented Computing: Concepts, Characteristics and Directions,
WISE’03, Rome, Italy (2003)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. In: Concepts, Architectures
and Applications, Springer, Heidelberg (2004)

4. Papazoglou, M-P., Georgakopoulos, D.: Service-Oriented Computing. Communication of
the ACM, 46(10) (2003)

5. W3C Web Service Description Language (WSDL) Version 1.2. W3C Working Draft 3,
(2003) http://www.w3.org/TR/wsdl12/

6. Piccinelli, G., Emmerich, W., Williams, S-L., Stearns, M.: A Model-Driven Architecture
for Electronic Service Management Systems. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 241–255.
Springer, Heidelberg (2003)

7. Arsanjani, A.: Service-oriented modelling and architecture. (November 2004) http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/

8. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and
Design (2004)

 http://www-128.ibm.com/developmentworks/webservices/library/ws-soad1/
9. Jackson, M.: Software Requirements and Specifications. In: A lexicon of practice,

principles and prejudices, p. 256. Addison-Wesley, New York (August 1995)
10. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding Goal Modelling using Scenarios.

IEEE Transactions on Software Engineering, Special Issue on Scenario
Management 24(12), 1055–1071 (1998)

11. Rolland, C., Prakash, N.: Bridging the gap between Organizational needs and ERP
functionality. Requirement Engineering Journal (2000)

12. MacNaughton, R.: Yamada: Regular expressions and state graphs for automata. IEEE
transactions on electronic computers EC-9, 39–47 (1960)

13. Andrews, T., Curbera, F., Dholakia, H.: Microsoft, IBM, and SAP. BPEL4WS version 1.1,
(2003) http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

14. Mecella, M., Pernici, B., Craca, P.: Compatibility of e-Services in a Cooperative Multi-
Platform Environment. In: Proc. VLDB-TES (2001)

15. Fauvet, M-C., Dumas, M., Benatallah, B., Paik, H.: Peer-to-Peer Traced Execution of
Composite Services.In: Proc. of VLDB-TES (2001)

172 C. Rolland, R.S. Kaabi, and N. Kraiem

16. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation Specification : A New Approach to
design and analysis of E-Service Composition. In: Proc. of the WWW’03 Conference
(2003)

17. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
Composition of e-Services that Export their Behavior. In: Proc. of WES 2003 (2003)

18. DAML-S Defense Advanced Research Projects Agency: DARPA agents markup
language- Services (DAML-S). http://www. Daml.org/services/

19. Sirin, E., Parsia, B.: Planning for semantic web services in Semantic web services
workshop at ISWC’04. (2004) http://www.mindswap.org/papers/SWS-ISWC04.pdf

20. Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D.,
Connoly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila,
O., McGuinness, D., Stein, L.A.: DAML+OIL (2001)

 http://www. Daml.org/2001/03/daml+oil-index.html
21. Van Lamsweerde, A., Dairmont, R., Massonet, P.: Goal Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt. In: Proc. Of RE’95,
pp. 194–204. IEEE, New York (1995)

22. Yu, E.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE Int. Symp. On RE’97. pp. 226-235
Washington D.C., USA (January 6-8 1997)

23. Yang, J., Papazoglou, M-P.: Service Components for Managing the Life-Cycle of Service
Compositions. Information Systems Journal (2003)

24. Dijkman, R-M.: A Basic Design Model for Service-Oriented Design,
ArCo/WP1/T1/D2/V1.00, (2003)

25. Casati, F., Shan, M.: Dynamic and Adaptive Composition of e-Services, Information
Systems, 6(3) (2001)

26. McIltraith, S., Son, T., Zeng, H.: Semantic web services, IEEE Intelligent Systems, 16(2)
(2001)

27. Perini, A., Susi, A., Mylopoulos, J.: Tropos Design Process for Web Services, 1st
Int. Workshop on SOC: Consequences for Engineering Requirements, Paris
(2005)

	Introduction
	Populating the Registry with Intentional Services
	Intentional Service Model

	Discovering Services for Publication
	Capturing Business Intentionality in Maps
	Deriving Intentional Services from Maps

	Adapting Services
	The Agent Architecture
	Service Agent Support

	Related Work
	Conclusion
	References

