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Hence, if P’ = 0 on each boundary, J vanishes for all admissible choices of 7,5 . Hence,
by the converse theorem mentioned above, e.; is derivable from a single valued dis-
placement. The same is then necessarily true of e¥; = e.s + €5, and hence 0,4 remains
a solution for the stress when Poisson’s ratio is changed. On the other hand, if P{" does
not vanish on some boundaries, a suitable choice of 7.5 can always be made to render
J non-zero. But this would necessarily imply that the strains €,; (and hence €*;) are
not derivable from a single valued displacement, whence o, would certainly not consti-
tute a solution for the new material.

The present theorem can be useful in simplifying the initial formulation of some
problems. For example, the choice » = % in conjunction with a total stress-strain law of
plasticity permits the use of a single formula for the sum of the elastic and plastic com-
ponents of strain; in other problems, the choice » = 0 might be more appropriate. In
addition, the present theorem may conceivably have significance in connection with
photoplasticity.
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ON ISOPERIMETRIC INEQUALITIES IN PLASTICITY*
By WALTER SCHUMANN (Broun University)

Abstract. The purpose of this paper is the proof of the inequality P > 6xM,, where
P is the total limit load, M, the yield moment of a thin, perfectly plastic, simply sup-
ported, uniformly loaded plate of arbitrary shape and connection.

Introduction. The theory of thin, rigid-perfectly plastic plates, given by Hopkins
and Prager [1]** has been applied to circular plates with various load and edge con-
ditions. However, if one tries to extend this theory to non-symmetrical cases, serious
difficulties arise in seeking examples of exact solutions, although some cases have been
solved (see for instance [2]). As a contribution to the estimation of the limit load in an
arbitrary plate we shall use here the isoperimetric inequality, which relates a circular
domain to an arbitrary domain in a convenient manner. One of the principal theorems
of limit analysis [3] and the methods for isoperimetric problems given in Polya’s and
Szegd’s book [4] will be used. Similar problems have been proposed and solved for other
physical quantities, as for example the torsional rigidity, the principal frequency, etc.

*Received August 16, 1957. The results presented in this paper were obtained in the course of re-
search conducted under Contract Nonr 562(10) by the Office of Naval Research and Brown University.
**Numbers in square brackets refer to the bibliography at the end of the paper.




310 NOTES [Vol. XVI, No. 3

2. A lower bound for the limit load of a simply supported plate of arbitrary shape
under uniform load. Let us consider a simply supported plate of a rigid-perfectly
plastic material obeying Tresca’s yield condition (Fig. 1), and let p be the limit load
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per unit area, which is assumed to be constant, A the area of the domain G (Fig. 2),
P = pA the total limit load and M, the yield moment. Then the following inequality
is true:

P > 6xM, , 1

where the equality sign holds only in the case of the circular plate.
To prove this statement, we consider, in addition to the domain @, a circular domain
G’ of equal area A (Fig. 2), and we map the actual velocity field v of G into a new field
v’ over G’ in a certain way, that will be defined later. All further quantities for the new

simply supported

F1a. 2. Schwarz’ symmetrization: 4, = 4,".

field will be distinguished by primes from the corresponding quantities of the original
field. Denoting by D the dissipation function per unit area, we have

gmM=gDM. @
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Using the second theorem of limit analysis [3] and assuming that v’ is kinematically
admissible for G’, we have
ff p’ dA’ < ff D’ dA’. @)
G’ (e2d

Suppose for the moment » > 0, and let D,,, be the total rate of dissipation, V the volume
between the plane of the plate and the surface into which the plate deforms; then (2)
and (3) give

= P_m_& ’ _:ot
P = 7% A, P < v A “4)
‘To get the inequality (1), we look whether there exists a mapping v — v’ such that
D tot Qgﬁ .

For this purpose let us first investigate the dissipation function D, which is (see [6],
p- 50)

D=(ul+lnl+la+un, ©)

where «, and «, are the principal rates of curvature associated with the velocity field
v. For domains of (positive) elliptic and parabolic curvature corresponding to the regimes
A, AB and AF of the yield hexagon we have

D = Mk, + «;) = 2MH = —M, v? v, ' )

where H is the rate of the mean curvature, and v is counted positive when directed
downwards. On the other hand we may write for all regimes

DZMomale,;[, D22MOH. (8)

We shall later use the fact that (8) is valid at every point of the field v, even if hinges
occur. A hinge line may be considered as a narrow strip, where one of the rates of curva-
ture is very large and the other finite.

Finally, we note from (8) and Green’s formula, that » > 0 everywhere, since a
domain with » < 0 can be removed by v* = 0, thus diminishing D,,,/[[ vdA, so that
v < 0 cannot be the actual field.

Denote now by C, the contour line v = p of the surface v = v(z, y) (Fig. 2). We note
that C, may consist of several branches. Let «, be the rate of curvature tangential to
the contour line C, , « the curvature of the contour line in its plane, dp = « ds the incre-
ment of the angle of the tangent at C, , when a point of » moves an increment ds on C, ,
and finally let 3/9n denote differentiation normal to C, into its “interior”, i.e. the direc-
tion of increasing p. We integrate the dissipation function D over an infinitestimal
strip between C, and C,,q, , which gives, by using (8),

dD... 2Mo?gmaxlx;[dndsZMo¢'|x,|dnds
o “ ©
2r
=Mof|xl§£dnd32Mofo dp dp = 2xM, dp.

Cp
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The equality sign in the third inequality of (9) holds, when C, is convex and consists
only of one branch.

After these preparations we now specify the mapping of v in two steps as follows:
v(@) — v"'(@"), v'(G") — v'(@). The first transformation is the so-called Schwarz’ sym-
metrization (see [4], p. 190 or [5]). Let C’’ be the contour line of v"/, which corresponds
to C, (same height p), and let 4, and A/’ be the areas, which C, and C}’ “surround”
(increasing p). Schwarz’ symmetrization is then defined as follows

I. C7 is a circle, concentric in G'.

II. The areas A, and A}’ are equal.

It is easy to see, that Schwarz’ symmetrization does not change the volume V. However
D,.. might be, at least in certain cases, increased. We introduce therefore a further
transformation. The velocity field "’ consists, because of the rotational symmetry, of
several ring-shaped circular zones of elliptic, parabolic and hyperbolic rate of curvature
(Fig. 3). We replace the body between v"’ and the plane of G’ by its convex hull (surface
v’ indicated by the dotted lines in Fig. 3), which has only elliptic and parabolic curvature.

si?Iy supported

axis of symmetry "I

Fia. 3.

Let C.. be the smallest contour circle, such that outside C}. no elliptic curvature exists.
The transformatton has then the following properties
a) The volume is increased: V' > V"',

b) C ison ¢ andon v’;

L .
= p*t = ’.o
avl 6')”
) T T PT
’ 4
dd; _dAY _dd, g

dp dp dp

As outside C. , D' = M, , we shall have the equality signs in (9) there. As on the
other hand the inequalities (9) are valid everywhere in G, we obtain

Dy 2 Dy, for p < p*. (10)
“Inside” C,. , the second inequality (8) can be applied, which gives

Devsonpe > M.,f VivdA = M, ands a1

p2p* Cp*
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and inside C}. we may apply Eq. (7) (regimes A, AB)

’
Dispar = =M, [[ VP adr = M, § 2w, (12)

p2p* C’pe

As dv/on > 0, 9v'/on’ > 0, per definition of the contour lines, there exists an important
inequality between the last terms in (11) and (12), which is actually the key point of
the proof. It follows namely from Schwarz’ inequality for dv/dn and (dv/dn)~"! and from
the zsoperimetric inequality 4wA,. < 1. , where I, is the length of C,. (see [4], p. 234)

i) 47 A,. '
. > —_— = -7 '.
m = ldAp on ds (13)
Cpe ——r C'ps
dp p=p*
‘Therefore we obtain
Di. 2 Di,., for p > p*. (14)

From (14) and (10) we conclude, that D,,,/V, and also P, are not increased by the
mapping G — G’, and as 6xM, is actually the limit load of the circular plate (see [6], p.
55), inequality (1) is proved.

It remains to show that the equality sign in (1) is valid only in the case of the circular
plate. The equality sign in (13) holds only when C,. is a circle, and when 8v/dn is
constant. The equality signs in the two last inequalities of (9) hold, when every contour
line outside C,. consists of one convex branch and is a line of principal curvature, which
means that 8°»/0nds = 0. As one of them, namely C,. , is circular, they must all be
circular; therefore, the edge is a circle.

3. v. Mises’ yield condition. If one takes v. Mises’ yield criterion instead of Tresca’s
ccondition, the limit load is not diminished, because the ellipse surrounds the hexagon
[7] (Fig. 1). Therefore the inequality (1) remains true

P (v. Mises) > 6xM, . (15)

However the inequality is not isoperimetric.

4. Minimum weight design of a sandwich plate. As there is a certain duality be-
tween analysis and design problems [8], we expect also an isoperimetric inequality in
the latter case. However the result is less useful, because a bound for the minimum
volume, for example, does not help in finding the actual design. Nevertheless let us
look at a sandwich plate of variable thickness & of the sheets, but constant thickness
H, of the core, with a homogeneous material obeying Tresca’s yield criterion. The yield
moment is given by

Mo = UohHo ) (16)
where o, is the yield stress. Looking for a statically admissible stress field with regime

A of the hexagon (Fig. 1), Prager [9] has shown that A must satisfy the equation

2y _ _ D _
Vh= T, (17

and he mentioned the analogy between this problem and that of the membrane. The
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volume of the sheets

V.tuinllv admissible = 2 ff h dA (18)
[}

corresponds to the torsional rigidity, if we take the torsion analogy instead of the
membrane analogy. For the torsional rigidity the isoperimetric inequality has been
proved long ago; thus we may write, by using the first theorem of limit analysis,

Az
14 S Vautionlly admissible S Voh'cle = Z%H_o'
5. Steiner’s symmetrization. In the case of a very long but narrow domain G, the
1soperimetric inequality gives a very bad bound. Steiner’s symmetrization (Fig. 4, see
also [10]) does not change G so much as Schwarz’ symmetrization, if the axis is chosen
conveniently. Steiner’s symmetrization, which increases the torsional rigidity, therefore

(19)

I-oxis of symmetry
Fia. 4. Steiner’s symmetrization.

increases also the volume of a design given in (18), and probably diminishes (or leaves
constant) the limit load of a simply supported, uniformly loaded plate. Unfortunately,
we are not able to prove the last of these two statements, which would be useful.
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