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ON ITERATED MINIMIZATION IN 
NONCONVEX OPTIMIZATION* 

H. TH. JONGEN,t T. MOBERT* AND K. TAMMERt 

In dynamic programming and decomposition methods one often applies an iterated minimi- 
zation procedure. The problem variables are partitioned into several blocks, say x and y. 
Treating y as a parameter, the first phase consists of minimization with respect to the variable 
x. In a second phase the minimization of the resulting optimal value function depending on y 
is considered. In this paper we treat this basic idea on a local level. It turns out that strong 
stability (in the sense of Kojima) in the first phase is a natural assumption. In order to show 
that the iterated local minima of the parametric problem lead to a local minimum for the 
whole problem, we use a generalized version of a positive definiteness criterion of Fujiwara- 
Han-Mangasarian. 

1. Introduction. For the optimization problem (P): 

min f(x, y)l(x, y) E M}, (P) 

a possible solution method consists of two phases. 
The first phase will be the parametric problem (Py): 

k(y) = inf{f(x,y)lx E M(y)} with (Py) x 

M(y) = {xl(x, y) E M . (1.1) 

As a logical consequence we note that +(y) = oo in case that M(y) is empty. The 
second phase will be an optimization problem in the variable y: 

min{ (y)ly E N) where N = { yl((y) < oo}. (1.2) 

This type of iterated minimization procedures is often applied within the area of 
dynamic programming and decomposition methods (cf. Bank et al. [1], Beer [2], 
Bellman [3], Benders [4], Lasdon [10]). The usual assumption in these applications is 
the global optimal solution of both problem (Py) as well as problem (1.2). Then the 
underlying idea is the following simple theorem (cf. [1], [10]). 

THEOREM 1.1. A point (x, y) is a solution of problem (P) if and only if x is optimal 
for (P9) and, in addition, y is optimal for problem (1.2). 

We emphasize that Theorem 1.1 is of global nature and it is valid without additional 
assumptions on problem (P). However, if problem (P) is not a convex one, then the 
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problems (Py) and (1.2) may also be nonconvex and the usual methods in nonlinear 
optimization yield only stationary solutions, resp. local minimal solutions in general. 

In this paper we treat the idea of decomposition for nonconvex problems at a local 
level. This leads to a study of the following two basic problems. 

Problem A. Let x(y) be a stationary solution for problem (Py) for all y in some 
neighborhood U(9), and let 9 be a stationary solution for 4k(y) - f(x(y), y). 

Under what condition will (X, y), where := x(y), be a stationary solution for 
problem (P). 

Problem B. The same formulation as Problem A. However, every entry "stationary 
solution" is replaced by "local minimum". 

At first glance, it seems to be necessary from the nature of nonconvex problems that 
the mapping x(y) in Problems A, B need to be continuous. However, continuity is not 
sufficient as the following example w.r.t. Problem B shows. 

EXAMPLE. Put M = R2 and f(x, y) = x2y2(x - y2)(x - 2y2) + x6 + y2. For 
every fixed y the point x(y) := 0 is a strict local minimum for f with respect to x. 
Moreover, the resulting function p(y) = f(:(y), y) = y12 has a strict local minimum 
at y = 0. However, the point (x, y) = (0, 0) is not a local minimum for f since the 
function f has a local maximum at (0,0) along the parabola x = y2. 

We note that a first one but trivial result to solve Problem B is given in Luderer [11], 
where it was assumed that x(y) is a global optimal solution of (Py) but y only a local 
one. 

2. Problem A: Iterated stationary points. In the sequel we consider the following 
optimization problem: 

min{f(x, y)lhi(x, y) = 0, i E I, gj(x, y) < 0, j e J}, (x, y) E RIn+n2. (P) 

The index sets I, J are assumed to be finite and f, hi, gJ E Cl(R"'+n2). By Df, resp. 
DLf, Dyf, we denote the row vector of first partial derivatives of f, resp. with respect 
to x, y. The index set I (and also J) will be partitioned into two parts: I = Il u 12, 
I n I2 = 0, where I2 = {i E IJDhi(x, y)-- 0}. In fact, the constraint functions hi, 
i E I2, do not depend on x. The set of stationary points (x, y) corresponding to (P) 
will be the projection of the set of Kuhn-Tucker points :KT on the (x, y)-space, where 

Dx f(x, y) + E Xhi(x, y) + E ujgi(x, y) = 0, 
ieI jJ . 

iE.I JGJ 
Dy f (x,y) + ? ihi(x, y) + E ujgj(xy) = 0, 

KT (X, Y, X, U) iI jJ e 

hi(x, y) = 0, i E I, 

g(x,y) < 0, j EJ, 
V Mujgi(x, y) = 0, j E J, uj > , j J. 

(2.1) 

On the analogy of 1 we consider two phases. 
In the first phase we have to determine, for every y in a suitable open set Y, a 

stationary point of the problem: 

min{f(x, y)Ih,(x, y) = 0, i I,, gj(x, y) < O, j e J,. 
X 
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Let x(y) be a vector valued function which assigns a stationary point to each 
parameter y. Then, for x(y) as well as for the associated Lagrange multipliers i(y), 
u(y) the following holds: 

(x(y), (y),u (y))E ) KT(Y), where 

Dx f(x,y) + Y Xi)hi(x,y) + E u(1)gj(x,y) = 0, 
ieI1 jeJ1 

(x, At1), uMl) E P hih,( y) =0, i I, 
Tr(Y) = +|7,+ | g(x, y) < 0, jJx, P = n, + Il + Al 

+ )gj(x, ) -0, jeJ1, 

u(1) , JeJ1 j 

(2.2) 

In the second phase we have to find a stationary point for the problem 

min{ (y)IY E Yn No}, (2.3) 

where y)nd N= y E (y) = 0, i E I2, gy(y) < 0, j E J2}. 
In general the function +b(y) will not be differentiable. In that case a stationary point 

has to be declared by using a generalized subdifferential (cf. [5], [15]). On the other 
hand, the next lemma provides a sufficient condition in order that +(y) is differentia- 
ble at y = 9. 

LEMMA 2.1. Let f, hi, gj e C(R"nl+n2), i E I, j E J1. Suppose that x(y), 
i(y), u(y) are vector valued functions, u(y) being continuous at 9, and x(y) locally 
Lipschitz continuous at 9 such that in addition (x(y), S(y), u(y)) E A4T(y) for ally in 
the neighborhood U^8o(). Then, the function p(y) := f(x(y), y) is differentiable at y 
with derivative: 

-1 

D+(9) = Dy f(*) + E X(y)hi(*) + E u (9)gj(*) (2.4) 

where (*) stands for (x(y), 9). 

PROOF. For arbitrary y E Uao(9) we put x = x(y) and = x(y), whereas the 
multipliers X, X, resp. u, u are defined in an analogous way. The vector valued 
functions h, resp. g stand for hi, i E I,, resp. g1, j E J4. In view of the differentiabil- 
ity assumption on f, h, g, and the local Lipschitz condition of x(y) at y, i.e. 
i|x - 11| < clly - Y11 with 0 < c < oo, for every E > 0 there exist > 0, i = 1,2, 3, 4, 

1To abbreviate the formulas we use the above representation instead of 

Dy f(x, y) + E ,(hi(x, y) + E ujgj(x, y) 
Y 

ieIl i IE A x = X(Y), u = 
(). 

Similar abbreviations will also appear in the following. 
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such that: 

f(x, y) - f(x, 9) - Df(, 9)( ) I 3(1 + c) (IIX 
- 

xl + IIY -911) 

3(1 + c) + 3(1 + c) _IY 91 

= 3jIy - 91 for all y E U(9). 

[g(x, y) - g(x, ) -Dg(x., 9) _ ) 

a g(x, y) - g(A, y) - Dg(A, 9) Xy A l 

< 3(1 + c)(1 + ll11) (lix - i11 + IY -11) 1 

-< 3Iy- 91 for all y E U82( ). 

For the function h(x, y) a similar estimate holds for all y e U83(9), by using X 
instead of u. 

Moreover, for all y E Us4(9) we have the zero-relation: 

(g(x, y) - g(x, ))T y = 0. (2.5) 

In fact, if all ui vanish, then (2.5) obviously holds. On the other hand, if ui > 0, then 

ui > 0 in a neighborhood of P (use the continuity of Uj at 9). Since the stationary 
point x satisfies the complementarity condition, we have gj(x, y) = 0. This proves the 
zero-relation (2.5). 

Since x satisfies the equality constraints we also have: 

(h(x, y) - h(x, y)) =0 for all y U^s(9). 

Next, we put 8 = min=o .,48i and obtain for all y E Us(y): 

AI(y) - (9) - Dy[f(, 9) + Th(, 9) + (T g( , )] (y - 9)1 

= If(x, Y) -f(., 9) + ( [h(x, y) - h(x, 9)] + AT [g(x, y) - 
g(, 9)] 

-Dy[f(x, 9) + X'h(x, 9) + T g(X, 9)](y -9) 

-oD[f( , ) + h( ) + g(, 9)](x - x) 

< 3* IIy - 911 = illy 
- 911. 

The above estimate shows that (2.4) is derivative of 4 at y. o 

REMARK 2.1. The result of Lemma 2.1 is a special case of the results in [7] in the 
case that x(y) is a global optimal solution of (Py). In contradistinction to [7] we do not 
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use optimal properties of the vectorfunction x(y), but merely the fact that the 
Kuhn-Tucker conditions hold. 

REMARK 2.2. According to [9] the local Lipschitz continuity of x(y) at y is 
guaranteed if x '= x(9) is strongly stable in the sense of Kojima [8] and the linear 
independence constraint qualification holds. 

An immediate consequence of Lemma 2.1 is the following theorem which gives a 
solution to Problem A. 

Recall that the functions h,, i E 12, gj, j E J2, do not depend on x. 

THEOREM 2.1. If the assumptions of Lemma 2.1 hold and if, in addition, the point y 
is a stationary point of ?(y) with respect to No, i.e. there exist (X(2), U(2)) E RII21l+J2l 

with 

, (9) + E Xh(9) + E j2)gj(9) 
= 0, 

ieI2 ejsI 

hi( )= 0, i E 2, 

gj)(9) < 0, jEJ2, 

( 2)>0, jEJ,, 

then (x, 9) is a stationary point of problem (P), where x = x(y). 

3. Problem B: Iterated local minima. In order to reduce the notations we will 
delete the equality constraints, i.e. I = 0. We emphasize that all results can be 
extended straightforwardly to the case I = 0. So, we consider the problem: 

min{ f(x, y)lgg(x, y) < 0, j E Jl, gi(y) < 0, j E J2}, (P) 

where the functions f, gj are C2-functions. 
In the sequel D2f, resp. D2f, D,2f, stands for the Hessian matrix of f, resp. the 

Hessian matrix with respect to x, y. 
Let Y be an open set and let x(t) be a continuous vector function on Y such that 

x(y) is a local minimum for the problem (Py): 

min{f(x, y)lgj(x, y) < 0, j E J}, (PY) x 

with active index set JO(y) = {j Jl|gy(X(y), y) = 0). 
In the following we assume a suitable constraint qualification at x = x(9) with 

9 E Y which guarantees the existence of a vector function u(y) such that the following 
Kuhn-Tucker relations hold: 

Dx f(x(y), Y) + E u,(y)gj(x(y), y) =0, 
]EJ1 

gj(x(y), y) < O, 

j(y) gj(.(y), y) = O, 

ui(y) > 0, ) 

Then x(y) is a stationary point of (Py) and we will assume, in addition, that x is 
strongly stable for P9 in the sense of Kojima (cf. [8]). 
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REMARK 3.1. The strong stability of a stationary point x for (P.) locally secures the 
existence, continuity and even the uniqueness of a vector function x(y) with x(y) = x 
and x(y) stationary point for (Py). If, moreover, x is a local minimum for (Py) then 
x(y) is also a local minimum for (Py). Consequently, the basic assumption of this 
section is then automatically fulfilled. 

For a first answer to Problem B we assume the Mangasarian-Fromovitz constraint 
qualification at x: 

{vlDIgy(x, 9)v < 0, j E J(9)} + 0. (V1) 

THEOREM 3.1. Let x be a strongly stable local minimum for (Pp) at which condition 
(V1) is fulfilled. Let further Y be an open neighborhood of and let x(y) be a continuous 
vector function on Y such that x(y) is a stationary point for (Py) and x&(y) = x. 

Then (x, y) is a local minimum for (P) if 9 is a local minimum for problem (2.3). 
PROOF. According to [8] the strong stability of x for (P.) and (V1) imply the 

existence of bounded open neighborhoods U of y and V of x as well as the existence of 
a continuous vector function c: U -o V such that 

(a) x(y) = x, 
(b) x(y) is a stationary point for (Py) which is unique in the closure cl V of the set V, 
(c) x(y) is a strongly stable local minimum for (P,), 
(d) f(x, ) < f(x, 9) if x E (cl V) n M(9) and x x, 
(e) Mangasarian-Fromovitz constraint qualification is satisfied at every point x e 

(cl V) r M(y), for every y e U. 
Because of (a)-(c) we have x(y) = x(y) for y E U n Y, and, moreover, cl(V) n 

M(y) : 0 for y e U. In particular, for every y E U the auxiliary problem 

min f(x, y)lx E (cl V n M(y))} 
x 

has at least one minimal point which we denote by x(y). In addition, we consider the 
function 4: 

+(y) = inf{f(x, y)jx E (bdV) n M(y)}, 
x 

where bd V denotes the boundary of V. 
The function P is lower-semicontinuous at y. This follows from the fact that for 

every sequence (y') c U with y' -oy and every sequence (x') c (bd V) n M(y') 
with f(x', y') = ((y') we have: (x1) has accumulation points, every accumulation 
point x of (x1) belongs to (bd V) n M(9) and satisfies f(x, 9) > 4(9); hence, 
lim_, oo(y') > Q(9) is valid. (Note that the special case where (bdV) rn M(y) = 0 
is automatically included.) 

Because of the continuity of f and x(y), the lower-semicontinuity of 0 and the 
inequality f(x, 9) < ((y) (compare (d)), there is a neighborhood U' c U of 9 such 
that f(x(y), y) < ?(y) holds for y E U'. Consequently, x(y) t bd V and hence, 
x(y) is a local minimum for (Py) for y E U'. This implies in view of (e) that x(y) is a 
stationary point for (Py), and because of (b) that even x(y) = x(y) holds for y E U'. 
Consequently, there is a neighborhood W of (X, y) such that the chain 

f(9x, y ) = ( A) )< c(y) =f( (y), y) = f(X(y), y) < (x, y) 

holds for (x, y) E W fn M. This completes the proof. * 
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In the following we assume the linear independence constraint qualification at x, 
which is stronger than (V1): 

The set { Dg(x, 9), j E J(9y)} is linearly independent. (V2) 

Under the assumption of (V2) we can sharpen Theorem 3.1 in the sense that the 
validity of the well-known strong second-order sufficient condition SSOSC (cf. [14]) in 
(Py) and a generalized SSOSC in problem (2.3) even implies the SSOSC for the original 
problem (P). 

REMARK 3.2. (cf. [8],[9]). Under the condition (V2) the vector function u(y) is 
unique and both x(y) and u(y) are Lipschitzian on a neighborhood Y of 9 in case of 
strong stability. Moreover, the strong regularity of a stationary point x of (Py) in the 
sense of Robinson [14] (the Kuhn-Tucher relation to (Py) can be written as a 
generalized equation) is just equivalent to the strong stability of x, again under the 
condition (V2). If, in addition, x is even a local minimum, then under (V2) the strong 
regularity as well as the strong stability is equivalent to the SSOSC. 

Let J1 := {j E J?(y)liu(y) > 0} denote the index set of strictly binding con- 
straints. 

Following [8], the strong stability of x := x(9) implies that every point x(y) for y 
in a neighborhood of 9 is again a strongly stable local minimum for (Py). Also, the 
Jacobian matrix with respect to (x, u) of the system 

Dx f(x, y) + ujgj(x, y) = 0, 
jEJ1+(9) jJ(Y) .> 

gj(x, y) = , j E J(.), 
is regular at (x, y, u). Hence, in view of the implicit function theorem, in an open 
neighborhood U(9) there is a unique C'-vector valued function (x+(y), u+(y)) with 
x(y) = x+(9) and 

A^ {u ;(?), i 
'J(9), 

uj(y) =0, for other j. 

Moreover, x +(y) is precisely a strongly stable local minimum for the reduced problem 
(Py ): 

min f(x, y)lg(x, y) = O, j E J1(y)}. (PY) 
x 

Now we have two (locally marginal) functions, namely 

P+(y) :=f(x+(y),y) and ~(y) =f(i(y),y). (3.1) 

The function 4+ is a C2-function with the following derivatives: 

Do+(y) = Dy[f(x+(y), y) + u+(y)Tg+(x+(y), y), (3.2) 

where g+(x, y) = (gj(x, y), j e J+(9))T, being a column vector 

D2O+(y) = DXDy [f(x+(y), y) + u+(y)Tg+(x+(y), y)] Dx+(y) 

+Dy2[f(x+(y), y) + u+(y)Tg+(x+(y), y)] 

+ [Dg+(x+(y), y)] Du-(y) 
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The function 4 in (3.1) serves as a function in the "second phase". In view of Remark 
3.1 and Lemma 2.1 we see that +(y) is differentiable at 9. However, 4 need not be a 
C2-function. The next lemma provides a sufficient condition in order that 9 is a local 
minimum for +(y) with respect to the set N0, No = {Ylgj(y) < 0, j E J2}. 

LEMMA 3.1. Under the assumption of condition (V2), let x(y) with associated 
Lagrange multiplier u(y) be a strongly stable local minimum for (Py), for ally in an open 
neighborhood U(9) of 9. Suppose that there exists a multiplier ̂ (2) such that (3.4), (3.5) 
hold (generalized SSOSC): 

Dy (9) + E fi2)g(9) = 0, (3.4.a) 
JPEJ2 

gs()) < O, (3.4.b) 
ui(2)' gj(9) y - j E J2, (3.4.c) 

(2) > 0, (3.4.d) 

zT D2++(9) + i(2)D2gi(9) z > 0 for allz E T9, z 0 where (3.5) 
jEJ2 

T) = {zDgji()z = O, J+), j = J{j E J2l (2) > 0}, 

J2 = { J2g1(9) = 0}. 

Then, the point 9 is a strict local minimum for 4(y) with respect to the set No. 
PROOF. Note that u(y) is continuous. Consequently, we obtain the following 

obvious chain (locally): J+(9) c JO(y) c Jo(9). Hence, for the functions 4)+(y), 
+(y) we obtain, using the fact that both x+(9) is strongly stable for (P+) and x(9) is 
strongly stable for (P,) 

)+(y) < +(y) (locally) and (3.6.a) 

4+(9) = (9y) (3.6.b) 

Putting A(y) = ?(y) - +(y), we see that A(y) has a local minimum at 9. Conse- 
quently, DA(y) = 0, which means: 

Do+(9) = OD(9). (3.7) 

If we substitute (3.7) into (3.4.a), then (3.4), (3.5) imply that the strong second-order 
sufficient condition holds for ++(y) at 9 with respect to N0. Hence, 9 is a strict local 
minimum for ?+(y) with respect to No. Taking (3.6) into account we see that P is also 
a strict local minimum for ?(y) with respect to No. ? 

For the second derivative of ++(y) at y we need an explicit formula. In view of 
formula (3.3) we have to calculate Dx+(9) and Du +(). 
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As an abbreviation we put: 

A = D2[f(x+(9), 9) + u+(y)'g+(x+(9), 9)], (3.8.a) 

B = DTg+(x+() ), (3.8.b) 

C = DoD [f(x (9), 9) + u (9)Tg(x(9), )]A (3.8.c) 

Do= Dy'g(x+(9), 9), (3.8.d) 

Eo= D2[f(x+(9), 9) + u+()Tg+(x+(9), 9)], (3.8.e) 

F= [D;gj(9), jE ]. (3.8.f) 

From the definition of (x+(y), u+(y)) by means of the implicit function theorem we 
obtain: 

Du(+(y) BA ) B ( )(3.9) 

,Du() BTB 0 DOJ 

For an explicit formula of the inverse matrix in (3.9) we use the following (more 
general) lemma. The symbol "t" will denote the Moore-Penrose inverse (cf. [13]). 

LEMMA 3.2. Let A be a symmetric (n, n) matrix and B an (n, m) matrix with 
m < n. Let B denote an (n, n - I) matrix whose columns form a basis for the linear 

space T, = xIBT x = 0}, where I = rank(B). 
a. If rank(B) = m, then we have: 

R:= ( ) is regular iff BAB is regular. 
BT 0 

b. If BTAB is regular, then we have: 

A B B(BTAfB)-B [I- B(BAB)-BT A](Bt)T 

BT 0 Bt[I- AB(BTAB)-1B] 
T -BtA[I- B(BTAB1) iBTA](Bt)T 

(3.10) 

where I stands for the identity matrix. 

PROOF. If rank(B) = m, then the matrices 

Z B 0 B B T Z2B 0 0 I' [I 0 B0 B 

are regular and statement a is following directly from the identity: 

BBTB BTAB BTAB 
ZT RZ2= 0 BTAB BTAB 

0 0 BTB ) 
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Moreover, after inversion of this identity and taking into account the following 
formula 

/ ,- ,- _- , 'i '~, - 
xY~%xiY Y - x ~1^ - 

x~12x Y1 x ~1X 
'Xl X12 X -11 13 122223] x33 

o x22 X23 = X22 - X2x23 X31 
0 0 33, 0 X1 

{k /I~ ^I / 33 

we get the inverse R-l as a special case of (3.10) with Bt = (BTB)-IBT (cf. 
McCormick [12, p. 243]). 

Next, suppose that rank(B) = I < m. Then we write B as a product: 

B = PQT 

where P, resp. Q is an (n, 1), resp. (m, 1) matrix with rank(P) = rank(Q) = 1. 
Moreover, Q is chosen such that QT Q = Identity (use a singular value decomposition 
of B). The matrix R can be written as a (congruence) product: 

R I \A 0P I 
=RRR R=( 

p' o)o QT = R1R2R3. ,0 Q[p ( 0 

Obviously, rank(R1) = rank(R3) = n + 1 and we have: 

Rt== ( R3 (0 Q (3.11) 

From the definition of P and Q we see that T, = {xlPTx = 0}. Then application of 
statement a yields that the matrix R2 is regular. Consequently, for the computation of 
the inverse R2 we can apply Formula (3.10), replacing B by P. Since RI R1 = Identity 
and R3 = RT, we have 

Rt = RR2 1RR. (3.12) 

For Bt we obtain the formula Bt = Qpt. Now, formula (3.10) is obtained by a 
combination of all partial results. * 

For the second derivative of ++(y) at y we now obtain the following formula, by 
means of a combination of (3.3), (3.8), (3.9) and (3.10). The appearing matrix B has 
the same meaning as in Lemma 3.2: 

D24+(.) = Eo + CT .Dx+(y) + Do Du+(y) 

E - CTB(BAB)-1BTC-CTM(DB)T (3.13) 

-D,BtMT C + DOBtAM(DoB )T 

where M = I - B(BTAB) -BA. 
For the final theorem we need one more technical lemma which generalizes a result 

of Fujiwara et al. [6]. Note the similarity between (3.13) and the formula (3.14) below. 

LEMMA 3.3. Let A(nl, nl), B(nl, m), C(nl, n2), D(n2, m), E(n2, n2), F(n2, r) be 
matrices with dimensions as given within the parentheses. 
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Let A, E be symmetric and rank(B) = m. Define the following linear subspaces: 

T = {(x, y) E Rn+2IBTx + DTy = 0, FTy = 0}, 

T = {x E Rn"iBTX = O}, Ty= (y Rn2jlFTy = O}. 

Let B be an (nl, n, - m) matrix whose columns form a basis for Tx, and let F be an 
(n2, n - 1) matrix whose columns form a basis for Ty, where I = rank(F). 

Then the matrix 

A C\ 

CT E 

is positive definite on T iff both BAB and G are positive definite, where 

{IE 
- CTB(BTAB)~-lTC-CTM(DBt)T 

G =F- GF - G 
-DBtM TC+DBtAM(DBt)T 

(3.4) 

where M = I - B(BTAB)-lBA. 

PROOF. Firstly, we decompose T into a direct sum, i.e. T = T, + T2, T7 , T2 = (0}. 

T= {(x, y)IB'x + DTy = O, FTy = o, x = Bv + Bw, v E Rnl-", w E R"m} 

x = Bo kxV Bw 
={(x ; y ) Xy o BT y= T1 T2 ? ((X,y) B+D y=O,Fy=O 

Next, we simplify the representation of T2: 

T2= (x, y) x = Bw, y = Fz, z E Rn-, BTBw + DTy = 

x=Bw w =-(BTB)-YDTFz} 
y= Fz 

/{(x x=-B(BTB)-'D rFz 
= x,y) _ / 

y = Fz 

Note that Bt = (BTB)-1BT. Hence, the columns of the following matrix form a basis 
for T: 

iB -(DBt)TF 
0 F 

Consequently, the blockmatrix 

A C) 

iCT Ei 

is positive definite on T iff the following matrix is positive definite: 

(-FTDBt FTi *cT Ec( (3.15) 
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The product matrix in (3.15) is again a matrix with blockstructure, say 

z=( T w. 

From Fujiwara et al. [6] we see that such a blockmatrix is positive definite iff both U 
and the Schur complement of U in Z, W - VT U-1V, are positive definite. Now, the 
assertion of the lemma follows from a simple computation, noting that BTAB = U 
and G = W- VT U-V. 

Finally we can state and prove a theorem which gives an additional answer to 
Problem B. 

THEOREM 3.2. Let x be a strongly stable local minimum for (Py) at which condition 
(V2) is fulfilled. Let further Y be an open neighborhood of y and let x(y) be a continuous 
vector function on Y such that x(y) is a stationary point for (Py) and x(y) = . If at 
the generalized SSOSC relations (3.4), (3.5) hold, then the strong second-order sufficient 
condition holds at (x, y) with respect to the original problem (P). 

PROOF. Firstly, we note that Theorem 2.1 is applicable in view of (3.4) and Remark 
3.2. Hence, (x, 9) is a stationary point for Problem (P). 

Now we have to verify that the matrix 

{A C 
CT E 

is positive definite on T, where 

T (x, y) B x + Doy =- 
FTy =-0' 

and A, B, C, Do,F as in (3.8), whereas E = Eo + E ji2u2)D2g(9y). 
In order to verify this restricted positive definiteness, we note that A is positive 

definite on Tx= {xBTx = 0), since x(9) is a strongly stable local minimum for (Pp). 
Hence, BTAB is positive definite, where B is a matrix whose columns form a basis for 
Tx. Furthermore, we see that formula (3.5) is equivalent with the positive definiteness 
of the matrix H, 

H = F D2+(9) + )D2g j() f, (3.16) 
JEJ2 

where F is a matrix whose columns form a basis for the space Ty = { ylF Ty = 0). By 
comparing (3.13), (3.14), (3.16), we see that the matrix H in (3.16) has the form of the 
matrix G in (3.14). So, G is positive definite, and together with the positive definiteness 
of B AB, the above verification follows immediately from Lemma 3.3. b 

REMARK 3.3. If we add to the assumptions of Theorem 3.2 the linear independence 
condition (V2) applied to the local optimal solution 9 for $ with respect to the set No 
then the point (X, 9) is even a strongly stable local minimum for problem (P). 
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