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ON ISOMORPHISMS BETWEEN CENTERS
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(Communicated by Jonathan I. Hall)

Abstract. For finite nilpotent groups G and G′, and a G-adapted ring S
(the rational integers, for example), it is shown that any isomorphism between
the centers of the group rings SG and SG′ is monomial, i.e., maps class sums
in SG to class sums in SG′ up to multiplication with roots of unity. As
a consequence, G and G′ have identical character tables if and only if the
centers of their integral group rings ZG and ZG′ are isomorphic. In the course
of the proof, a new proof of the class sum correspondence is given.

1. Introduction

It has been asked whether an automorphism of the center of the integral group
ring of a finite group necessarily induces a monomial permutation on the set of the
class sums (listed as Problem 14.2 in the Kourovka Notebook [8] and as Problem 41
in [17], both times attributed to S. D. Berman), but seemingly no progress was made
towards a solution, except that it is annotated in [17] that A. A. Bovdi has answered
it affirmatively for nilpotent groups of class at most three. In this paper, it is finally
dealt with in the case of nilpotent groups.

Actually, we are treating an obvious generalization of the original question. Sup-
pose G is a finite group and S is an integral domain of characteristic zero, and let
CentS(G) be the center of SG, the group ring of G over S. Throughout, we shall
be concerned with a G-adapted coefficient ring S (precise definitions are given in
the following sections). Then, given another group G′, we ask whether an isomor-
phism CentS(G) ∼= CentS(G′) of S-algebras (if existing) is necessarily monomial,
i.e., maps class sums in SG to class sums in SG′ up to multiplication with roots of
unity (which, in any case, can be avoided by “normalization”; see Lemma 2.2). For
nilpotent G, this is answered in the affirmative (Theorem 4.2). In fact, nilpotent
groups constitute a special case as the familiar Berman–Higman result assures that
the central units of finite order in SG are, up to roots of unity, just the central ele-
ments in G. This suggests that an approach might exist which proceeds inductively
along the upper central series of the groups. This idea is realized, resulting in an
elementary, character free proof.

Dealing with isomorphisms—rather than only with automorphisms—does not
cause additional difficulties and is motivated by the following question: Does an
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1540 MARTIN HERTWECK

isomorphism CentZ(G) ∼= CentZ(G′) result in an isomorphism between the char-
acter tables of G and G′? (The converse has been known ever since Frobenius
introduced group characters.) It turns out that a monomial isomorphism of centers
preserves the character degrees, thus giving rise to an isomorphism of character ta-
bles. Conversely, a degree-preserving isomorphism of centers is monomial. This is
the content of the class sum correspondence, for which a proof is given in Section 3
which deviates from the known in so far as the case when S is a ring of algebraic
integers is treated in a simple way, using an elementary result of Kronecker, which
says that at least one of the conjugates of a nonzero algebraic integer that is not
a root of unity must lie outside the unit circle (Lemmas 2.4 and 2.5). It is only in
Section 3 that characters really show up, and one might get an impression about
the problem in general. Section 2 contains all the generalities needed for the han-
dling of nilpotent groups in Section 4. We would like to emphasize that no internal
characterization of class sums, or even character degrees, in the center is known, so
we do not consider CentS(G) as an algebra in its own right.

It seems appropriate to include a few remarks on character rings. Let CharS(G)
be the ring of S-linear combinations of the irreducible characters of G. Let R be a
ring of algebraic integers. Weidman [19] and Saksonov [13] proved independently
that if CharR(G) ∼= CharR(G′), then the character tables of G and G′ are the same.
This can be viewed as a consequence of an internal characterization of the ordinary
inner product on the character ring (see also the presentation in [1]). Actually, they
showed that any isomorphism of character rings is monomial (in the supplement
[20] it is shown how “normalization” is to be understood).

Duality between the rings CentS(G) and CharS(G) is definitive only for abelian
groups. For a subfield k of the complex numbers, the structure of Centk(G) and
Chark(G) has been described in [18], where it is shown that if p is an odd prime
and G is a p-group, then Centk(G) ∼= Chark(G), with the assumption p �= 2 being
necessary (cf. also [2]). In [15], p-adic class algebras have been compared with p-
adic character rings. If S is G-adapted, then CentS(G) ∼= CharS(G′) if and only if
G and G′ are isomorphic abelian groups.

2. Generalities

Let G and G′ be finite groups, and let R be a ring of algebraic integers in the
field of complex numbers C. A class sum in RG is, for a group element g of G, the
sum of its G-conjugates in RG. Note that the class sums in RG form an R-basis
of CentR(G).

Suppose there exists an R-algebra isomorphism ϕ : CentR(G) → CentR(G′). In
this section we shall derive some basic facts about it. Of course, ϕ extends to a
C-algebra isomorphism ϕ : CentC(G) → CentC(G′), and as such, ϕ maps primitive
idempotents (corresponding to irreducible characters) to primitive idempotents and
is completely determined by this operation.

We let g1, . . . , gh with g1 = 1 be representatives of the classes of G and write Ci

for the class sum of gi in RG. We let ε : RG → R be the augmentation homomor-
phism and ε1 : RG → R be the usual trace map. These maps are defined, using
the group basis G, by ε(

∑
g∈G agg) =

∑
g∈G ag and ε1(

∑
g∈G agg) = a1 (all coef-

ficients ai in R). Throughout, we dispose of similar notation for G′ using primes,
i.e., g′1, . . . , g

′
h′ are representatives of the classes of G′ (with g′1 = 1), and so forth.
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We also write Cg for the class sum of a specific element g of G (accordingly, Cg′ for
g′ in G′ is defined) and let |Cg| be its length.

Lemma 2.1. The groups G and G′ have the same order and the same number of
conjugacy classes. The isomorphism ϕ maps the set of linear characters of G onto
the set of linear characters of G′.

Proof. Since CentR(G) and CentR(G′) have the class sums as R-bases, the groups
G and G′ have the same number of conjugacy classes. Without loss of generality
we can assume that |G| ≥ |G′|. Let I be the ring of all algebraic integers in C.
Let λ be a linear character of G and χ′ its image under ϕ. If eλ denotes the block
idempotent in CG corresponding to λ, then(

|G′|
χ′(1)

eλ

)
ϕ =

h∑
i=1

χ′(g′i
−1)C ′

i ∈ CentI(G′),

so |G′|
χ′(1)eλ ∈ CentI(G) and |G′|

χ′(1)

/
|G| = ε1

( |G′|
χ′(1)eλ

)
∈ I (here we used that λ(1) =

1). Thus |G′|
χ′(1)

/
|G| is a natural integer, and by our assumption on the orders of G

and G′, this is only possible if χ′(1) = 1 and |G| = |G′|. �

We shall say that ϕ is monomial if there is a permutation π on {1, 2, . . . , h}
and roots of unity ξ1, . . . , ξh such that Ciϕ = ξ−1

iπ C ′
iπ for 1 ≤ i ≤ h. Note that

then the assignment λ′(g′i) = ξi defines a linear character λ′ of G′ since the idem-
potent 1

|G|
∑h

i=1 Ci corresponding to the principal character is mapped under ϕ

to 1
|G′|

∑h
i=1 ξ−1

i C ′
i . We shall say that ϕ is normalized if the following diagram is

commutative:
Cent R(G)

ε
�����

���
���

�
ϕ

�� Cent R(G′)

ε′
������������

R

We write � and �′ for the principal characters of G and G′, respectively. Note that
ϕ is normalized if and only if ϕ sends � to �′. If ϕ is monomial and normalized, it
maps class sums to class sums.

We can turn our attention to normalized isomorphisms:

Lemma 2.2. Let λ′ be the linear character of G′ to which � is mapped under ϕ
(cf. Lemma 2.1). Then a monomial R-algebra automorphism α of CentR(G′) is
defined by the assignment C ′

i α = λ′(g′i)C
′
i , and ϕα is a normalized isomorphism.

Proof. Note that ϕ maps
∑

i Ci to
∑

i λ′(g′i
−1)C ′

i , so α is clearly an R-linear map
such that (

∑
i Ci)ϕα =

∑
i C ′

i , i.e., ϕα sends � to �′. It remains to show that α
is multiplicative. Take class sums C ′

i and C ′
j and write C ′

i C
′
j =

∑
k c′ijkC ′

k with
integers c′ijk. Then

(C ′
i C

′
j)α =

∑
k

c′ijkλ′(g′k)C ′
k, (C ′

i )α(C ′
j)α =

∑
k

c′ijkλ′(g′i)λ
′(g′j)C

′
k,

so we have to check that λ′(g′k) = λ′(g′i)λ
′(g′j) whenever c′ijk �= 0. But this is obvious

by the definition of the c′ijk since λ′ is a linear character, i.e., has the commutator
subgroup of G in its kernel. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1542 MARTIN HERTWECK

We write N̂ for the sum in RG of the elements of a subgroup N of G.

Lemma 2.3. Let ϕ be normalized. Assume that there are normal subgroups N and
N ′ of G and G′, respectively, such that ϕ maps CentR(G)∩RN onto CentR(G′)∩
RN ′. Then N̂ϕ = N̂ ′ and there exists a commutative diagram of algebra homo-
morphisms

Cent R(G)
ϕ

��

π

��

Cent R(G′)

π′

��

Cent R(G/N)
ϕ̄

�� Cent R(G′/N)

where the vertical maps are the natural ones and the bottom map ϕ̄ is again a
normalized isomorphism.

Proof. Let eN be the block idempotent of CN corresponding to the principal char-
acter. As a central idempotent of CG, it is mapped by ϕ to a central idempotent f
of CG′. By assumption, f lies in CN ′; it is primitive in CN ′ as eN is primitive in
CN . Since ϕ is normalized, it follows that f corresponds to the principal character
of N ′. So N̂ϕ = |N|

|N ′|N̂
′, showing that |N|

|N ′| ∈ R ∩ Q = Z. Similarly, |N ′|
|N| ∈ Z, so

|N | = |N ′| and N̂ϕ = N̂ ′.
Set Ḡ = G/N , and let π : RG → RḠ be the R-algebra homomorphism extending

the natural homomorphism G → Ḡ. Note that the kernel of π is the annihilator of
N̂ . Also considering the analogously defined map π′, it follows from N̂ϕ = N̂ ′ that
ϕ induces an isomorphism ϕ̄ : CentR(G)π → CentR(G′)π′. We proceed to show that
ϕ̄ can be extended to an isomorphism CentR(Ḡ) → CentR(Ḡ′). Let g ∈ G, and let
Cḡ be the class sum of ḡ in RḠ. Since π maps conjugacy classes of G onto conjugacy
classes of Ḡ, we have Cgπ = mCḡ for some m ∈ N. So CentR(G)π contains a C-basis
of CentC(Ḡ), and ϕ̄ uniquely extends to an isomorphism ϕ̄ : CentC(Ḡ) → CentC(Ḡ′).
With ϕ, also ϕ̄ is normalized. It remains to show that Cḡϕ̄ ∈ RḠ′. Since Cḡϕ̄ =
1
m (Cgϕπ′), this is equivalent to Cgϕπ′ ∈ mRḠ′ or (CgN̂)ϕπ′ ∈ m|N |RḠ′. Since
CgN̂ ∈ mZG we have (CgN̂)ϕ = (Cgϕ)N̂ ′ ∈ mRG∩ (RG′)N̂ ′, so (Cgϕ)N̂ ′ = mxN̂ ′

for some x ∈ RG′, and it follows that (CgN̂)ϕπ′ = ((Cgϕ)N̂ ′)π′ = (mxN̂ ′)π′ =
m|N ′|(xπ′) as desired. �

We define an anti-automorphism ◦ on CG in the usual way by (
∑

g∈G agg)◦ =∑
g∈G āgg

−1 where āg denotes the complex conjugate of the number ag. Note that
◦ fixes each central primitive idempotent in CG. This shows that ϕ commutes with
these anti-automorphisms in the sense that (x◦)ϕ = (xϕ)◦

′
for all x ∈ CG. Also

note that ε1(CiC
◦
i ) = |Ci| for any index i and ε1(CiC

◦
j ) = 0 for distinct indices i, j.

Lemma 2.4. Suppose that ε1(CgC
◦
g ) = ε′1((CgC

◦
g )ϕ) for some g ∈ G. Write

Cgϕ =
∑h

i=1 aiC
′
i with all ai in R and suppose further that ai0 �= 0 for some index

i0 with |C ′
i0
| ≥ |Cg|. Then ai0 is a root of unity and Cgϕ = ai0

Ci0 .

Proof. We have ε1(CgC
◦
g ) = |Cg| and ε′1((CgC

◦
g )ϕ) =

∑h
i=1 |ai|2|C ′

i |. By an ele-
mentary result due to Kronecker [7], either ai0 is a root of unity or some algebraic
conjugate of ai0 has absolute value strictly greater than 1. From the assumptions,
it follows that ai0 is a root of unity and that all other coefficients ai vanish. �

The immediate consequence is:
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Lemma 2.5. If ε1(z) = ε′1(zϕ) for all z ∈ CentR(G), then ϕ is monomial.

Proof. By Lemma 2.2, we can assume that ϕ is normalized. For n ≥ 0, let Tn be
the set of class sums of elements of G of length n (so T0 = ∅), and let R[T<n] be the
R-span of T0, . . . , Tn−1. We shall prove by induction on n that ϕ maps Tn onto T ′

n.
For n = 0 this is an empty statement, so let n ≥ 1. Suppose that Tn �= ∅, and let
g ∈ G with Cg ∈ Tn. By the induction hypothesis, ϕ maps R[T<n] bijectively onto
R[T ′

<n]. Thus g satisfies the hypotheses of Lemma 2.4, from which we conclude
that Tnϕ ⊆ T ′

n. By symmetry, Tnϕ = T ′
n, and we are done. �

3. The class sum correspondence

For a group G, an integral domain S of characteristic zero is called G-adapted if
no prime divisor of the order of G is invertible in S. In this section, we keep previous
notation but instead of R we take a G-adapted ring S into consideration. It is only
at first sight that this is a more general assumption, and we shall derive the class sum
correspondence from results of the previous section. Let ψ : CentS(G) → CentS(G′)
be an S-algebra isomorphism.

First, we give the explicit formula of the matrix A = (aij) which describes ψ
with respect to the bases formed by the class sums:

Ciψ =
h∑

j=1

aijC
′
j (1 ≤ i ≤ h).

Let χ1, . . . , χh with χ1 = � be the irreducible characters of G, and let el be the block
idempotent corresponding to χl (so el = χl(1)

|G|
∑h

i=1 χl(g−1
i )Ci). We have elψ = e′lσ

for a permutation σ on {1, 2, . . . , h}. Writing both sides as linear combinations of
class sums, we find that

(3.1) (χl(g1), . . . , χl(gh))A =
χ′

lσ(1)
χl(1)

(χ′
lσ(g′1), . . . , χ

′
lσ(g′h)).

To put it in matrix form, let M be the monomial matrix whose (l, lσ) entry is
χ′

lσ(1)/χl(1) (and all other entries are zero), let X be the character table of G
regarding the fixed orders on classes and characters (by convention, X ′ is the char-
acter table of G′). Then XA = MX ′. Solving for A using the first orthogonality
relation yields

(3.2) aij =
1
|G|

h∑
l=1

|Ci|χl(g−1
i )

χl(1)
χ′

lσ(1)χ′
lσ(g′j).

We can assume that the quotient field of S is embedded in a field containing C,
so that aij ∈ Q(ζ) where ζ is a complex primitive |G|-th root of unity. We remark
that the Galois group of Q(ζ) over Q acts on the entries of A, for if τ is a Galois
automorphism, with ζτ = ζn for n ∈ N (coprime to |G|), then

aτ
ij =

1
|G|

h∑
l=1

|Cgn
i
|χl(g−n

i )
χl(1)

χ′
lσ(1)χ′

lσ(g′j
n).

The following remark, due to Saksonov, shows that all the lemmas from the
previous section hold with R replaced by the more general ring S.
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Remark 3.1. The Galois action mentioned before shows in particular that all alge-
braic conjugates of aij lie in S, and this implies that all aij are algebraic integers,
by a lemma we can attribute to Saksonov [14, p. 190] (Lemma 3.2.2 in [6]). Thus
if R is the ring generated over Z by the entries of A and A−1, then R is a ring of
algebraic integers, and ψ restricts to an isomorphism ϕ : CentR(G) → CentR(G′).

We are now in a position to give a quick proof of the class sum correspondence,
which was treated by Berman, Glauberman, Passman and Saksonov (names that
should be mentioned at least; cf. [12, (1.1)]). Glauberman and Passman [9, Theo-
rem C] treated the case when the coefficients are algebraic integers while Saksonov’s
version [14] is for G-adapted coefficient rings. Short proofs treating the case when Z

serves as a coefficient ring can be found in [5, (3.17)], [10, Chapter 14, Lemma 2.3],
[16], and [17, (36.5)].

We say that ψ preserves the character degrees if χl(1) = χ′
lσ(1) for 1 ≤ l ≤ h, or,

equivalently, if ψ can be extended to an isomorphism between the complex group
rings CG and CG′.

We state the class sum correspondence following Saksonov [14] (as reported in
[6, Theorem 3.5.8]).

Theorem 3.2 (Class sum correspondence). Let ψ : CentS(G) → CentS(G′) be an
S-algebra isomorphism. Then ψ is monomial if and only if it preserves the character
degrees.

Proof. By Remark 3.1, we can assume that S = R and ψ = ϕ as before. Suppose
that ϕ is monomial. Then the first column of A is the transpose of (1, 0, . . . , 0), so
comparing the first entries in (3.1) shows that ϕ preserves the character degrees.
Conversely, suppose that ϕ preserves the character degrees. Using the second or-
thogonality relation, (3.2) shows that ai1 = 0 for i > 1, so ϕ satisfies the assumption
of Lemma 2.5 and is therefore monomial. �

Remark 3.3. We do not know whether, in general, ψ preserves the character de-
grees. What is immediate from (3.1) is that the χ′

lσ(1)2/χl(1) are integers, so that
χ′

lσ(1) and χl(1) have the same prime divisors (consider also ψ−1). The question
is whether heights of irreducible characters are preserved. In [11, § 0] it is pointed
out that it does not seem immediately obvious that the p-defects (or heights) of
irreducible characters not of height zero can be determined from the knowledge of
the isomorphism type of the center of the group ring of G over a p-adic ring alone.

We remark that the bilinear form (x, y) = ε′1((xψ)(yψ)◦
′
) on CentS(G) is given

with respect to the basis formed by the class sums by the matrix AD′A∗, where
D′ = diag(|C ′

1|, . . . , |C ′
h|) and A∗ is the hermitian transpose of A. The (i, j) entry

is given by

(AD′A∗)ij =
1
|G|

h∑
l=1

χ′
lσ(1)2

|Ci|χl(g−1
i )

χl(1)
|Cj |χl(gj)

χl(1)
.

Remark 3.4. The groups G and G′ have identical character tables if the isomorphism
ψ : CentS(G) → CentS(G′) is monomial and degree preserving. This is easily seen
as follows. Choose an ordering of the irreducible characters such that ψ maps
the block idempotent ei belonging to the character χi to the block idempotent
e′i belonging to the character χ′

i. By the definition of a monomial isomorphism,
there is a linear character λ′ of G′ such that, after suitable ordering of the classes,
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Cjψ = λ′(g′j)C
′
j , and by Lemma 2.2, |Cj | = |C ′

j |. Since ψ is degree preserving, we
can set qij = |Cj |/χi(1) = |C ′

j |/χ′
i(1), and obtain

qijχi(gj)e′i = (qijχi(gj)ei)ψ = (Cjei)ψ = λ′(g′j)C
′
je

′
i = λ′(g′j)qijχ

′
i(g

′
j)e

′
i.

So χi(gj) = (λ′ ⊗ χ′
i)(g

′
j), and the λ′ ⊗ χ′

i are, of course, again the irreducible
characters of G′.

4. Nilpotent groups

We keep the notion introduced in the previous sections. The following lemma is
designed for an application to nilpotent groups.

Lemma 4.1. Keep the notation and hypotheses from Lemma 2.3. Let M be the
normal subgroup of G containing N so that M/N is the center of G/N , and define
the normal subgroup M ′ of G′ analogously. Suppose that ϕ maps the class sums of
elements of N onto the class sums of elements of N ′. Then ϕ maps the class sums
of elements of M onto the class sums of elements of M ′.

Proof. Set Ḡ = G/N and Ḡ′ = G′/N ′. By the Berman–Higman result (from [3]
and [4, p. 27]) and Lemma 2.3, we know that ϕ̄ maps the class sums of elements of
M̄ (i.e., the central elements of Ḡ) onto the class sums of elements of M̄ ′ (i.e., the
central elements of Ḡ′).

For n ≥ 0, let Tn be the set of class sums of elements of M of length n (so
T0 = ∅), and define T ′

n analogously. We shall prove by induction on n that ϕ maps
Tn onto T ′

n. For n = 0 this is an empty statement, so let n ≥ 1. Suppose that
Tn �= ∅, and let m ∈ M with Cm ∈ Tn. By the Berman–Higman result, there is
m′ ∈ M ′ with Cm̄ϕ̄ = Cm̄′ , and we can write

(4.1) Cmϕ =
( k∑

i=1

riCm′
i︸ ︷︷ ︸
)

m̄′
i=m̄′ for all i

+
( l∑

j=1

sjCh′
j︸ ︷︷ ︸
)

in the kernel of π′

with the class sums Cm′
1
, . . . , Cm′

k
, Ch′

1
, . . . , Ch′

l
pairwise distinct. Since m̄ ∈ Z(Ḡ)

we have CmC ◦
m ∈ RN and so ε1(CmC ◦

m) = ε′1((CmC ◦
m)ϕ) by assumption, meaning

that

(4.2) |Cm| =
( k∑

i=1

|ri|2|Cm′
i
|
)

+
( l∑

j=1

|sj |2|Ch′
j
|
)

.

By Lemma 2.4 (application of Kronecker’s result), if |Cm′
i
| ≥ |Cm| for some index

i, then Cmϕ = Cm′
i
. So let us assume that |Cm′

i
| < |Cm| for all i. We will reach

a contradiction, showing that Tnϕ ⊆ T ′
n. By symmetry, then also T ′

nϕ−1 ⊆ Tn

and the proof will be complete. By the induction hypothesis, there are mi ∈ M
with Cmi

ϕ = Cm′
i
. Then m̄iϕ̄ = m̄′

i = m̄′ = m̄ϕ̄ shows that Nm = Nmi for all i.
Set ∆ = Cm −

∑k
i=1 riCmi

. Then ∆ϕ =
∑l

j=1 sjCh′
j
. Since ∆∆◦ ∈ RN , we have

ε1(∆∆◦) = ε′1((∆ϕ)(∆ϕ)◦
′
), which gives

(4.3) |Cm| +
( k∑

i=1

|ri|2|Cmi
|
)

=
( l∑

j=1

|sj |2|Ch′
j
|
)

.

From (4.2) and (4.3) it follows that all ri are zero, so that (4.1) gives the desired
contradiction |Cm|m̄′ = Cmπϕ̄ = Cmϕπ′ = 0. �
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Theorem 4.2. Let G and G′ be finite nilpotent groups, and let S be a G-adapted
ring. Then all isomorphisms between CentS(G) and CentS(G′) as S-algebras (if
there are any) are monomial and preserve the character degrees.

Proof. By Remark 3.1, we can assume that S = R and ψ = ϕ as above. By
Lemma 2.2 we can further assume that ϕ is normalized, and then we only need to
show that ϕ maps class sums to class sums, by Theorem 3.2.

Set Zn = Zn(G), the n-th term of the upper central series of G (so Z0 = 1 and
Z1 = Z(G)). Use similar notation for G′. We prove by induction on n that ϕ maps
the class sums of elements of Zn onto the class sums of elements of Z ′

n. For n = 0,
there is nothing to prove, so we can let n ≥ 1 when the statement follows from the
induction hypothesis and Lemma 4.1, applied with N = Zn−1 and M = Zn (and
the corresponding normal subgroups of G′). �

By Remark 3.4, we obtain as a corollary:

Corollary 4.3. The finite nilpotent groups G and G′ have identical character tables
if and only if CentZ(G) ∼= CentZ(G′) as rings.
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