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ON JACOBSON AND NIL RADICALS RELATED TO

POLYNOMIAL RINGS

Tai Keun Kwak, Yang Lee, and A. Çiğdem Özcan

Abstract. This note is concerned with examining nilradicals and Jacob-
son radicals of polynomial rings when related factor rings are Armendariz.
Especially we elaborate upon a well-known structural property of Armen-
dariz rings, bringing into focus the Armendariz property of factor rings by
Jacobson radicals. We show that J(R[x]) = J(R)[x] if and only if J(R) is
nil when a given ring R is Armendariz, where J(A) means the Jacobson
radical of a ring A. A ring will be called feckly Armendariz if the factor
ring by the Jacobson radical is an Armendariz ring. It is shown that the

polynomial ring over an Armendariz ring is feckly Armendariz, in spite
of Armendariz rings being not feckly Armendariz in general. It is also
shown that the feckly Armendariz property does not go up to polynomial
rings.

1. On radicals when factor rings are Armendariz

Throughout this note every ring is associative with identity unless other-
wise stated. For a ring R, J(R), N∗(R), N∗(R), N0(R) and N(R) denote
the Jacobson radical, the prime radical, the upper nilradical (i.e., sum of all
nil ideals), the Wedderburn radical (i.e., the sum of all nilpotent ideals), and
the set of all nilpotent elements in R, respectively. Following [1, p. 130], a
subset of R is said to be locally nilpotent if its finitely generated subrings
are nilpotent. Also due to [1, p. 130], the Levitzki radical of R, written by
sσ(R), means the sum of all locally nilpotent ideals of R. It is well-known
that N∗(R) ⊆ J(R) and N0(R) ⊆ N∗(R) ⊆ sσ(R) ⊆ N∗(R) ⊆ N(R). We
use R[x] (resp., R[[x]]) to denote the polynomial (resp., power series) ring
with an indeterminate x over R. For f(x) ∈ R[x], let Cf(x) denote the set
of all coefficients of f(x). Let Matn(R) (resp., Un(R)) be the n by n full
(resp., upper triangular) matrix ring over R. Let Dn(R) denote the subring
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{m ∈ Un(R) | the diagonal entries of m are all equal} of Un(R). Let Eij de-
note the matrix in Matn(R) with (i, j)-entry 1 and elsewhere 0. Z (Zn) denotes
the ring of integers (modulo n).

A ring is called reduced if it has no nonzero nilpotent elements, i.e., N(R) =
0. For a reduced ring R and f(x), g(x) ∈ R[x], Armendariz [6, Lemma 1] proved
that

if f(x)g(x) = 0, then ab = 0 for all a ∈ Cf(x), b ∈ Cg(x).

Based on this result, Rege and Chhawchharia [27] called a ring (possibly with-
out identity) Armendariz if it satisfies this property. So reduced rings are
clearly Armendariz and the class of Armendariz rings is closed under subrings
obviously. These facts will be used freely in this note. A ring is called Abelian

if every idempotent is central. Armendariz rings are Abelian by the proof of
[3, Theorem 6] (or [20, Lemma 7]).

Antoine called a ring R nil-Armendariz [4, Definition 2.3] if ab ∈ N(R) for
all a ∈ Cf(x) and b ∈ Cg(x) whenever f(x)g(x) ∈ N(R)[x] for f(x), g(x) ∈ R[x],
and showed that Armendariz rings are nil-Armendariz in [4, Proposition 2.7]
but not conversely by help of [4, Proposition 2.8] since Armendariz rings are
Abelian. Antoine also showed that if R is a nil-Armendariz ring, then N(R)
forms a subring of R, in [4, Theorem 3.2]. While, Jung et al. proved that a
ring R is nil-Armendariz if and only if ab ∈ N∗(R) for all a ∈ Cf(x), b ∈ Cg(x)

whenever f(x)g(x) ∈ N∗(R)[x] for f(x), g(x) ∈ R[x] in [17, Theorem 11].

Lemma 1.1. (1) [18, Lemma 2.3(5)] If a ring R is Armendariz, then

N0(R) = N∗(R) = N∗(R).

(2) [4, Proposition 2.7] Armendariz rings are nil-Armendariz.

(3) [4, Theorem 3.5] A ring R is nil-Armendariz if and only if R/N∗(R) is

Armendariz.

(4) [3, Theorem 2] A ring R is Armendariz if and only if so is R[x].
(5) [12, Theorem 1.4(2)] If a ring R is Armendariz, then so is R/N∗(R).
(6) [2, Theorem 3] N∗(R[x]) = N∗(R)[x] for any ring R.

(7) [2, Theorem 1] J(R[x]) = N [x] for any ring R, where N = J(R[x]) ∩ R
is a nil ideal of R which contains sσ(R).

If a given ring R is Armendariz, then both R/N∗(R) and R/N∗(R) are
Armendariz by Lemma 1.1(3, 5). So it is natural to ask whether R/J(R) is
Armendariz if R is an Armendariz ring. However the answer of this question is
negative by the following. But we will see an affirmative answer when Jacobson
radicals are nil.

Example 1.2. We apply the ring in [14, Example 3]. Let R0 be the localization
of Z at the prime ideal pZ, where p is an odd prime. We next set R be
the quaternions over R0. Then R is clearly a domain (hence Armendariz)
and J(R) = pR. But R/J(R) is isomorphic to Mat2(Zp) by the argument in
[11, Exercise 2A] but Mat2(Zp) is not Armendariz by [27, Remark 3.1]. Thus
R/J(R) is not Armendariz.
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Considering Lemma 1.1(3, 5), one may naturally ask whether the converse
of Lemma 1.1(5) also holds. But the answer is negative as can be seen by
R = Un(A) (n ≥ 2) over a reduced ring A. In fact, N∗(R) = {M ∈ Un(A) |
the diagonals of M are all zero} and R/N∗(R) is isomorphic to a direct sum
of n-copies of A. So R/N∗(R) is reduced (hence Armendariz), but R is not
Armendariz since R is not Abelian.

The proof of the following theorem can be obtained by the results of A. R.
Nasr-Isfahani and A. Moussavi [25]. But we provide another proof as follows,
using the well-known fact of Amitsur for Jacobson radicals of polynomial rings.

Theorem 1.3. For an Armendariz ring R we have

J(R[x])=N0(R[x])=N∗(R[x])=N∗(R[x])=N0(R)[x]=N∗(R)[x]=N∗(R)[x].

Proof. Let R be an Armendariz ring. Then R[x] is also Armendariz by Lemma
1.1(4), and so we have

N0(R[x]) = N∗(R[x]) = N∗(R[x])

by Lemma 1.1(1). Next we get

J(R[x]) ⊆ N∗(R)[x]

by help of [2, Theorem 1]. We already have N∗(R)[x] = N∗(R[x]) and N0(R)[x]
= N0(R[x]) by Lemma 1.1(6) and [7, Corollary 4], respectively. It is clear that
N∗(R[x]) ⊆ N∗(R[x]) and N∗(R[x]) ⊆ J(R[x]). These results are combined to
obtain

J(R[x]) ⊆ N∗(R)[x]=N0(R)[x]=N∗(R)[x]=N∗(R[x]) ⊆ N∗(R[x]) ⊆ J(R[x]),

and therefore

J(R[x])=N0(R)[x]=N0(R[x])=N∗(R[x])=N∗(R[x])=N∗(R)[x]=N∗(R)[x].

�

In the light of Theorem 1.3, one may conjecture that J(R) is nil for an
Armendariz ring R. But this fails in general as can be seen by the Jacobson
radical xZ[[x]] of the domain (hence Armendariz) Z[[x]].

Recall that a ring is called right Goldie if it has no infinite direct sum of
right ideals and has the ascending chain condition on right annihilators.

Corollary 1.4. For a right Goldie Armendariz ring R we have

J(R[x]) = N0(R)[x] = N [x],

where N is the nilpotent radical of R.

Proof. Let R be a right Goldie Armendariz ring. Then N∗(R) is nilpotent by
[22], N say. It then follows that

J(R[x]) = N0(R)[x] = N [x]

by Theorem 1.3, noting that N0(R) = N∗(R) = N . �
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Considering N∗(R)[x] = N∗(R[x]), one may hope the equalities J(R)[x] =
J(R[x]) and N∗(R)[x] = N∗(R[x]). However the following examples provide
negative situations. Recall the ring R = Z[[x]]. Note that J(R) = xZ[[x]] but
J(R[t]) = 0 by Theorem 1.3 or Corollary 1.4, where t is an indeterminate over
R. Thus J(R)[t] 6= J(R[t]) in general. Next we have N∗(R)[t] 6= N∗(R[t]) by
help of Smoktunowicz [28].

Proposition 1.5. (1) If R is an Armendariz ring and J(R) is nil, then R/J(R)
is Armendariz.

(2) If R is an Armendariz ring, then R[x]/J(R[x]) is Armendariz.

(3) If R is an Armendariz ring which satisfies a polynomial identity, then

R[x]/J(R[x]) is Armendariz and J(R[x]) is nil.

Proof. (1) Armendariz rings are nil-Armendariz by Lemma 1.1(2). This yields
R/J(R) being Armendariz by Lemma 1.1(3) when J(R) is nil.

(2) Let R be an Armendariz ring. Then J(R[x]) = N∗(R[x]) = N∗(R)[x] by
Theorem 1.3. This yields

R[x]

J(R[x])
=

R[x]

N∗(R[x])
=

R

N∗(R)
[x] =

R

N∗(R)
[x]

by help of Lemma 1.1(6). Moreover R/N∗(R) is Armendariz by Lemma 1.1(2,
3), and hence R

N∗(R) [x] is Armendariz by Lemma 1.1(4). ThereforeR[x]/J(R[x])

is Armendariz.
(3) If R is an Armendariz ring, then R[x]/J(R[x]) is Armendariz by (2).

If a given ring R satisfies a polynomial identity, then every nil ideal of R is
locally nilpotent by [24]. So we get N ⊆ sσ(R) where N = J(R[x]) ∩ R in
Lemma 1.1(7). Further, N [x] is nil since N is locally nilpotent. This entails
that J(R[x]) is nil. �

Recall that there exists a ring R with J(R)[x] 6= J(R[x]), and note that
J(R[x]) ⊆ J(R)[x] by Lemma 1.1(7). We see a condition under which J(R)[x] =
J(R[x]) holds as follows.

Proposition 1.6. For an Armendariz ring R the following conditions are

equivalent:
(1) J(R[x]) = J(R)[x].
(2) J(R) is nil.

(3) J(R) is nil and R/J(R) is Armendariz.

Proof. (1)⇒(2). If J(R[x]) = J(R)[x], then J(R) is nil by Lemma 1.1(7).
(2)⇒(3). Assume that J(R) is nil. Then R/J(R) is Armendariz by Propo-

sition 1.5(1).
(3)⇒(1). Since R is Armendariz, R[x]/J(R[x]) is Armendariz by Proposition

1.5(2). Assume that J(R) is nil. Then J(R) = N∗(R), and so J(R[x]) =
N∗(R)[x] by Theorem 1.3. Thus we have J(R[x]) = J(R)[x]. �
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In Proposition 1.6, we get

R[x]

J(R[x])
=

R[x]

J(R)[x]
∼=

R

J(R)
[x]

which are Armendariz rings.
As regards Proposition 1.5(1), one may ask whether a ring R is Armendariz

if J(R) is nil and R/J(R) is Armendariz. However the answer is negative by
the following.

Example 1.7. We use the ring construction and computation in [15, Example
1.2]. Let S be a simple domain and Rn = D2n(S), where n is a positive integer.
Define a map

σ : Rn → Rn+1 by A 7→

(

A 0
0 A

)

.

Then Rn can be considered as a subring of Rn+1 via σ (i.e., A = σ(A) for
A ∈ Rn). Set R = lim

−→
Rn be the direct limit of {Rn, σnm}, noting that σnm =

σm−n (when n ≤ m) is a direct system over I = {1, 2, . . .}. Then N∗(R) = 0
by [16, Theorem 2.2] (or applying the computation in [15, Example 1.2]), but
it is easily checked that

J(R) = N∗(R) = {A = (aij) ∈ R | aii = 0 for all i}.

So R
J(R)

∼= S is a domain (hence Armendariz) and J(R) is nil. However R is

not Armendariz by help of [20, Example 3]. In fact, let

f(x) = E1(2n+2) + (E1(2n+2) − E1(2n+3))x

and
g(x) = E(2n+3)(2n+4) + (E(2n+2)(2n+4) + E(2n+3)(2n+4))x

in D2n+1(S)[x] ⊂ R[x] for n ≥ 2. Then f(x)g(x) = 0, but we have

E1(2n+2)(E(2n+2)(2n+4) + E(2n+3)(2n+4)) = E1(2n+4) 6= 0.

From Proposition 1.5(1), one may also ask whether J(R) is nil if both R and
R/J(R) are Armendariz. However the answer is also negative as can be seen
by the ring R = D[[x]] over a division ring D. Note that J(R) = xD[[x]] is not
nil. But both R and R/J(R)(∼= D) are reduced (hence Armendariz).

A ring R is usually called right (left) weakly π-regular if for each a ∈ R
there exists a positive integer n such that an ∈ anRanR (resp., an ∈ RanRan).
Jacobson radicals of left or right weakly π-regular rings are nil by [19, Lemma
5]. So if an Armendariz ring R is right weakly π-regular, then R/J(R) is
Armendariz by Proposition 1.5.

Due to Antoine [5], a ring R is called 1-Armendariz if for given f(x) =
a0 + a1x and g(x) = b0 + b1x in R[x], f(x)g(x) = 0 implies that aibj = 0 for
each i, j. These rings are also called weak Armendariz by Lee and Wong [23].
It is obvious that Armendariz rings are 1-Armendariz, but the converse need
not be true by the examples in [5] and [23]. It is also clear that the class of
1-Armendariz rings is closed under subrings. We will use this fact freely.



420 TAI KEUN KWAK, YANG LEE, AND A. ÇIĞDEM ÖZCAN

Proposition 1.8. For a ring R, the following conditions are equivalent:
(1) R is reduced.

(2) D3(R) is Armendariz.

(3) D3(R) is 1-Armendariz.

(4) D2(R) is Armendariz.

(5) D2(R) is 1-Armendariz.

Proof. The equivalences of (1), (2), and (3) are shown in [16, Proposition 2.8].
(2)⇒(4) and (4)⇒(5) are obvious. We apply the method in the proof of [16,
Proposition 2.8] to prove (5)⇒(1). Let D2(R) be 1-Armendariz, and assume
on the contrary that R is not reduced. Take a nonzero a ∈ R with a2 = 0. Put

u =

(

a a
0 a

)

and v =

(

0 1
0 0

)

in D2(R). Then u2 = 0 = v2 and uv = vu = ( 0 a
0 0 ) 6= 0. This yields (u +

vx)(u − vx) = 0 for

u+ vx, u− vx ∈ D2(R)[x].

So D2(R) is not 1-Armendariz, a contradiction. Therefore R is reduced. �

In connection with Proposition 1.8, one can conclude that the factor rings
of Armendariz rings need not be Armendariz. Let R be a reduced ring and
n ≥ 2. Then R[x]/R[x]xnR[x] is not reduced and so D2(R[x]/R[x]xnR[x]) is
not (1-)Armendariz by Proposition 1.8. Note that D2(R[x]) is Armendariz by
Proposition 1.8 and

D2

(

R[x]

R[x]xnR[x]

)

∼=
D2(R[x])

D2(R[x]xnR[x])
.

But R[x]/R[x]xnR[x] is Armendariz by Anderson and Camillo [3, Theorem 5].
This argument also provides a conclusion that D2(R) need not be Armendariz
over Armendariz rings R.

Note. Proposition 1.8 also provides the following machine as a byproduct.
Any given non-reduced commutative ring A (e.g., Zmk with m ≥ 2 and k ≥ 2),
one can always construct

commutative rings which are not Armendariz

by help of D2(A).

Observing Proposition 1.8, one may suspect that if R/J(R) is Armendariz,
then R/J(R) is reduced. But the following erases the possibility.

Example 1.9. Let K be a field and A = K〈a, b〉 be the free algebra with
noncommuting indeterminates a, b over K. Let I be the ideal of A generated
by b2, and set R = A/I. We identity a, b with their images in R for simplicity.
Then R is Armendariz by [4, Example 4.8], and so R[x] is also Armendariz by
Lemma 1.1(4).
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We claim J(R[x]) = 0. To see that, let 0 6= f ∈ N(R). Then f is of the form
bf0b for some f0 ∈ R by the argument in [17, pages 4–5]. So every nilpotent
element in R is of index 2 of nilpotency (i.e., c2 = 0 for all c ∈ N(R)). However
fa = bf0ba is not nilpotent, forcing b /∈ N∗(R). This implies N∗(R) = 0. But
since J(R[x]) = N [x] for some nil ideal N by Lemma 1.1(7), J(R[x]) must be
zero.

Therefore R[x]
J(R[x]) = R[x]

0
∼= R[x] is Armendariz, but R[x] is not reduced by

the existence of nonzero b with b2 = 0.

2. On feckly Armendariz rings

Recently, Ungor et al. called a ring feckly reduced [30, Definition 2.1] if its
factor ring by the Jacobson radical is reduced. They investigate the structure
of such a ring and its extensions. As a generalization of a feckly reduced ring, in
this section, we study the structure of rings whose factors by Jacobson radicals
are Armendariz.

A ring R will be called feckly Armendariz if R/J(R) is Armendariz. Feckly
reduced rings are clearly feckly Armendariz, but not conversely by Example
1.9. Any local ring, i.e., a ring satisfying the condition that for any r ∈ R,
either r or 1− r is invertible, is feckly Armendariz.

Notice that the class of feckly Armendariz rings is neither closed under sub-
rings nor homomorphic images. For example, let E be the Hamilton quater-
nions over real numbers and R be the ring in Example 1.2. Then R is a subring
of E which is not feckly Armendariz. But E is clearly feckly Armendariz. As
another example, consider R[x] over the R in Example 1.2. Then J(R[x]) = 0
by Lemma 1.1(7), entailing that the over-ring R[x] is reduced (hence feckly
Armendariz). R[x]/xR[x] ∼= R is not feckly Armendariz by the computation in
Example 1.2, in spite of R[x] being feckly Armendariz.

Proposition 2.1. (1) If a ring R is feckly Armendariz, then eRe is also a

feckly Armendariz ring for any nonzero idempotent e ∈ R.

(2) Let R = ⊕γ∈ΓRγ be a direct sum of rings Rγ and Γ an indexed set. Then

R is a feckly Armendariz ring if and only if Rγ is a feckly Armendariz ring for

each γ ∈ Γ.
(3) Let R be a feckly Armendariz ring. If f1(x) · · · fn(x) ∈ J(R)[x] for

f1(x), . . . , fn(x) ∈ R[x], then a1 · · ·an ∈ J(R)[x] for all ai ∈ Cfi(x).

Proof. (1) Let R be a feckly Armendariz ring and 0 6= e2 = e ∈ R. Then
R/J(R) is Armendariz and e /∈ J(R). Write R̄ = R/J(R) and r̄ = r+J(R) for
r ∈ R. Since Armendariz rings are Abelian, ē is a nonzero central idempotent
in R̄. Note that

eRe

J(eRe)
=

eRe

eJ(R)e
∼= ēR̄ē = ēR̄.

But the class of Armendariz rings is closed under subrings. Since R̄ = R/J(R)
is Armendariz, the subring ēR̄ē of R̄ is also Armendariz.
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(2) Write R̄ = R/J(R) and R̄γ = Rγ/J(Rγ) for each γ ∈ Γ. Note that
R̄ ∼= ⊕γ∈ΓR̄γ and J(R) = ⊕γ∈ΓJ(Rγ). If Rγ is feckly Armendariz for each
γ ∈ Γ, then so is R since the class of Armendariz rings is closed under direct
sums and R̄ ∼= ⊕γ∈ΓR̄γ .

Now, assume that R is feckly Armendariz and let for γ ∈ Γ,

f(x) =

m
∑

i=0

a(γ)ix
i and g(x) =

n
∑

j=0

b(γ)jx
j ∈ R̄γ [x],

where a(γ)i = a(γ)i + J(Rγ) and b(γ)j = b(γ)j + J(Rγ) for each i, j and

f(x)g(x) = 0. We let F (x) (G(x)) be in R̄ with γ-th component f(x) (g(x))
and elsewhere 0, i.e.,

F (x) =

m
∑

i=0

(0, 0, . . . , a(γ)i, 0, . . .)x
i and

G(x) =
n
∑

j=0

(0, 0, . . . , b(γ)j , 0, . . .)x
j ∈ R̄[x].

Then we have F (x)G(x) = 0. Since R is feckly Armendariz,

(0, 0, . . . , a(γ)i, 0, . . .)(0, 0, . . . , b(γ)j , 0, . . .) ∈ J(R) = ⊕γ∈ΓJ(Rγ),

and so a(γ)ib(γ)j ∈ J(Rγ) for all i, j. This shows that Rγ is feckly Armendariz
for each γ ∈ Γ.

(3) It is obtained by the similar argument of the proof of [3, Proposition
1]. �

In the proof of Proposition 2.1(1), one may conjecture that eRe
eJ(R)e

∼= R
J(R) .

However this need not hold as can be seen by R = U2(D) and e = E11, where
D is a division ring. In fact, J(R) = ( 0 D

0 0 ), entailing R
J(R)

∼= D ⊕ D and

eJ(R)e = 0; and so eRe
eJ(R)e

∼= eRe ∼= D and R
J(R)

∼= D ⊕ D. Note that R is

feckly Armendariz but not Abelian, comparing with the fact that Armendariz
rings are Abelian.

Corollary 2.2. (1) If there exists a ring R such that Matn(R) is feckly Ar-

mendariz for all n ≥ 2, then R is feckly Armendariz.

(2) For a central idempotent e of a ring R, eR and (1 − e)R are feckly

Armendariz if and only if R is feckly Armendariz.

Proof. (1) This comes from Proposition 2.1(1), since E11Matn(R)E11 = RE11
∼= R.

(2) It follows from Proposition 2.1(1,2), since R ∼= eR⊕ (1− e)R. �

Note that J(R[x]) = (J(R[x]) ∩ R)[x] ⊆ J(R)[x], i.e., J(R[x]) ∩ R ⊆ J(R)
for a ring R.

Recall that for a ring R and an (R,R)-bimodule M , the trivial extension of
R by M is the ring T (R,M) = R⊕M with the usual addition and the following
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multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2). This is isomorphic to
the ring of all matrices ( r m

0 r ) where r ∈ R, m ∈ M and the usual matrix
operations are used.

Proposition 2.3. (1) Let R be a ring and J(R) = J(R[x]) ∩R. If R is feckly

Armendariz, then so is R[x].
(2) A ring R is feckly Armendariz if and only if the power series ring R[[x]]

is.

(3) Let R = ( S M
0 T ), where S and T are rings and M is an (S, T )-bimodule.

Then S and T are both feckly Armendariz if and only if so is R.

(4) Let R be a ring and M be an (R,R)-bimodule. Then T (R,M) is feckly

Armendariz if and only if so is R.

Proof. (1) Let R be feckly Armendariz. We already have that R[x]
J(R[x]) = R[x]

N [x]

for the nil ideal N = J(R[x]) ∩ R of R by Lemma 1.1(7). But J(R) = N by
hypothesis. Then

R[x]

J(R[x])
=

R[x]

N [x]
=

R[x]

J(R)[x]
∼=

R

J(R)
[x]

is Armendariz by Lemma 1.1(4), noting that R/J(R) is Armendariz. This
implies that R[x] is feckly Armendariz.

(2) It is clear that R[[x]]/J(R[[x]]) ∼= R/J(R). This proves the result.

(3) It is easily checked that J(R) =
(

J(S) M

0 J(T )

)

, and so R
J(R)

∼= S
J(S) ⊕

T
J(T ) .

Note that the class of Armendariz rings is closed under direct products and
subrings in [16, Lemma 1.1]. Thus we obtain the result.

(4) The proof is almost similar to one of (3). �

The condition “J(R) = J(R[x]) ∩ R” in Proposition 2.3(1) is not superflu-
ous by the following, i.e., the feckly Armendariz property does not go up to
polynomial rings.

Example 2.4. Let D be a division ring and R = D + tMat2(D)[[t]]. Then
J(R) = tMat2(D)[[t]] and so R/J(R) ∼= D, showing that R is feckly reduced
(hence feckly Armendariz). Write M = Mat2(D).

We will show that R[x] is not feckly Armendariz. Let 0 6= a ∈ N(M) (e.g.,
E12), and assume that ati ∈ N∗(R) for some i. Then

Mti+2 = (MaM)ti+2 = (Mt)ati(Mt) ⊆ N∗(M),

which is a contradiction since ti+2 ∈ Mti+2 is not nilpotent. So ati /∈ N∗(R)
for all 0 6= a ∈ N(M) and i ≥ 1. But since J(R[x]) = N [x] for some nil ideal

N by Lemma 1.1(7), J(R[x]) cannot contain E12t and E21t. Set S = R[x]
J(R[x]) =

R[x]
N [x]

∼= R
N
[x] and identify each polynomial in R[x] with the images in S for

simplicity.
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Assume on the contrary that R
N
[x] is Armendariz. Then R/N is also Ar-

mendariz. Next consider two polynomials

f(y) = E11t+ E12ty and g(y) = E22t− E12ty

in R
N
[y], where y is an indeterminate over R/N . Then f(y) and g(y) are

nonzero in R
N
[y]. But f(y)g(y) = 0 and E11tE12t 6= 0, concluding that R/N is

not Armendariz, which is a contradiction to R
N
[x] being Armendariz. Therefore

R[x]/J(R[x]) is not Armendariz, i.e., R[x] is not feckly Armendariz.

Example 2.4 also shows that the feckly reduced property does not go up to
polynomial rings.

Observe that U2(A) is feckly Armendariz by Proposition 2.3(3) if A is any
semiprimitive Armendariz ring, but U2(A) is not Armendariz. Moreover, we
have the following.

Recall that for a ring R and n ≥ 2, let Vn(R) be the ring of all matrices (aij)
in Dn(R) such that ast = a(s+1)(t+1) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1.

Note that Vn(R) ∼=
R[x]

xnR[x] .

Proposition 2.5. (1) Let I be an ideal of a ring R such that I ⊆ J(R). Then

R is feckly Armendariz if and only if R/I is feckly Armendariz.

(2) For a ring R, the following are equivalent:
(i) R is feckly Armendariz.

(ii) Un(R) is feckly Armendariz for all n ≥ 2.
(iii) Dn(R) is feckly Armendariz for all n ≥ 2.
(iv) Vn(R) is feckly Armendariz for all n ≥ 2.

Proof. (1) Since I ⊆ J(R), we have J(R
I
) = J(R)

I
. So, from

R

I

J(R

I
)
∼= R

J(R) , we

can obtain the result.
(2) (i)⇔(ii): Let

I = {A ∈ Un(R) | each diagonal entry of A is zero}

of Un(R). Then I ⊆ J(Un(R)) and Un(R)
I

∼= ⊕n
i=1Ri, where Ri = R. The proof

is completed by the condition (1) and Proposition 2.1(2).

(i)⇔(iii): Let

I ′ = {B ∈ Dn(R) | each diagonal entry of B is zero}

of Dn(R). Then I ′ ⊆ J(Dn(R)) and Dn(R)
I′

∼= R. By the condition (1), we have
(i)⇔(iii).

(i)⇔(iv) is similar to the proof of (i)⇔(iii), noting that I ′′ ⊆ J(Vn(R)) and
Vn(R)
I′′

∼= R where

I ′′ = {C ∈ Vn(R) | each diagonal entry of C is zero}

of Vn(R). �



ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS 425

Following the literature, a ring is called directly finite if ab = 1 implies
ba = 1 for a, b ∈ R. Abelian rings are easily shown to be directly finite. Recall
that Armendariz rings are Abelian (hence directly finite). The concepts of
Armendariz and feckly Armendariz are independent of each other as can be
seen by the ring in Example 1.2 and by help of Proposition 2.3(3). But these
concepts meet together in the class of directly finite rings as can be seen in the
following.

Proposition 2.6. (1) Let R be a ring and I be an ideal of R with I ⊆ J(R).
If R/I is directly finite, then so is R.

(2) Every feckly Armendariz ring is directly finite.

Proof. (1) Let R/I be directly finite and ab = 1 for some a, b ∈ R. Assume
on the contrary that ba 6= 1. Since R/I is directly finite, we have b̄ā = 1̄, i.e.,
1 − ba ∈ I ⊆ J(R). It then follows that ba = 1 − (1 − ba) is invertible, a
contradiction to ba being a nonzero idempotent. Thus ba = 1, showing that R
is directly finite.

(2) It is proved by (1) since R/J(R) is Armendariz (hence directly finite). �

We use ⊕ to denote the direct sum. Let R0 be an algebra with identity
over a commutative ring S. Due to Dorroh [8], the Dorroh extension of R by
S is the Abelian group S ⊕ R0 with multiplication given by (a1, r1)(a2, r2) =
(a1a2, a1r2 + a2r1 + r1r2) for ai ∈ S and ri ∈ R0.

Proposition 2.7. Let R0 be an algebra over a field F . Then R0 is feckly

Armendariz if and only if the Dorroh extension R of R0 by F is feckly Armen-

dariz.

Proof. Since R0 has the identity, a ∈ F is identified with a1 ∈ R0 and so
R0 = {a+ r | (a, r) ∈ R}.

We first claim that J(R) = 0⊕J(R0). Assume that (a, r) ∈ J(R) with a 6= 0.
Then (1, a−1r) = (a−1, 0)(a, r) ∈ J(R), and so (0,−a−1r) = (1, 0) − (1, a−1r)
is invertible, which is a contradiction. This implies J(R) ⊆ 0 ⊕ J(R0). Let
(0, r′) ∈ J(R). Then (0, r′(a + r)) = (0, r′)(a, r) ∈ J(R) for all (a, r) ∈ R.
Recall that a+ r runs over all elements in R0. So we obtain that (0, r′) ∈ J(R)
if and only if r′ ∈ J(R0), from the fact that (0, r′(a+ r)) is right quasi-regular
in R if and only if r′(a+ r) is right quasi-regular in R0. Therefore we now have

J(R) = 0⊕ J(R0) = {(0, r) ∈ R | r ∈ J(R0)}.

Write R̄0 = R0/J(R0) and R̄ = R/J(R). Note that R̄ = R
J(R)

∼= F ⊕ R0

J(R0)

= F ⊕ R̄0, the Dorroh extension R̄0 by F .
Suppose that R0 is feckly Armendariz. Let

f(x) =
m
∑

i=0

(a(0)i, a(1)i)x
i, g(x) =

n
∑

j=0

(b(0)j , b(1)j)x
j ∈ R̄[x]
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such that f(x)g(x) = 0. Here letting

f0(x) =
m
∑

i=0

a(0)ix
i, g0(x) =

n
∑

j=0

b(0)jx
j ∈ F [x] and

f1(x) =

m
∑

i=0

a(1)ix
i, g1(x) =

n
∑

j=0

b(1)jx
j ∈ R̄0[x],

we obtain f0(x)g0(x) = 0 and f0(x)g1(x) + f1(x)g0(x) + f1(x)g1(x) = 0 from
f(x)g(x) = 0. Since F is a field, f0(x) = 0 or g0(x) = 0. Assume f0(x) = 0.
Then f1(x)(g0(x)+g1(x)) = f1(x)g0(x)+f1(x)g1(x) = 0. Here we can consider
the polynomials f1(x), g0(x), g1(x) in R̄0[x], and this yields

(
m
∑

i=0

a(1)ix
i)(

n
∑

j=0

(b(0)j + b(1)j)x
j) = 0.

Since R̄0 is Armendariz, we get a(1)i(b(0)j+b(1)j) = 0 for all i and j, entailing

(0, a(1)i)(b(0)j , b(1)j) = 0 for all i and j.

This implies that αβ = 0 for all α ∈ Cf(x) and β ∈ Cg(x). We can get the same
result for the case of g0(x) = 0 via a symmetric method. Therefore R is feckly
Armendariz.

Conversely, assume that R is feckly Armendariz and let f(x)g(x) = 0 with

f(x) =
m
∑

i=0

āix
i and g(x) =

n
∑

j=0

b̄jx
j ∈ R̄0[x],

where āi = ai + J(R0) and b̄j = bj + J(R0) for each i, j. Let

F (x) = (0, f(x)) =
m
∑

i=0

(0, āi)x
i and G(x) = (0, g(x)) =

n
∑

j=0

(0, b̄j)x
j ∈ R̄[x].

Then we have F (x)G(x) = 0. Since R̄ is Armendariz,

(0, ai)(0, bj) ∈ J(R) = 0⊕ J(R0),

and so aibj ∈ J(R0) for all i, j. This implies that R0 is feckly Armendariz. �

Clearly, R is feckly Armendariz if and only if whenever f(x)g(x) ∈ J(R)[x]
for any f(x), g(x) ∈ R[x], then ab ∈ J(R) for all a ∈ Cf(x), b ∈ Cg(x). We also
consider the following conditions.

Let U(R) denote the set of all units (i.e., invertible elements) in a ring R.

Theorem 2.8. Let R be a ring. Consider the following conditions.

(1) R is an Armendariz ring in which 1 is the only unit (whence the char-

acteristic of R is two).
(2) For any f(x), g(x) ∈ R[x], if each coefficient of f(x)g(x) is of the form

1 + u where u ∈ U(R), then ab = 0 for all a ∈ Cf(x), b ∈ Cg(x).
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(3) For any f(x), g(x) ∈ R[x], if every coefficient of f(x)g(x) is of the form

1+u where u ∈ U(R), then ab is of the same form for each a ∈ Cf(x), b ∈ Cg(x).

(4) R is feckly Armendariz.

Then (1) ⇔ (2) ⇒ (3) ⇒ (4). If J(R) = {r ∈ R | 1−r ∈ U(R)}, then (4) ⇒ (3).

Proof. (1)⇒(2). Assume the condition (1). Let f(x), g(x) ∈ R[x] such that
each coefficient of f(x)g(x) is of the form 1+u with u ∈ U(R). Then f(x)g(x) =
0 by the condition (1). Since R is Armendariz, ab = 0 for all a ∈ Cf(x), b ∈
Cg(x).

(2)⇒(1). If the condition (2) holds, then R is Armendariz obviously. On the
other hand, if r is an invertible element in R, then 1−r = r(r−1−1) = f(x)g(x)
(f(x) = r and g(x) = r−1 − 1) implies that r = 1.

(2) ⇒(3). It is obvious since 0 = 1 + (−1).
(3)⇒(4). First note that a will mean a + J(R) in the ring R/J(R). Let

f(x) = a0 + a1x+ · · ·+ anx
n and g(x) = b0 + b1x+ · · ·+ bnx

n ∈ (R/J(R))[x]
be such that f(x)g(x) = 0. We claim that aibj ∈ J(R) for each i, j. For that,
it is enough to show that 1− aibjr is a unit in R for all r ∈ R. Now let r ∈ R.
Then we have

a0b0r = 0,

a0b1r + a1b0r = 0,

...

anbnr = 0.

since f(x)g(x)r = 0. Note the fact that if a ∈ J(R), then 1− a is a unit. If we
take f(x) = a0 + a1x+ · · ·+ anx

n and g′(x) = b0r + b1rx + · · ·+ bnrx
n, then

each coefficient of f(x)g′(x) is of the form 1 + u where u is a unit in R. By
hypothesis, for each i and j, aibjr is of the form 1 + u where u ∈ U(R). Then
for each i, j, 1− aibjr is a unit in R. Since r is arbitrary, we get the claim.

(4)⇒(3). Assume that J(R) = {r ∈ R | 1 − r ∈ U(R)} and R is feckly
Armendariz. Let f(x) = a0+a1x+ · · ·+anx

n and g(x) = b0+ b1x+ · · ·+ bnx
n

in R[x] be such that each coefficient of f(x)g(x) is of the form 1 + u where
u ∈ U(R). Then by hypothesis, each coefficient of f(x)g(x) is in J(R). This
gives that f(x)g(x) = 0 where f(x) = a0 + a1x + · · · + anx

n and g(x) =

b0 + b1x + · · · + bnx
n. Since R is feckly Armendariz, each aibj is of the form

1 + u where u ∈ U(R). �

Considering Theorem 2.8, there exist many feckly Armendariz rings that do
not satisfy the condition (2). Let R = Z[[x]]. Then R/J(R) = Z[[x]]/xZ[[x]] ∼=
Z, so R is feckly Armendariz. But 0 6= (1+x)(x2) = x2+x3 = 1+(−1+x2+x3)
with −1 + x2 + x3 ∈ U(R).

There exist many (Armendariz) rings which satisfies the condition (2) in
Theorem 2.8. For example, consider Z2 and Z2[X ] (X is any set of commuting
indeterminates, possibly infinite), etc.
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Remark. (1) When a given ring R is feckly Armendariz, J(R) need not equal to
{r ∈ R | 1−r ∈ U(R)}. For example, let R = Z. Then R is (feckly) Armendariz
with J(R) = 0. But −1 = 1− 2 ∈ U(R) and 2 6∈ J(R).

As another example, let R = D[[x]] over a division ring D of order ≥ 3.
Take 0 6= d ∈ D such that d 6= 1. Then J(R) = xD[[x]], but J(R) ( {r ∈
R | 1− r ∈ U(R)} since 1− d ∈ U(R). Note that R is (feckly) Armendariz.

(2) It is well-known that J(R) ⊆ {r ∈ R | 1 − r ∈ U(R)} for any ring R.
Equality holds in the following cases:

(i) If R is a local ring (hence R is feckly Armendariz). For, in this case
J(R) = {r ∈ R | r 6∈ U(R)}. For example, consider R = Z2[[x]]. Note that
J(R) = xZ2[[x]].

(ii) If R/J(R) is a Boolean ring (hence R is (feckly) Armendariz). For, let
r ∈ R be such that 1− r ∈ U(R). Assume that r 6∈ J(R). Since r(r− 1) = 0 in
R/J(R) and 1− r is invertible, we have that r = 0, which is a contradiction.

Finally, we will consider some special feckly Armendariz rings.
A ring R is called semiperfect if R is semilocal and idempotents can be

lifted modulo the Jacobson radical J(R) of R. Local rings are Abelian and
semilocal. However, the classes of Abelian rings and feckly Armendariz rings
do not imply each other by Example 1.2 and by help of Proposition 2.5(2),
considering R = U2(D) over a division ring D.

Proposition 2.9. (1) Let R be an Abelian ring. Then R is a semiperfect

feckly Armendariz ring if and only if R is a finite direct sum of local feckly

Armendariz rings.

(2) If R is a minimal noncommutative feckly Armendariz ring, then R is of

order 8 and is isomorphic to U2(Z2). Here by minimal we mean having smallest

cardinality.

Proof. (1) Assume that R is a semiperfect feckly Armendariz ring. Since R is
semiperfect, R contains a finite orthogonal set {e1, e2, . . . , en} of local idempo-
tents whose sum is 1 by [21, Corollary 3.7.2], say R =

∑n
i=1 eiR such that each

eiRei is a local ring. Since R is Abelian and feckly Armendariz, eiR = eiRei
is a feckly Armendariz ring by Proposition 2.1(1).

Conversely, let R is a finite direct sum of local feckly Armendariz rings.
Then R is semiperfect since local rings are semiperfect by [21, Corollary 3.7.1].
Note that R is also feckly Armendariz by Proposition 2.1(2).

(2) Suppose that R is a minimal noncommutative feckly Armendariz ring.
Then |R| ≥ 23 by [9, Theorem]. If |R| = 23, then R is isomorphic to U2(Z2) by
[9, Proposition]. But U2(Z2) is a feckly Armendariz ring by Proposition 2.5(2).
This implies that R is of order 8 and is isomorphic to U2(Z2). �

Nicholson [26] called a ring R clean if every element of R is a sum of an
idempotent and a unit in R, also gave a useful characterization of a exchange
ring which is introduced by Warfield [31] as a generalization of the class of
clean rings. It is proved that a ring R is exchange if and only if for any a ∈ R,
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there exists an idempotent e ∈ aR such that 1 − e ∈ (1 − a)R and that clean
rings are exchange rings and that the two concepts are equivalent for Abelian
rings by [26, Proposition 1.1 and Proposition 1.8].

Proposition 2.10. Let R be a feckly Armendariz ring. If R is an exchange

ring, then R is clean.

Proof. Suppose that a ring R is both feckly Armendariz and exchange. Then
R/J(R) is exchange and idempotents can be lifted modulo J(R) by [26, Propo-
sition 1.4] and Abelian, and so R/J(R) is clean and idempotents lift modulo
J(R). Thus R is clean by [13, Proposition 6]. �

A ring R is called (von Neumann) regular if for every x ∈ R there exists
y ∈ R such that xyx = x in [10]. It is proved that R is regular if and only
if every principal right (left) ideal of R is generated by an idempotent in [10,
Theorem 1.1]. Regular rings are clearly semiprimitive. For a semiprimitive ring
R, it is obvious that R is Armendariz if and only if R is feckly Armendariz.
Note that the reduced, Armendariz and Abelian ring properties are coincided
for a regular ring in [3, Theorem 6]. Hence, regular feckly Armendariz rings
are feckly reduced.

Following the literature, a ring R is called semipotent if every right (equiva-
lently left) ideal not contained in J(R) contains a nonzero idempotent. Clearly,
if R is semipotent, then so is R/J(R). Any regular ring or exchange ring is
known to be semipotent.

Proposition 2.11. Let R be a semipotent ring. Then the following are equi-

valent:
(1) R is feckly Armendariz.

(2) R/J(R) is Abelian.

(3) R is feckly reduced.

Proof. It is enough to show that (2)⇒(3). Let R be a semipotent ring. Assume
that R/J(R) is Abelian. Then R/J(R) is semipotent with J(R/J(R)) = 0,
and so R/J(R) is reduced by the proof of [29, Lemma 4.10], i.e., R is feckly
reduced. �

Recall the ring S = R[x] with J(S) = 0 in Example 1.9. Let I be the ideal of
S generated by x, i.e., I = xR[x]. Then I cannot contain nonzero idempotent
by help of [20, Lemma 8]. Thus S cannot be semipotent, noting that S is not
feckly reduced.
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