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1. Introduction

As a continuation of our previous paper on primitive Γ−semirings, [9], we
introduce here the notions of Jacobson radical of a Γ−semiring and semisimple
Γ−semiring followed by their different characterizations. We obtain the relation
between the Jacobson radical of a Γ−semiring S and that of the right operator
semiring R of S, which we use to obtain characterizations of Jacobson radical
of a Γ−semiring analogous to familiar results of the ring theory and semiring
theory, [5]. Then, with the help of the notion of subdirect sum of Γ−semiring,
introduced at the outset in a similar way to that in Γ−ring, [6], and using the
result that ”a Γ−semiring S is semisimple if and only if its right operator semi-
ring R is semisimple”, a number of characterizations of semisimple Γ−semiring
is obtained.

For preliminaries of semirings, Γ−semirings, operator semirings of a Γ−semi-
ring and Γ−rings we refer to [4], [9], [1], [6] and references therein.

Throughout this paper a Γ−semiring is assumed to be with zero, the left
unity, the right unity. It is also assumed that a ΓS−semimodule is additively
cancellative.

2. Subdirect sum of Γ−semirings

Let Si be a Γi−semiring for i = 1, 2. Then an ordered pair (θ, φ) of mappings
(θ : S1 → S2, φ : Γ1 → Γ2) is called a homomorphism of S1 into S2 if (i) θ is
a semigroup homomorphism from S1 into S2; (ii) φ is semigroup isomorphism
from Γ1 onto Γ2; (iii) for every x, y ∈ S1, every α ∈ Γ1, θ(xαy) = θ(x)φ(α)θ(y);
(iv) θ(0S1) = 0S2 . (θ, φ) is said to be onto if θ is also onto. Then the kernel of
(θ, φ), denoted by kerθ, defined by kerθ= {x ∈ S1 : θ(x) = 0}. kerθ is a k−ideal
of S1. If S1 is additively cancellative then kerθ is an h−ideal. Let (θ, φ) be a
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homomorphism of a Γ1−semiring S1 onto a Γ2−semiring S2. (θ, φ) is called a
semi-isomorphism from S1 onto S2 if kerθ= {0}. If Γ1 = Γ2 = Γ and φ is the
identity mapping, then we henceforth write φ = τ .

Theorem 2.1. Let (θ, τ) be a homomorphism from Γ−semiring S1 onto Γ−
semiring S2 with the kernel K. Then S1/K is semiisomorphic to S2.

Proof. The proof is a matter of routine verification. 2

For a proper ideal A of a Γ−semiring S the Γ−congruence on S, denoted by
σA, defined as sσAs′ if and only if s + a1 + z = s′ + a2 + z for some a1, a2 ∈ A
and for some z ∈ S, is called the Izuka Γ−congruence on S defined by the ideal
A. We denote the Izuka Γ−congruence class of an element r of S by r[/]A and
denote the set of all such Γ−congruence classes of the Γ−semiring S by S[/]A.
If the Izuka Γ−congruence σA, defined by A, is proper i.e. 0[/]A 6= S then S[/]A
is a Γ−semiring with the following operations: s[/]A+ s′[/]A = (s+ s′)[/]A and
(s[/]A)α(s′[/]A) = (sαs′)[/]A for all α ∈ Γ. We call this Γ−semiring the Izuka
factor Γ−semiring of S by A.

If in Theorem 2.1, the Γ−semiring S1 is additively cancellative, then K is
an h−ideal of S1 and the Izuka factor Γ−semiring S1[/]K is semi-isomorphic to
S2.

Let {Si}i∈I be a family of Γ−semirings indexed by the nonempty set I.
Then the Cartesian product

∏
i∈I Si is the set of all functions x : I →

⋃
i∈I Si

such that the value of x at i ∈ I is xi ∈ Si, i ∈ I. We identify x with
(xi)i∈I . Now we define addition (+) and multiplication (.) on

∏
i∈I Si as fol-

lows: (xi)i∈I + (yi)i∈I = (xi + yi)i∈I and (xi)i∈Iα(yi)i∈I = (xiαyi)i∈I for all
(xi)i∈I , (yi)i∈I ∈

∏
i∈I Si and for all α ∈ Γ. With these operations

∏
i∈I Si is

a Γ−semiring. We call this Γ−semiring the complete direct sum of the family
{Si}i∈I of Γ−semirings. If for all i ∈ I, Si is with the zero element 0i then
the complete direct sum

∏
i∈I Si is also with the zero element (0i)i∈I . (ii) If

each Si is additively regular then so is
∏

i∈I Si. Let S =
∏

i∈I Si. We asso-
ciate with each k ∈ I a pair of mappings (θk, τ) on the Γ−semiring

∏
i∈I Si

onto the the Γ−semiring Sk as follows: θk((xi)i∈I) = xk and τ(α) = α for all
(xi)i∈I ∈

∏
i∈I Si and for α ∈ Γ. Clearly, (θk, τ) is a homomorphism of S onto

Sk. We call (θk, τ), for all k ∈ I, the k−th canonical projection of S onto Sk.
If T is a subΓ−semiring of

∏
i∈I Si then θk(T ) is a subΓ−semiring of Sk for

all k ∈ I. A subΓ−semiring T of the complete direct sum
∏

i∈I Si = S of the
family {Si}i∈I of Γ−semirings is said to be a subdirect sum of the family {Si}i∈I

if for each k ∈ I the k−the canonical projection (θk, τ) of S restricted to T is
such that θk(T ) = Sk.

Theorem 2.2. A Γ−semiring S with zero is semi-isomorphic to a subdirect
sum T of (additively cancellative) Γ−semirings Si, i ∈ I, with zero elements 0i

if and only if for each i ∈ I there exists a k−ideal (h−ideal) Pi of S such that⋂
i∈I Pi = {0}.

Proof. Let S be semi–isomorphic to T and (f, g) be the semi–isomorphism of
S onto T . Since T is a subdirect sum of Γ−semirings (Si)i∈I , then for each
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i ∈ I, the i−th projection (θi, τ) of
∏

i∈I Si is such that θi(T ) = Si. Then
(θiof, τ) = (φi, τ) (say) is an epimorphism of S onto Si for all i ∈ I. Let
Pi =kerφi for all i ∈ I. Then Pi is a k−ideal of S for all i ∈ I. Now let
x ∈

⋂
i∈I Pi. Then φi(x) = 0 for all i ∈ I implies that θi(f(x)) = 0 for all i ∈ I

and so f(x) = 0. Hence x ∈kerf . Since f is a semi–isomorphism, x = 0 whence⋂
i∈I Pi = {0}.

Conversely, suppose for all i ∈ I there exists a k−ideal Pi of S such that⋂
i∈I Pi = {0}. We prove that S is semi–isomorphic to a subdirect sum of the

family {S/Pi}i∈I of Γ−semirings. Let us define a pair of mapping (f, τ) from
the Γ−semiring S to the complete direct sum

∏
i∈I(S/Pi) by f(x)(i) = x/Pi for

all x ∈ S, for all i ∈ I and τ is as usual the identity semigroup isomorphism on
Γ. Clearly, (f, τ) is a homomorphism of the Γ−semiring S into the Γ−semiring∏

i∈I(S/Pi). Let x ∈kerf . Then, f(x)(i) = 0/Pi for all i ∈ I implies that
x/Pi = 0/Pi for all i ∈ I, whence x ∈ Pi for all i ∈ I. So x = 0. Hence
kerf = {0}. Also, f(S) = T (say) is a subring of

∏
i∈I(S/Pi). Hence (f, τ)

is a semi–isomorphism of S onto T . Now, for the i−th projection map (θi, τ),
θi(T ) = θi(f(S)) = {f(s)(i) : s ∈ S} = {s/Pi : s ∈ S} = S/Pi, implying that T
is a subdirect sum of the family {S/Pi}i∈I of Γ−semirings. This completes the
proof. 2

Similarly, we can prove the theorem when Γ−semirings Si, i ∈ I, are aditively
cancellative. Then k−ideals will be replaced by h−ideals and the Bourne factor
Γ−semirings S/Pi by Izuka factor Γ−semirings S[/]Pi.

Theorem 2.3. Let S and S′ be two Γ−semirings with right operator semirings
R and R′, respectively. Suppose that there exists a homomorphism (f, τ) of
the Γ−semiring S onto the Γ−semiring S′. Then R′ is semi–isomorphic to
R/(kerf)∗

′
.

Proof. Let us define a mapping f : R → R′ by f(
∑

i[αi, xi]) =
∑

i[αi, f(xi)]
for

∑
i[αi, xi] ∈ R. If

∑
i[αi, xi] =

∑
jbγj , yjc in R then

∑
i sαixi =

∑
j sγjyj

for all s ∈ S, whence
∑

i f(s)αif(xi) =
∑

j f(s)γjf(yj) for all s ∈ S. Since
f : S → S′ is surjective, it follows that

∑
i yαif(xi) =

∑
j yγjf(yj) for all

y ∈ S′, implying that
∑

i[αi, f(xi)] =
∑

jbγj , f(yj)c. Thus f is well–defined.
Clearly, f is a semiring homomorphism of R to R′. Let

∑m
i=1[αi, yi] ∈ R′. Then

there exists xi ∈ S such that f(xi) = yi for all i = 1, 2, . . . ,m (since f is onto).
So

∑m
i=1[αi, yi] =

∑m
i=1[αi, f(xi)] = f(

∑m
i=1[αi, xi]) where

∑m
i=1[αi, xi] ∈ R.

Hence, f is surjective and so R/kerf is semi–isomorphic to R′ (by the funda-
mental homomorphism theorem of semiring).

Now

kerf = {
∑

i

[αi, xi] ∈ R :
∑

i

[αi, f(xi)] = 0R′}

= {
∑

i

[αi, xi] ∈ R :
∑

i

yαif(xi) = 0S′ for all y ∈ S′}

= {
∑

i

[αi, xi] ∈ R :
∑

i

f(x)αif(xi) = 0S′ for all x ∈ S}
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= {
∑

i

[αi, xi] ∈ R : f(
∑

i

xαixi) = 0S′ for all x ∈ S}

= {
∑

i

[αi, xi] ∈ R :
∑

i

xαixi ∈ kerf for all x ∈ S} = (kerf)∗
′
.

This completes the proof. 2

Using Lemma 3.13, [9], we can prove that RS/kerf is isomorphic to R/(kerf)∗
′

but later we need the very method of proof employed above.

Theorem 2.4. Let S be a Γ−semiring and R be its right operator semiring.
Then S is additively cancellative if and only if so is R.

Proof. Let S be additively cancellative and let
∑

i[αi, xi] +
∑

jbβj , yjc =∑
i[αi, xi] +

∑
k[γk, zk] in R then

∑
i sαixi +

∑
j sβjyj =

∑
i sαixi +

∑
k sγkzk

for all s ∈ S. Since S is additively cancellative,
∑

j sβjyj =
∑

k sγkzk for all
s ∈ S. Hence

∑
jbβj , yjc =

∑
k[γk, zk], which implies that R is cancellative.

Conversely, suppose R is additively cancellative and x + y = x + z in S. This
implies that [x, α] + [y, α] = [x, α] + [z, α] for all α ∈ Γ i.e. [y, α] = [z, α] for all
α ∈ Γ. So yαs = zαs for all α ∈ Γ. In particular,

∑n
j=1 yγjfj =

∑n
j=1 zγjfj

where
∑n

j=1[γj , fj ] is the right unity of S. This implies that y = z. Hence S is
additively cancellative. 2

Lemma 2.1. Let S be a Γ−semiring and R be its right operator semiring. Then
{0S}∗

′
= {0R} and {0R}∗ = {0S}.

Theorem 2.5. Let {Si}i∈I be a family of additively cancellative Γ−semirings
and let Ri be the right operator semiring of Si. Suppose that the Γ−semiring
S is semi–isomorphic to a subdirect sum of {Si}i∈I . Then the right operator
semiring R of S is semi–isomorphic to a subdirect sum of {Ri}i∈I .

Proof. By the proof of Theorem 2.2, for each i ∈ I, there exists a homomor-
phism (φi, τ) of S onto Si such that

⋂
i∈I kerφi = {0}, where each kerφi is an

h−ideal of S. Now, let us define a mapping φi : R → Ri by φi(
∑

jbαj , xjc) =∑
jbαj , φi(xj)c for all i ∈ I and for all

∑
jbαj , xjc ∈ R. Then for each i ∈ I,

φi is a surjective semiring homomorphism of R onto Ri and kerφi = (kerφi)∗
′

(by the proof of Theorem 2.3). This implies that
⋂

i∈I kerφi =
⋂

i∈I(kerφi)∗
′
=

(
⋂

i∈I kerφ)∗
′
= {0S}∗

′
= {0R} (by Lemma 2.1). Hence by Theorem 2.2, [7], R

is semi–isomorphic to a subdirect sum of the family {Ri}i∈I of semirings. 2

Theorem 2.6. Let {Si}i∈I be a family of additively cancellative primitive Γ−
semirings. If a Γ−semiring S is semi–isomorphic to a subdirect sum of {Si}i∈I

then the right operator semiring R of S is semi–isomorphic to a subdirect sum
of a family of additively cancellative primitive semirings.
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Proof. Let Ri be the right operator semiring of Si for all i ∈ I. Then by The-
orem 3.17, [9], and Theorem 2.17, Ri is a primitive and additively cancellative
semiring for all i ∈ I. Now, by Theorem 2.5, R is semi–isomorphic to a subdirect
sum of {Ri}i∈I . This completes the proof. 2

3. Jacobson radical of Γ−semiring

Let S be a Γ−semiring and I be the set of all irreducible ΓS−semimodules.
Then J(S) =

⋂
M∈I AS(M) is called the Jacobson radical of S. If I is empty,

then S itself is considered as J(S) and in that case we say that S is a radical
Γ−semiring. The zeroid Z(S) of a Γ−semiring S is contained in J(S) since
Z(S) ⊆ AS(M) for all ΓS−semimodule M .

Proposition 3.1. Let S be a Γ−semiring. Then J(S) is an h−ideal of S and
also a k−ideal of S.

Proof. The proposition follows from the fact that AS(M) is an h−ideal of S
(Proposition 3.9, [9]). Since every h−ideal is also a k−ideal, J(S) is also a
k−ideal of S. 2

Theorem 3.1. Let S be a Γ−semiring and R be its right operator semiring.
Then J(S) = J(R)∗ and J(R) = J(S)∗

′
where J(R) =

⋂
AR(M), intersection

runs over all irreducible R−semimodules ([5]) M and AR(M) = {x ∈ R : xM =
{0}}.

Proof. Since ”M is an irreducible ΓS−semimodule if and only if M is an ir-
reducible R−semimodule” (Proposition 3.8, [9]) and AS(M)∗

′
= AR(M) and

AR(M)∗ = AS(M), where M is an irreducible ΓS−semimodule or R−semi-
module (Proposition 3.10, [9]), J(S)∗

′
= (

⋂
M∈I AS(M))∗

′
=

⋂
M∈I AS(M)∗

′
=⋂

M∈I AR(M) = J(R), where I is the set of all irreducible ΓS−semimodules
and hence the set of all irreducible R−semimodules. Since J(S) is an h−ideal
of S (Theorem 3.1), so by Theorem 6.14 ([1]) J(R)∗ = (J(S)∗

′
)∗ = J(S). 2

Now we have the following characterization of the Jacobson radical of a
Γ−semiring:

Theorem 3.2. The Jacobson radical of a Γ−semiring S is the intersection of
all primitive h−ideals of S.

Proof. Let S be a Γ−semiring. We know that an h−ideal P of S is primitive if
and only if P = AS(M) for some irreducible ΓS−semimodule M (Theorem 3.18,
[9]). Now AS(M) is an ideal of S for any ΓS-semimodule M (by Proposition
3.9, [9]). So the theorem follows from the definition of Jacobson radical. 2
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Theorem 3.3. If P is an ideal of a Γ−semiring S, then J(P ) = P ∩ J(S),
where J(P ) is the Jacobson radical of P considered as a Γ−semiring.

Proof. We first observe that P ∗′
is the right operator semiring of P ([3]) con-

sidered as a Γ−semiring (in fact R = S∗′
). Hence, by Theorem 3.1, J(P ∗′

) =
J(P )∗

′
and so (J(P ∗′

))∗ = (J(P )∗
′
)∗ = J(P ) (by Theorem 6.6, [1]). Now,

by Proposition 6.5 ([1]), P ∗′
is an ideal of the right operator semiring R of S.

So by Theorem 2 ([5]), J(P ∗′
) = P ∗′ ∩ J(R), which implies that (J(P ∗′

))∗ =
(P ∗′ ∩ J(R))∗, which implies that J(P ) = (P ∗′

)∗ ∩ J(R)∗ = P ∩ J(S) (using
Theorem 6.6 [1] and Theorem 3.1). This completes the proof. 2

Corollary 3.1. Let S be a Γ−semiring. Then J(S), considered as a Γ−semi-
ring, is a radical Γ−semiring, i.e. J(J(S)) = J(S).

Proof. Follows immediately from Theorem 3.3. 2

Theorem 3.4. Let S be a Γ−semiring and R be its right operator semiring.
Let Q be an ideal of R. Then (J(Q∗))∗

′
= J(Q).

Proof. By Proposition 6.4 ([1]), Q∗ is an ideal of S. So by Theorem 3.3,
J(Q∗) = Q∗∩J(S) which implies that (J(Q∗))∗

′
= (Q∗)∗

′∩(J(S))∗
′
= Q∩J(R)

(using Theorem 6.6 [1] and Theorem 3.1) = J(Q) (by Theorem 2 [5]). 2

Corollary 3.2. J(Q∗) = J(Q)∗ for any ideal Q of R, where R is the right
operator semiring of a Γ−semiring S.

Proof. J(Q) = (J(Q∗))∗
′

(using Theorem 3.4). So J(Q)∗ = ((J(Q∗))∗
′
)∗ =

J(Q∗). 2

Theorem 3.5. Let S be a Γ−semiring. If SΓxΓS ⊆ J(S) then x ∈ J(S).

Proof. Let SΓxΓS ⊆ J(S). Then [Γ, SΓxΓS] ⊆ [Γ, J(S)] ⊆ J(S)∗
′

(since
SΓJ(S) ⊆ J(S), J(S) being an ideal) = J(R) (using Theorem 3.1) implying
that [Γ, S][Γ, x][Γ, S] ⊆ J(R) implying that R[α, x]R ⊆ J(R) for all α ∈ Γ. So by
Theorem 5 ([5]), [α, x] ∈ J(R) for all α ∈ Γ. This implies that x ∈ J(R)∗ = J(S)
(using Theorem 3.1). This completes the proof. 2

4. Semisimple Γ−semiring

A Γ−semiring S is said to be semisimple if its Jacobson radical J(S) = {0}.
Let S be a Γ−semiring and P be a (left, right) ideal of S. P is said to be strongly
seminilpotent if there exists a positive integer n such that (PΓ)n−1P ⊆ Z(S),
where (PΓ)n−1 = (PΓ)(PΓ) . . . . . . (n − 1) times, (PΓ)0P = P and Z(S) is
the zeroid of S. P is said to be strongly nilpotent if there exists a positive
integer n such that (PΓ)n−1P = {0}. A strongly nilpotent (left, right) ideal of
a Γ−semiring is strongly seminilpotent.



On Jacobson radical of a Γ−semiring 7

Theorem 4.1. Let S be a Γ−semiring and P be a strongly seminilpotent right
ideal of S. Then P ⊆ J(S).

Proof. If possible, suppose P 6⊂ J(S) =
⋂

M∈I AS(M), where I is the set of all ir-
reducible ΓS−semimodules. Then there exists an M ∈ I such that P 6⊂ AS(M).
This implies that MΓP 6= {0}. Since P is strongly seminilpotent, there exists
a positive integer n such that (PΓ)n−1P ⊆ Z(S). This implies that for pj ∈ P
(j = 1, 2, . . . , n) and for γj ∈ Γ (j = 1, 2, . . . , n − 1) p1γ1p2γ2 . . . pn−1γn−1pn +
z = z for some z ∈ S, which implies that mα(p1γ1p2γ2 . . . pn−1γn−1pn)+mαz =
mαz for all α ∈ Γ and for all m ∈ M, which implies that mα(p1γ1p2γ2 . . . pn−1

γn−1pn) = {0} (since M is additively cancellative) for all α ∈ Γ and for all
m ∈ M . This implies that MΓ(PΓ)n−1P = {0}. If this relation is true
for n = 1 then MΓP = {0} – contrary to MΓP 6= {0}. Hence there ex-
ists m ∈ M and a positive integer k such that mΓ(PΓ)k−1P 6= {0} and
mΓ(PΓ)kP = {0}. Let ν (6= 0)∈ mΓ(PΓ)k−1P ⊆ M . Since M is irre-
ducible, there exist ai, bj ∈ S, αi, βj ∈ Γ, where i = 1, 2, . . . , r and j =
1, 2, . . . , t; r, t are positive integers; such that m +

∑r
i=1 ναiai =

∑t
j=1 νβjbj .

So mδp +
∑r

i=1 ναiaiδp =
∑t

j=1 νβjbjδp for all δ ∈ Γ and for all p ∈ P . Since∑r
i=1 ναiaiδp,

∑t
j=1 νβjbjδp ∈ mΓ(PΓ)k−1PΓSΓP ⊆ mΓ(PΓ)k−1PΓP (since

P is a right ideal of S) = mΓ(PΓ)kP = {0}. Hence mδp = 0 for all δ ∈ Γ and
for all p ∈ P implies that MΓP = {0} – a contradiction. This completes the
proof. 2

Corollary 4.1. If a Γ−semiring S is semisimple then it does not have any
non-zero strongly seminilpotent right ideal and consequently, S does not have
any strongly nilpotent right ideal.

Proof. Follows easily from Theorem 4.1 and the remark made above the theorem.
2

Theorem 4.2. A Γ−semiring S is semisimple if and only if its right operator
semiring R is semisimple.

Proof. Let the Γ−semiring S be semisimple. Then its Jacobson radical J(S) =
{0S} implies that J(S)∗

′
= {0S}∗

′
implies that J(R) = {0R} (using Theorem

3.1 and Lemma 2.1). Hence R is a semisimple semiring ([5]). Converse follows
by reversing the above argument. 2

Lemma 4.1. Let S be a Γ−semiring and R be its right operator semiring. Let
P be an ideal of S and RS[/]P be the right operator semiring of the Izuka factor
Γ−semiring S[/]P . Then RS[/]P and R[/]P ∗′

are isomorphic.

Proof. Easy modification of the proof of Lemma 3.13 ([9]). 2
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Theorem 4.3. Let S be a Γ−semiring. Then both S/J(S) and S[/]J(S) are
semisimple, i.e. J(S/J(S)) = {J(S)} and J(S[/]J(S)) = {J(S)}.

Proof. Let S be a Γ−semiring and R, RS/J(S) be respectively the right operator
semirings of S and S/J(S). By Lemma 3.13 ([9]), RS/J(S) and R/J(S)∗

′
are

isomorphic. Now by Theorem 3.1, J(S)∗
′

= J(R). So RS/J(S) and R/J(R)
are isomorphic. Again by Theorem 3 ([5]), R/J(R) is a semisimple semiring
and so RS/J(S) is a semisimple semiring. Hence, by Theorem 4.2, S/J(S), is
semisimple Γ−semiring. 2

In a similar fashion, using Lemma 4.1 and Theorem 4.2, we can prove that
S[/]J(S) is semisimple Γ−semiring.

Theorem 4.4. If a Γ−semiring S is semisimple then S is semi–isomorphic to a
subdirect sum of primitive Γ−semirings. Conversely, if a Γ−semiring S is semi–
isomorphic to a subdirect sum of additively cancellative primitive Γ−semirings,
then S is semisimple.

Proof. Let the Γ−semiring S be semisimple. Then J(S) = {0}. Since by
Theorem 3.2, J(S) =

⋂
k∈Λ Pk where {Pk}k∈Λ is the family of all primitive

h−ideals of S,
⋂

k∈Λ Pk = {0}, where each Pk is a k−ideal of S (since each
h−ideal is a k−ideal). Then by the proof of the converse part of Theorem 2.2,
S is semi–isomorphic to a subdirect sum of Γ−semirings {S/Pk}k∈Λ, each of
which is primitive since each Pk is a primitive ideal.

Conversely, suppose that the Γ−semiring S is semi–isomorphic to a subdirect
sum T of additively cancellative primitive Γ−semirings {Si}i∈I . Let R be the
right operator semiring of S and Ri be the right operator semiring of Si, i ∈ I.
Then by the proof of Theorem 2.6, R is semi–isomorphic to a subdirect sum of
additively cancellative semirings {Ri}i∈I . Hence, by Theorem 3.3 ([7]), J(R) =
{0}. Hence R is a semisimple semiring ([5]) and so by Theorem 4.2, S is a
semisimple Γ−semiring. 2
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