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On Joint Optimization of Automatic Speaker

Verification and Anti-spoofing in the Embedding

Space
Alejandro Gomez-Alanis, Jose A. Gonzalez-Lopez, S. Pavankumar Dubagunta, Student Member, IEEE,

Antonio M. Peinado, Senior Member, IEEE, Mathew Magimai.-Doss, Member, IEEE.

Abstract—Biometric systems are exposed to spoofing attacks
which may compromise their security, and voice biometrics
based on automatic speaker verification (ASV), is no exception.
To increase the robustness against such attacks, anti-spoofing
systems have been proposed for the detection of replay, synthesis
and voice conversion-based attacks. However, most proposed anti-
spoofing techniques are loosely integrated with the ASV system.
In this work, we develop a new integration neural network which
jointly processes the embeddings extracted from ASV and anti-
spoofing systems in order to detect both zero-effort impostors
and spoofing attacks. Moreover, we propose a new loss function
based on the minimization of the area under the expected (AUE)
performance and spoofability curve (EPSC), which allows us to
optimize the integration neural network on the desired operating
range in which the biometric system is expected to work. To
evaluate our proposals, experiments were carried out on the
recent ASVspoof 2019 corpus, including both logical access (LA)
and physical access (PA) scenarios. The experimental results
show that our proposal clearly outperforms some well-known
techniques based on the integration at the score- and embedding-
level. Specifically, our proposal achieves up to 23.62% and
22.03% relative equal error rate (EER) improvement over the
best performing baseline in the LA and PA scenarios, respectively,
as well as relative gains of 27.62% and 29.15% on the AUE
metric.

Index Terms—Automatic speaker verification (ASV), spoofing
detection, embeddings, integration of ASV and anti-spoofing,
expected performance and spoofability curve (EPSC).

I. INTRODUCTION

Biometric authentication [1] aims to authenticate the iden-

tity claimed by a given individual based on the samples

measured from biological processes and/or organs (e.g., voice,

face, and fingerprints). While the main biometric techniques

can already handle noisy environments robustly [2], [3], their

vulnerability to malicious spoofing attacks is still a serious

concern nowadays [4], [5]. Our focus in this work is on

spoofing detection for automatic speaker verification (ASV)

[6], in which an impostor could gain fraudulent access to a

system or resource (e.g., bank account) by presenting speech

resembling the voice of a genuine user.

Four types of spoofing attacks have been identified [7]:

(i) replay (i.e., using pre-recorded voice of the target user),
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Fig. 1. Block diagram of two score-level integration systems: (a) cascaded
(PAD preceeding ASV) integration; (b) fusion integration. sLA, sPA, sASV

and sjoint denote the scores of the LA, PA, ASV and joint integration
systems, respectively. Likewise, τLA, τPA, τASV and τjoint denote the
thresholds of the same systems used for the decision of accepting or rejecting
the test utterance.

(ii) impersonation (i.e., mimicking the voice of the target

voice, where the twins fraud [8] is a specific form of the

impersonation attack specially challenging), or either using

(iii) text-to-speech synthesis (TTS) or (iv) voice conversion

(VC) systems to generate artificial speech resembling the

voice of a legitimate user. Moreover, these attacks can be

presented to the ASV system according to two different

scenarios: logical access (LA) and physical access (PA). In

the PA attack scenario, the spoof signal is presented to or

captured by the sensor, i.e., the microphone. Whilst, in the

LA scenario, the sensor is by-passed and attacks are directly

injected into the ASV system, normally generated using TTS

or VC technologies.

Spoofing detection or presentation attack detection (PAD

in ISO/IEC 30107 nomenclature [9]) for ASV has gained

increased attention in recent years as evidenced by the or-

ganization of several evaluation campaigns (challenges): (i)

ASVspoof 2015 [10], which focused on LA scenarios (TTS

and VC attacks); (ii) BTAS 2016 [11], which addressed both

the detection of LA and PA-based attacks; (iii) ASVspoof 2017
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[12], which focused on PA scenarios (real replay attacks) under

noisy environments; and (iv) ASVspoof 2019 [13], which

addressed both the detection of LA-based attacks generated

with the latest TTS and VC technologies, and simulated replay

attacks under different reverberant acoustic conditions.

While ASV and spoofing detection have been well studied

separately so far, the integration of both systems still requires

further research. This paper deals with this issue and proposes

an embedding-level solution capable of achieving a significant

improvement in terms of biometric authentication security. Fig.

1 shows two typical integration approaches for such systems:

(a) cascaded or tandem integration in which PAD precedes

ASV, or viceversa, and where utterances can be rejected by

either the first or the second module; and (b) score fusion

integration where the ASV and PAD scores are the inputs

of a final classifier which assigns an unique score to the

test utterance. In this work, however, we argue that this type

of system integration is sub-optimal owing to the following

reasons. First, these techniques calibrate the standalone and

joint thresholds considering only one point of the error rate

on the development set. However, it is difficult to predict

the ideal operating point of the integration system, since the

evaluation data is usually unseen and does not match the

development data. Second, these systems typically handle two

or three scores (ASV and PADs) obtained by independent

classifiers, without exploiting the fact that ASV and PAD

systems share the bonafide speech subspace. Recently, two

joint ASV and anti-spoofing systems [14], [15] were studied

in the i-vector [16] and x-vector [17] space, respectively. They

obtained promising results, thus demonstrating the feasibility

and advantage of a joint ASV/PAD decision at the embedding

level.

Inspired by recent developments on deep learning methods,

in which deep neural networks (DNNs) are used as powerful

non-linear feature extraction front-ends to map variable-length

sequences to fixed-dimensional embedding vectors, in this

paper, we investigate on system integration at the embedding

level. Specifically, we propose an embedding-level integration

system based on a neural network whose parameters can

be optimized in the range of operating points in which the

biometric system is expected to work, which is easier to predict

than a single calibration point. The main contributions of our

work can be summarized as follows:

1) Integration Neural Network: We propose a new integra-

tion technique based on a DNN which processes three types

of embeddings (ASV, LA, and PA) jointly. Due to the fact

that embeddings extracted from ASV and PAD systems share

the bonafide space (i.e., non-spoofed space of speech), the

proposed system is able to exploit this fact in order to better

discriminate between bonafide target speech and zero-effort

impostors or spoofing attacks.

2) Loss Function: To train the integration neural network,

we propose a new loss function which minimizes the area

under the expected (AUE) [18] performance and spoofability

curve (EPSC) [18]. This allows us to optimize the integration

system in the operating range in which the biometric system

is expected to work a priori.

3) Agnosticism: In order to be agnostic to the type of

spoofing attacks that integration systems might encounter, we

develop and evaluate different integration techniques under

the presence of TTS, VC, and replay attacks. To the best

of our knowledge, the existing integration techniques have

only been trained to detect either TTS/VC or replay attacks.

In addition, we compare the performance of the agnostic

integration systems with the fusion of two similar non-agnostic

integration systems which can only detect either LA- or PA-

based attacks.

This paper is organized as follows. Section II outlines the

ASV, PAD, and integration systems, as well as the metrics

to evaluate them. Then, in Section III, we describe the pro-

posed integration neural network and the new loss function

specifically conceived to optimize it. After that, Section IV

outlines the speech corpora, systems details, and metrics

employed in the experiments. Then, Section V discusses the

performance of the standalone ASV and PAD systems, in order

to choose the best ones for building the integration systems

which are evaluated in Section VI. Finally, we summarize the

conclusions derived from this research in Section VII.

II. BACKGROUND

This section briefly describes the existing standalone ASV

and PAD approaches, as well as the metrics to evaluate them.

Then, a detailed description of the existing integration systems

and metrics are provided in Section II-C.

A. Standalone Automatic Speaker Verification (ASV) Systems

The goal of an ASV system is to determine whether a test

utterance is produced by the claimed speaker S (hypothesis

HS ) or not (hypothesis H
S

). The speaker information encoded

in the utterance is typically represented as either i-vectors [16]

or x-vectors [17]. In the verification stage, the i-vectors or x-

vectors of the test and enrollment utterances are extracted, and

then are usually mapped into a more discriminative subspace

using linear discriminant analysis (LDA). Finally, the ASV

score of each test utterance can be obtained using three main

techniques:

1) Cosine scoring [19]: It does not require any training

data. It uses the cosine distance to compute the score between

the enrollment and test embeddings.

2) Probabilistic Linear Discriminant Analysis (PLDA) [20],

[21]: This is a probabilistic framework able to model the

intra- and inter-speaker variability. There are three types of

PLDA models [22]: standard [20], simplified [23] and two-

covariance [24]. All of them are trained using the expectation-

maximization (EM) algorithm [25].

3) B-vector system [26]: This technique considers speaker

verification as a binary classification problem. In particular,

from the x-vectors x1 and x2 computed for each pair of

utterances, a b-vector representing the relationship between

x1 and x2 is computed as follows,

b =
[

x1 ⊕ x2,x1 ⊗ x2, |x1 ⊖ x2|
]

, (1)

where ⊕, ⊗ and ⊖ are the element-wise addition, multipli-

cation, and subtraction operations, respectively. The b-vectors
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computed from the dataset are fed to a binary DNN in order to

classify them as positive or negative, i.e., determine whether

the x-vectors x1 and x2 are originated from the same or

different speaker/s.

The evaluation of an ASV system is done in terms of the

licit protocol [27], which only contains speech uttered by

bonafide target speakers and zero-effort impostors. The most

common metric to evaluate an ASV system is the equal error

rate (EER), which is the operating point at which the false

acceptance rate (FAR) equals the false rejection rate (FRR).

However, the EER metric does not account for the costs of

missing target users and falsely accepting impostors, nor the

prior probabilities of each. To take these costs and priors into

account, the detection cost function (DCF) framework [28]

has been endorsed by the National Institute of Standards and

Technology (NIST) within the scope of the speaker recogni-

tion evaluation (SRE) campaigns [29]. The costs and priors

have varied across the different NIST SRE campaigns, being

DCF08 [30] and DCF10 [31] two of the most popular metrics.

However, the DCF still only measures the performance at a

single operating point. To address this issue, NIST included

the evaluation of the area under the curve (AUC), which is

a visualization model for the receiver operating characteristic

(ROC) curve. Then, the detection error tradeoff (DET) [32]

curve was developed as a non-linear version of the ROC.

However, the speaker recognition and ASVspoof community

favors another non-linear way of ROC such as the ROC’s

convex hull (ROCCH) [33]. The ROCCH is the expectation

of all possible optimistic and pessimistic ROC estimates. It

relates to the minDCF metric and is summarized by the

minimum log-likelihood ratio cost metric (Cmin
llr ) [34]. The

former one is commonly used to analyze how well an ASV

system performs and is calibrated across all operating points.

When the ROCCH-EER is optimized, the entire ROC profile

optimizes due to convexity, but this does not necessarily hold

for other optimizations based on other EER estimates. Also, in

order to enable a more realistic comparison between systems

as well as a better analysis of their respective expected perfor-

mance, the expected performance curve (EPC) framework [35]

developed the area under the expected (AUE) performance

curve, which also allows to measure the performance of an

ASV system for a wide range of operating points. Most

of these metrics are used in our experiments for evaluating

standalone ASV systems.

B. Standalone Presentation Attack Detection (PAD) Systems

Spoofing detection is a binary classification task which aims

at differentiating spoofed speech from bonafide speech. For

each test utterance, two hypotheses are computed: either it is

bonafide speech N (HN ), or it is a spoofing attack (H
N

).

There are two main machine learning models to detect

spoofed speech [36]: (i) Gaussian mixture models (GMMs)

and (ii) neural networks (NNs). A wide range of features have

been proposed to train these models, such as spectrogram [37],

linear frequency cepstral coefficients (LFCC) [38], constant

Q cepstral coefficients (CQCC) [39], and raw speech samples

[40]. In the last ASVspoof challenges [12], [13], deep learning

has shown to be the most effective approach to detect spoofing.

TABLE I
CLASSIFICATION OF TRIALS IN ASV AND PAD SYSTEMS. SYMBOL ”-”
MEANS THAT EITHER ASV HAS NO CAPABILITY TO REJECT SPOOFING

IMPOSTOR TRIALS OR THAT PAD CANNOT MAKE A DISTINCTION

BETWEEN ZERO-EFFORT IMPOSTOR AND GENUINE TARGET TRIALS.

Class C1 C2 C3

System / Trial Genuine target Genuine non-target Spoof target

ASV Positive Negative -

PAD Positive - Negative

ASV + PAD Positive Negative Negative

The evaluation of standalone PAD systems is carried out

in terms of the spoof protocol [27], which contains bonafide

speech and spoofing attacks. Just like ASV, the EER metric

is typically used to evaluate standalone anti-spoofing systems,

where false rejection happens when a bonafide speech utter-

ance is detected as a spoofing attack, and false acceptance

occurs when spoofed speech is detected as bonafide speech.

Recently, the ASV-constrained minimum tandem detection

cost function (min-tDCF) metric [41] was proposed to evaluate

a PAD system given a fixed ASV system, considering the

priors and costs of the different hypotheses. This was the

primary metric used in the last ASVspoof 2019 challenge [13].

C. Integration Systems: Joint ASV and PAD

In the joint approach, each utterance has two attributes: (i)

an indicator of the bonafide speech (N ), and (ii) an indicator

of the target speaker (S). Thus, the null hypothesis H(S,N ) is

that the test utterance is bonafide speech uttered by the target

speaker. In turn, the complementary hypotheses is a union of

the other three classes:

H
(S,N )

= H(S,N ) ∪H(S,N ) ∪H(S,N ), (2)

where (S,N ) represents bonafide speech uttered from a non-

target speaker (zero-effort impostor), (S,N ) corresponds to a

spoofing attack, and (S,N ) represents spoofed speech from a

non-target speaker. Normally, the latter case is not considered

since it does not make sense in an authentication context.

Table I defines the three types of trial that ASV and PAD

systems may encounter: (i) genuine target, (ii) genuine non-

target or zero-effort impostor, and (iii) spoof target trials. Also,

Table I illustrates the ground-truth labels for each task and trial

combination as well as the class names that we have defined.

The integration of ASV and PAD systems can be achieved

at the score level (late fusion) [42] or at the model/feature level

(early fusion) [14]. Most existing integration methods perform

the integration at the score level, where dedicated classifiers

are developed for ASV and PAD, and the scores computed

by each independent system are combined. At this score-level

integration, there are three main approaches:

1) Tandem or cascaded integration [42], [43], [44]: ASV

and PAD systems can be cascaded in either order - PAD

followed by ASV as shown in Fig. 1(a), or ASV followed by

PAD. In order to estimate the performance of the integrated

system, utterances rejected in the first module are assigned

arbitrarily −∞ scores and are thereby rejected automatically

by the subsystem that follows. Thus, the cascaded approach
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relies on three thresholds, τASV, τLA, and τPA, applied to ASV

and PAD (LA and PA) scores, respectively, as illustrated in

Fig. 1.

2) Logistic regression fusion [44]: Logistic regression has

been successfully employed for combining several PAD sys-

tems [45], [46] and speaker classifiers [47], [48] at the score

level. The three scores sASV , sLA, and sPA from ASV and

PAD (LA and PA) systems, respectively, can be fused inside

the logistic function of a multinomial regression.

3) Gaussian back-end fusion [49]: For each ASV trial

which belongs to class Cl, l ∈ {1, 2, 3}, a three-dimensional

scores vector, s = [sASV , sLA, sPA], is obtained in order

to model the conditional probability density of s using a

multivariate Gaussian distribution. The scores are computed as

the log-likelihood ratio between the null and complementary

hypotheses, where the latter is represented as a two-component

GMM with mixing weight α ∈ [0, 1], which determines the

importance of classes C2 and C3.

On the other hand, the integration of ASV and PAD systems

at the embedding level has not been fully explored by the

scientific community. To the best of our knowledge, only two

embedding-level integration techniques have been studied:

4) Two-stage PLDA [14]: This technique is composed of

two stages. First, it trains a simplified PLDA [23] model using

only the embeddings of the bonafide speech. Then, on the

second stage, this technique estimates a new mean vector,

adds a spoofing channel subspace, and trains it using only

the embeddings of the spoofed speech.

5) Multi-task triplet TDNN [15]: This approach extracts

embeddings that contain speaker identity and spoofing infor-

mation using a multi-task time delay neural network (TDNN)

[50] which is optimized using the triplet loss [51]. The

dimension of these embeddings is then reduced using LDA,

and the integration scores are obtained by fusing two PLDA

models, one for ASV and the other one for anti-spoofing.

The evaluation of integration systems can be done in terms

of EER, measured in either the licit (target speakers and

zero-effort impostors), spoof (bonafide speech and spoofed

speech) or joint (union of licit and spoof) scenario. However,

the EER does not account for the costs of missing target

users and falsely accepting zero-effort impostors or spoofing

attacks, nor the prior probabilities of each. To take these costs

and priors into account, the min-tDCF [41], [52] has been

recently proposed as a metric for evaluating decision-level

integration systems. Nevertheless, decision-level integration

systems assume that there are two separate systems (ASV

and PAD) with two different operating thresholds which make

their own binary decisions independently. The decision-level

integration system fuses their binary decision outputs in order

to make the final binary decision. However, in this work

we focus on score- and embedding-level integration systems

which combine the scores/embeddings of ASV and PAD

subsystems in order to provide one final score and handle

one single threshold. Moreover, both the EER and min-tDCF

metrics need that ASV and PAD operating points are set before

evaluation. Thus, these metrics only measure the performance

at a single operating point of the whole integration system,

although the optimization of the ROCCH-EER ensures the

optimization of the entire ROC due to convexity. Therefore, the

ROCCH-EER can give us an idea of the overall performance

of the integration system.

To allow the evaluation of integration systems across all

operating points, an extension of the EPC framework was

developed for evaluating integration systems, namely, the

expected performance and spoofability (EPS) framework [18].

To enable this, it establishes a criteria for determining a

decision threshold considering the cost of the two types of

negative hypotheses as well as the cost of rejecting positives,

by using two parameters: ω ∈ [0, 1], which denotes the

relative cost of spoofing attacks with respect to zero-effort

impostors; and β ∈ [0, 1], which denotes the relative cost of the

negative classes (zero-effort impostors and spoofing attacks)

with respect to the positive class. The EPS framework plots

the weighted error rate (WERω,β) [18] with respect to one

of the parameters ω or β, while the other one is fixed to a

predefined value. It can be computed as [18],

WERω,β(τ
∗
ω,β) = β · FARω(τ

∗
ω,β) + (1− β) · FRR(τ∗ω,β),

(3)

where FARω is a weighted error rate for the two negative

classes (ZFAR for zero-effort FAR and SFAR for spoofing

FAR):

FARω(τ) = ω · SFAR(τ) + (1− ω) · ZFAR(τ), (4)

and τ∗ω,β denotes the optimal classification threshold, which

is chosen to minimize the weighted difference between FARω

and FRR on the development set:

τ∗ω,β = argmin
τ

|β · FARω(τ)− (1− β) · FRR(τ)|. (5)

Using the WER function defined in (3), the global perfor-

mance of the integrated biometric system can be computed

as the area under the EPS (AUE) curve [18]. Normally, it is

computed for a fixed β, which represents the average expected

WERω,β for all values of ω:

AUE(β) =

∫ 1

0

WERω,β(τ
∗
ω,β) dω. (6)

This function allows the comparison between different biomet-

ric systems, with lower values indicating better performance

(i.e., lower WER for the whole range of operating points).

Moreover, the AUE could be also computed between certain

bounds a, b ∈ [0, 1]; a < b, enabling to compare two systems

depending on the required range of the varying parameter.

III. PROPOSED INTEGRATION TECHNIQUE

In this section, we propose a new early-integration technique

based on a DNN which processes embeddings computed by

ASV and PAD systems jointly. As embeddings extracted by

ASV and PAD systems share the bonafide subspace, the pro-

posed system exploits this fact in order to better discriminate

between bonafide target speech and zero-effort impostors or

spoofing attacks. Moreover, we propose a new loss function
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Fig. 2. Proposed integration neural network framework. System overview for classifying a pair of enrollment and test utterances into one of the three
integration classes: C1 (target genuine), C2 (genuine non-target) and C3 (spoof target). The LA and PA spoofing embeddings are extracted from the STFT
features of the i-th test utterance, while the x-vectors (extracted from MFCC features) of the enrollment and test utterances are combined into a single ASV
embedding. These three vectors are concatenated into a single input vector (ri) for the integration neural network (Θ).

to train the integration neural network which minimizes the

AUE, given in Eq. (6), in order to optimize the integration

system in the desired operating range in which the biometric

system is expected to work.

A. Integration Neural Network

The diagram system of the proposed integration is depicted

in Fig. 2, where the input for feeding the integration neural

network is formed by the concatenation of three embeddings:

LA, PA and ASV embeddings. The proposed approach is

agnostic about the type of spoofing attack (TTS, VC or

replay attacks) that it might encounter, since it is composed

of two independent PAD systems for detecting LA and PA-

based attacks, respectively. Thus, the LA and PA embeddings

are directly extracted from the spectral features of the test

utterance using these two PAD systems. In addition, the single

ASV embedding combines the speaker information of both

the enrollment and test utterances since it is extracted from

the last fully connected layer of a b-vector system (described

in Section II-A3), which contains information about whether

the test and enrollment utterances are uttered by the same

speaker or not. As detailed in Section IV, the ASV system

is based on x-vectors [17] and processes the Mel-frequency

cepstral coefficients (MFCCs) features of the enrollment and

test utterances, while the PAD systems are based on a Light

Convolutional Gated Recurrent Neural Network (LC-GRNN)

[53] which processes the short time Fourier transform (STFT)

based features of the test utterance. As can be seen in Fig. 2,

the architecture of the integration neural network consists of

three fully connected layers and one output layer made up of

three neurons whose values represent the likelihood of the test

utterance belonging to each one of the three integration classes

defined in Table I: (i) C1 (genuine target), (ii) C2 (genuine

non-target), and (iii) C3 (spoof target).

B. Loss function

The proposed integration neural network can be trained as

a multiclass classifier using the softmax function in tandem

with the negative log-likelihood (NLL), which results in the

classical Cross-Entropy (CE) loss function:

LCE(Θ) = −log
exp(yl(r,Θ))

K
∑

k=1

exp(yk(r,Θ))

, (7)

where K = 3 is the number of integration classes, Θ rep-

resents the parameters of the integration neural network, r is

the input sample (concatenation of the three input embeddings

which are fed to the integration neural network), and yk(r,Θ)
denotes the k-th component of the three dimensional output

vector of the neural network.

However, we want to build a loss function which better fits

the biometrics problem, as other works have successfully done

for different speech processing tasks such as ASV [54], [55],

anti-spoofing [5], and keyword spotting [56]. Specifically, we

would like to optimize the parameters of the integration neural

network in the desired operating range in which the biometric

system is expected to work. To do so, we propose a new

loss function based on the EPS framework [18] described in

Section II-C, which minimizes the AUE for a specific range of

operating points. In order to to minimize the AUE numerically,

we compute the sum of WERω,β over a range of points of

ωj ∈ [0, 1]:

LAUE(β,Θ, τ) =
∑

ωj

[

βωj · ˆSFAR(Θ, τ)

+ β(1− ωj) · ˆZFAR(Θ, τ)
]

+ (1− β) · ˆFRR(Θ, τ), (8)

where τ is the decision threshold for accepting or rejecting a

trial ri as genuine target, and Θ denotes the model parameters.

The integration neural network in Fig. 2 computes three

scores yl(ri,Θ), l ∈ {1, 2, 3} in the output (softmax) layer for

each input embedding ri, one for each of the three integration

classes. Thus, for N pairs of enrollment and training utterances

per batch, the ˆFRR(Θ, τ) can be determined empirically by the

average number of times that either the genuine target training

utterances (that is, ri ∈ C1) get positive scores (y1(ri,Θ))
smaller than the decision threshold (τ ), or when any of their

two negative scores (y2(ri,Θ) or y3(ri,Θ)) is greater than

the decision threshold. The latter case is a logical OR function

which can be implemented in a soft way as,
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Fig. 3. Logical ORFRR function, ORFRR(τ = 0) =
(σ(y2)+σ(y3))/(1+σ(y2)σ(y3)), which is softly activated when any of
the two negative scores (y2 or y3) is greater than the decision threshold of
τ = 0. y2 denotes the score of the genuine non-target class. y3 denotes the
score of the spoof target class.

ORFRR(Θ, τ, ri) =
σ(y2(ri,Θ)− τ) + σ(y3(ri,Θ)− τ)

1 + σ(y2(ri,Θ)− τ)σ(y3(ri,Θ)− τ)
,

(9)

where σ(·) denotes the sigmoid function which replaces the

step function u(x) to make the expression differentiable. Note

also that the sigmoid function centered in τ represents the

probability that the i-th utterance of the mini-batch with output

value yl(ri,Θ) belongs to class Cl. Thus, the output range of

ORFRR is [0, 1]. Fig. 3 depicts the logical ORFRR function when

τ = 0. Therefore, the FRR can be expressed as,

ˆFRR(Θ, τ) =
1

2N1

∑

ri∈C1

σ(τ −y1(ri,Θ))+ORFRR(Θ, τ, ri),

(10)

where Nl, l ∈ {1, 2, 3} is the number of training utterances

of the class Cl present in the current mini-batch. In the same

way, the ˆZFAR(Θ, τ) and ˆSFAR(Θ, τ) can be determined by

the average number of times that the positive scores of zero-

effort (y2(ri,Θ), with ri ∈ C2) and spoofing (y3(ri,Θ), with

ri ∈ C3) training utterances, respectively, are smaller than the

decision threshold (τ ), or when their negative score (y1(ri,Θ))
is greater than the decision threshold. Therefore, these error

rates can be approximated as,

ˆZFAR(Θ, τ) =
1

2N2

∑

ri∈C2

σ(τ − y2(ri,Θ))

+ σ(y1(ri,Θ)− τ), (11)

ˆSFAR(Θ, τ) =
1

2N3

∑

ri∈C3

σ(τ − y3(ri,Θ))

+ σ(y1(ri,Θ)− τ). (12)

The three error rates contain a 1/2 factor due to the addition

of two errors, in order to contribute with a 1 factor to the

error rate when both are activated, i.e., when the positive

and negative scores of a training sample ri are smaller and

greater than the decision threshold (τ ), respectively. Moreover,

it is worth noticing that τ is optimized as part of the system

parameters, and that the training stage is carried out using

subsets of N = N1 + N2 + N3 samples per training batch.

Unlike multi-task triplet loss [15], there is no negative mining

involved, so the training process for minimizing the AUE loss

(8) has a similar efficiency and convergence speed to Cross-

Entropy (7)1.

IV. EXPERIMENTAL SETUP

This section first describes the speech corpora used for the

evaluation of the integration systems described in this paper.

Then, Sections IV-B, IV-C and IV-D outline the details and

training process of the ASV, PAD and integration systems,

respectively. Finally, the performance metrics employed to

evaluate the standalone and integration systems are discussed.

A. Speech Corpora

We conducted experiments on the ASVspoof 2019 database

[13] which encompasses two partitions for the assessment

of LA and PA scenarios. A summary of their composition

in terms of speakers and number of utterances is presented

in Table II. The LA database contains 17 attacks generated

with state-of-the-art TTS and VC technologies, where only

six of them are known attacks (six logical attacks for train-

ing). On the other hand, the bonafide and spoofed data in

the PA database were generated according to a simulation

of their presentation to the microphone of an ASV system

within a reverberant acoustic condition. It includes a total

of nine replay configurations, comprising three categories of

attacker-to-speaker recording distances and three categories of

loudspeaker quality, so that we considered nine types of replay

attacks for training.

The ASVspoof 2019 database includes protocols for assess-

ing the performance of anti-spoofing, ASV and integration

systems. In the context of anti-spoofing, both target and non-

target utterances are considered as bonafide. Regarding ASV

systems, the development and evaluation partitions include

protocols for both ASV tasks: enrollment and evaluation. In

the context of integration, the PAD and ASV protocols are

combined in order to evaluate integration systems. A full

review of all these protocols can be found in [57].

Thus, we employed the ASVspoof 2019 database for train-

ing the standalone anti-spoofing system, as well as for training

the integration systems (using the bonafide utterances for

the target and non-target classes, and the spoofed utter-

ances for the spoof class). Over 9 million utterance pairs

(training/enrollment) extracted from the training sets of the

ASVspoof 2019 database were employed to train the inte-

gration systems, considering a balanced representation for the

three classes presented in Table I: (i) genuine target, (ii)

genuine non-target, and (iii) spoof target.

1The computational times for training the integration neural network using
the CE and AUE based loss functions were 18.5 and 19.2 hours, respectively,
on an Ubuntu system with an i7-6850K CPU (3.60 GHz), 32 GB RAM, and
a Titan X GPU of 12 GB.
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TABLE II
STRUCTURE OF THE ASVSPOOF2019 DATA CORPUS DIVIDED BY THE

TRAINING, DEVELOPMENT AND EVALUATION SETS [13].

#speakers #utterances

Subset Male Female
Logical Access Physical Access

Bonafide Spoof Bonafide Spoof

Training 8 12 2,580 22,800 5,400 22,800

Development 4 6 2,548 22,296 5,400 24,300

Evaluation 21 27 7,355 63,882 18,090 116,640

On the other hand, we also employed the Voxceleb2 [58]

database to train the TDNN x-vector model, which contains

over 1 million utterances for over 6,000 speakers, extracted

from videos uploaded to YouTube. Moreover, the development

set of the Voxceleb1 [59] database, which includes a total

of 1,231 training speakers, was combined with the bonafide

training sets of the ASVspoof 2019 database in order to

train the PLDA and b-vector ASV scoring systems. The latter

dataset allows us to make an environment adaptation for

the PLDA and b-vector systems. All the training details are

discussed in the following.

B. Standalone ASV Systems Description

The ASV system is based on x-vectors [17] extracted from

MFCC features, and we used the Voxceleb2 [58] database

to train the TDNN model using the Kaldi [60] recipe [61].

To train the ASV scoring systems, we extracted the x-vectors

(512 components) from the training set of the Voxceleb1 [59]

database and from the bonafide training sets of the ASVspoof

2019 [13] database. Then, we reduced the dimension of the

x-vectors from 512 to 200 components using LDA, and we

fed them to the following ASV scoring systems:

1) Cosine scoring: This system does not require any train-

ing. The score was obtained as the cosine distance between

the enrollment and test embeddings.

2) PLDA: We trained three different types of PLDA mod-

els: (i) standard [20], (ii) simplifed [23], and (iii) two-

covariance [24]. We used the Bob toolkit [62].

3) B-vector system: The input is the concatenation

of two embeddings from enrollment and test utterances.

It is formed by five fully connected layers of size

[1024, 1024, 1024, 512, 128] with leaky ReLU activations,

batch normalization and dropout of 50%, and one output

linear layer composed of two neurons representing the positive

and negative classes. The ASV score was obtained from the

positive class of the softmax output, which corresponds to the

probability of belonging the two input embeddings to the same

speaker.

C. Standalone PAD Systems Description

The anti-spoofing system employed in this work is also

based on embeddings extraction, and it has been one of the

ten top performing single systems of the ASVspoof 2019 [13]

challenge. The architecture is called LC-GRNN [53], and it

is based on one of our recent works [2] (see also [53] for a

detailed description of the LC-GRNN architecture). The LC-

GRNN processes the STFT features from the utterance and

extracts one utterance-level embedding of 64 components.

We developed two independent PAD systems, one for de-

tecting LA-based attacks and the other for the detection of PA-

based attacks. To train each of them, we used the ASVspoof

2019 [13] LA and PA training sets, respectively. Then, the

embeddings of 64 components computed by the LC-GRNN

network were post-processed by different scoring techniques,

which obtain the PAD scores indicating the likelihood of

the utterances being genuine or spoofed. We employed five

state-of-the-art scoring techniques: (i) Support Vector Machine

(SVM), (ii) Gaussian Mixture Model (GMM), (iii) LDA,

(iv) PLDA, and (v) softmax scoring. The latter obtains the

PAD score directly from the genuine class of the LC-GRNN

softmax output, which corresponds to the probability of the

utterance being genuine. In contrast, the other four classifiers

train a specific model using the embedding vectors extracted

by the LC-GRNN.

D. Integration Systems Description

We evaluated several score- and embedding-level integration

systems. The score-level integration systems are: Tandem

Spoof - ASV, Tandem ASV - Spoof, Logistic regression fusion

and Gaussian back-end fusion. Whilst, the embedding-level

integration systems are: Two-stage PLDA, Multi-task triplet

TDNN and the proposed Integration neural network. A de-

scription of these sytems is provided below.

The score-level integration systems and the proposed in-

tegration neural network share the same standalone ASV

and PADs systems (described in Sections IV-B and IV-C,

respectively) in order to make a fair comparison between

them. Whilst, the Two-stage PLDA only needs to use the x-

vector based ASV system, and the Multi-task triplet TDNN

trains a multi-task TDNN for ASV and anti-spoofing jointly,

as described in Section IV-D6.

All the integration systems were trained using the scores

or embeddings extracted from the Voxceleb1 database and the

bonafide training data of the ASVspoof 2019 database.

1) Tandem Spoof - ASV [49]: This system is depicted

in Fig. 1(a), where the two PAD systems precede the ASV

system. This is the same scenario as the ASVspoof 2019

challenge [13]. In this system the decision to whether the test

utterance is rejected is based on two PAD thresholds (τLA

and τPA). We computed these thresholds using the ROCCH-

EER as the reference metric evaluated on the LA and PA

development sets of the ASVspoof 2019 database, respectively.

Specifically, the value of these thresholds are τLA = 0.2948
and τPA = 0.8572. Thus, if any utterance gets a PA or LA

score smaller than these thresholds, it is automatically rejected

by the integration system with a score of −∞, and otherwise

it is assigned the ASV score.

2) Tandem ASV - Spoof [42], [43], [44]: This system is

similar to the tandem Spoof - ASV, with the difference that

the ASV system precedes the two PAD systems. In this system

the decision to whether the test utterance is rejected is based

on the ASV threshold (τASV ). We computed this threshold
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using the ROCCH-EER as the reference metric evaluated on

the joint bonafide data of the LA and PA development sets,

obtaining τASV = 0.6007. Thus, if any utterance gets an ASV

score smaller than this threshold, it is automatically rejected

by the integration system with a score of −∞, and otherwise it

is assigned the smallest score between the LA and PA scores.

3) Logistic regression fusion [44]: We trained a multiclass

logistic regression classifier using the three classes defined

in Table I. The optimization was done using the Limited

Memory Broyden-Fletcher-Gordfarb-Shanno (LM-BFGS) al-

gorithm [63]. The optimized regression coefficients for each

class are: genuine target (β1 = [0.0750,−6.3119,−4.3502]),
genuine non-target (β2 = [−0.0767,−3.3821,−3.9767]), and

spoof target (β3 = [0.0013, 9.6941, 8.3269]). We used the

Scikit Learn toolkit [64].

4) Gaussian back-end fusion [49]: We estimated a mul-

tivariate Gaussian distribution for each one of the three in-

tegration classes. Then, we obtained the best mixing weight

α = 0.58 from development data.

5) Two-stage PLDA [14]: We replaced the i-vectors from

the original work [14] by x-vectors. Thus, the first stage of

the system was trained using the x-vectors from the bonafide

data of the Voxceleb1 [59] and ASVspoof 2019 [13] databases

(1,231 speakers). Then, the second stage was trained using the

x-vectors from the spoofed training data of the ASVspoof 2019

database, including VC, TTS and replay attacks. We used the

Bob toolkit [62].

6) Multi-task triplet TDNN [15]: A multi-task TDNN was

fed with 57-dimension MFCCs and 90-dimension CQCCs,

including their first and second order delta features, and was

trained using the triplet loss function. Then, LDA was used

to reduce the dimension of the extracted embeddings to 200.

After that, two PLDA models, one for ASV and the other

one for PAD, were trained using the reduced embeddings.

Finally, the integration scores were obtained from the fused

discrimination of the two PLDA models.

7) Proposed integration neural network: The input to the

integration neural network is the concatenation of three em-

beddings (as depicted in Fig. 2): ASV, LA and PA embeddings.

The LA and PA embeddings (64 components) are computed

by the LC-GRNN network described in Section IV-C. The

ASV embedding is extracted from the last fully connected

layer of the b-vector system described in Section IV-B3 (128

components). Thus, the three embeddings are flattened to make

up an input vector (r) of 256 components.

The model of the integration neural network contains 3 fully

connected layers of 256 neurons with leaky ReLU activations

and batch normalization. The last layer consists of three

neurons which correspond to each one of the three integration

classes: (i) genuine target, (ii) genuine non-target, and (iii)

spoof target. It was trained using the Adam optimizer [65]

with a learning rate of 3·10−4 and a batch size of 50,000 pairs

of enrollment and training embeddings. Also, early stopping

was applied to stop the training process when no improvement

of the loss across the validation set was obtained. To prevent

the problem of over-fitting, a fixed 50% dropout was applied

in the fully connected layers. The Pytorch toolkit [66] was

employed to implement the deep learning framework.

E. Performance Metrics

The standalone ASV systems were evaluated in terms of

pooled EER, AUE [35], Cmin
llr [34], as well as NIST 2008

(DCF08 [30]) and NIST 2010 (DCF10 [31]) minimum de-

tection costs. Likewise, the evaluation of the standalone anti-

spoofing systems was done in terms of pooled EER. Once

we had the ASV and PAD scores, we also evaluated the

ASV-constrained min-tDCF [41] for both the LA and PA

scenarios, separately. These metrics (EER and min-tDCF) have

been evaluated using the optimal threshold for each metric, as

the ASVspoof 2019 challenge did for evaluating every anti-

spoofing system.

To evaluate the robustness of the integration systems against

attacks, we computed the ZFAR (zero-effort FAR) and SFAR

(spoofing FAR) at the threshold when the FRR of the system

equals 1%, as done in the previous work on two-stage PLDA

approach [14]. Furthermore, we evaluated the estimated EER

using the ROCCH (when FRR is equal to FAR), the area under

the EPS (AUE) curve [18] and the DET [32] curves. The main

objective of the integration system is to reduce the AUE as

much as possible in the range of operating points in which is

expected to work. We defined three working operating points,

setting β = {0.2, 0.5, 0.8} in order to make more emphasis

on either FRR or FAR.

V. STANDALONE SYSTEMS RESULTS

This section presents the experimental results from the

evaluation of the standalone systems on the ASVspoof 2019

corpus. First, Section V-A evaluates the different ASV stan-

dalone systems on the licit scenario (using only zero-effort

attacks, i.e., genuine speech from non-target users) of the LA

and PA development sets. Then, Section V-B is devoted to the

evaluation of the PAD systems. We employed the development

sets to choose the best standalone systems, in order to use them

in the integration systems evaluated in Section VI.

A. Standalone ASV results

In order to choose the best-performing ASV system for

being used later in the integration systems, this section

compares the performance of the ASV scoring techniques

described in Section II-A, namely: cosine scoring, b-vector

system, and three versions of PLDA (standard, simplified

and two-covariance). As mentioned above, the experiments

are conducted using the zero-effort impostor data from the

development set of ASVspoof 2019.

Table III presents the EER, Cmin
llr , DCF08, DCF10 and AUE

metrics achieved by the standalone ASV systems evaluated on

the licit scenario. It can be seen that the standard version of the

PLDA yields the best performance in terms of AUE, Cmin
llr and

EER. In general, the PLDA classifier outperforms the cosine

scoring and b-vector systems irrespective of the PLDA version

on both the LA and PA scenarios.

Fig. 4 shows the curves obtained for the WERβ metric

defined in (3) as a function of β (relative cost of the negative

classes, i.e., zero-effort impostors and spoofing attacks, with

respect to the genuine target class) for the three types of

ASV scoring techniques. The parameter ω, which controls the
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TABLE III
RESULTS OF THE X-VECTOR BASED ASV SYSTEM WITH DIFFERENT SCORING TECHNIQUES ON ASVSPOOF 2019 LOGICAL AND PHYSICAL ACCESS

DEVELOPMENT LICIT SCENARIOS IN TERMS OF EER (%), AUE, Cmin
llr

, NIST DCF08 AND NIST DCF10.

System
Logical Access Development Set Physical Access Development Set

DCF08 DCF10 Cmin
llr

EER (%) AUE DCF08 DCF10 Cmin
llr

EER (%) AUE

Cosine 4.5430 0.0749 0.3425 10.25 0.1488 7.1068 0.0940 0.5353 16.48 0.2368

b-vector 2.3361 0.0396 0.1917 5.95 0.0819 4.1876 0.0677 0.2986 8.96 0.1311

Standard PLDA 1.4680 0.0422 0.1192 3.44 0.0504 2.5543 0.0491 0.2035 6.33 0.0926

Simplified PLDA 1.4680 0.0426 0.1199 3.44 0.0506 2.5742 0.0496 0.2062 6.41 0.0937

Two-cov PLDA 1.6163 0.0401 0.1266 3.54 0.0531 3.0286 0.0464 0.2485 7.64 0.1123

Fig. 4. WERβ for the following ASV scoring systems: cosine, b-vector
and PLDA standard. The EPC is evaluated on the development licit scenarios
(ω = 0) of the ASVspoof 2019 sets. (a) Logical Access. (b) Physical Access.

relative cost of the error rate related to spoofing attacks, is set

to 0 since we are evaluating them on the licit scenario. It can

be observed that the PLDA outperforms the cosine scoring

and b-vector systems for almost the whole range of β on

both the LA and PA datasets. However, being an essential

component of our proposed integration network (described in

Section III), the b-vector system approaches the performance

of the PLDA technique, and has the advantage that it can be

easily integrated in a DNN to compute embeddings. Based on

these development results, in the rest of the evaluation we will

use the standard PLDA as the standalone ASV scoring system

for the score-level integration systems.

B. Standalone anti-spoofing results

In this section, we evaluate the LC-GRNN-based anti-

spoofing systems with different back-end classifiers. The ob-

jective is to compare their performance in order to choose the

best PAD scores for the score-level integration systems.

We first evaluated the anti-spoofing systems with different

back-end classifiers (SVM, GMM, LDA, PLDA and softmax

scoring technique) on the development sets of the ASVspoof

2019 database in terms of EER. Since the types of attacks in

the development set are seen during training, all the techniques

yielded an EER close to or equal to 0.0%. The best scoring

technique was the softmax scoring, achieving an EER of 0.0%

in both the LA and PA datasets. Thus, in the rest of the

evaluation we will use the softmax scores of the standalone

anti-spoofing system for the score-level integration systems.

For the sake of completeness, we also evaluated them

on the evaluation set which also contains unknown spoofing

attacks. Table IV reports the EER of the PAD scoring systems

TABLE IV
RESULTS OF THE STANDALONE LC-GRNN BASED ANTI-SPOOFING

SYSTEM WITH DIFFERENT BACK-END CLASSIFIERS ON ASVSPOOF 2019
LOGICAL AND PHYSICAL ACCESS EVALUATION SETS IN TERMS OF POOLED

EER (%) AND MIN-TDCF.

Classifier
Logical Access Test Set Physical Access Test Set

EER (%) min-tDCF EER (%) min-tDCF

SVM 7.12 0.1763 3.07 0.0817

GMM 7.55 0.1912 4.09 0.1264

LDA 6.28 0.1372 3.49 0.0865

PLDA 6.34 0.1403 2.23 0.0578

Softmax 6.21 0.1355 2.10 0.0553

evaluated on the LA and PA evaluation sets. The softmax

scoring technique also outperforms the rest of classifiers in

terms of EER, although the PLDA classifier achieves a similar

performance. The SVM, GMM and LDA classifiers achieve

higher EERs than PLDA and softmax scoring. Table IV

also shows the min-tDCF metric obtained when joining the

best standalone ASV scores (standard PLDA) evaluated in

Section V-A with the PAD scores of the different back-end

classifiers. It can be seen that the softmax scoring technique

also outperforms the rest of classifiers (SVM, GMM, LDA and

PLDA) in terms of min-tDCF. According to the results of the

ASVspoof 2019 Challenge [13], the performance of this single

system is comparable to the best fusion/ensemble systems and

it is among the best single systems on both the LA and PA

scenarios reflected in [13].

VI. INTEGRATION SYSTEMS RESULTS

In this section, we evaluate our proposed integration sys-

tem and compare it with other state-of-the-art score- and

embedding-level integration systems at different operating

points which put more emphasis on either FAR or FRR. The

integration protocols employed to evaluate them are defined

in the ASVspoof 2019 database [57].

A. Comparison of agnostic integration systems

Table V reports the EER, ZFAR and SFAR values obtained

on the LA and PA evaluation sets of the ASVspoof 2019

database for different types of agnostic integration systems,

i.e., systems which are able to handle both LA- and PA-

based attacks. The EERs are evaluated in three scenarios: (i)

licit scenario (considering only zero-effort impostor attacks),

(ii) spoof scenario (considering only spoofing attacks), and

(iii) joint scenario (considering both zero-effort impostor and

spoofing attacks). For the sake of comparison with ASV
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TABLE V
RESULTS ON ASVSPOOF 2019 LOGICAL AND PHYSICAL ACCESS EVALUATION SCENARIOS IN TERMS OF EER (%), ZFAR (%) AND SFAR (%).

System

Logical Access Test Set Physical Access Test Set

Licit

EER (%)

Spoof

EER (%)

Joint

EER (%)
ZFAR (%) SFAR (%)

Licit

EER (%)

Spoof

EER (%)

Joint

EER (%)
ZFAR (%) SFAR (%)

ASV: b-vector System 2.93 41.73 31.36 6.75 79.86 6.61 41.79 27.69 25.51 97.22

ASV: Standard PLDA 2.16 38.49 29.29 4.34 77.10 5.02 38.62 25.43 20.10 95.36

Tandem ASV-Spoof 2.32 12.29 10.52 100.00 70.90 5.66 5.74 6.78 100.00 27.36

Tandem Spoof-ASV 3.76 8.51 7.67 99.24 78.83 15.49 8.56 14.93 100.00 96.51

Logistic Regression 3.42 14.82 11.46 11.79 40.22 12.40 7.04 10.53 82.59 35.66

Gaussian Fusion 3.39 15.21 11.68 7.53 37.10 9.74 4.71 8.21 64.24 42.31

Two-stage PLDA 2.05 36.91 28.40 3.91 75.85 5.29 38.36 25.43 22.87 95.42

Multi-task Triplet TDNN 3.55 8.66 7.92 8.99 22.55 7.66 3.45 6.50 54.13 22.13

Integration Network (CE) 3.18 8.75 7.56 8.52 21.43 7.35 3.56 6.42 50.18 19.51

Integration Network (AUE) 3.01 7.82 6.05 7.53 18.10 6.98 3.08 5.21 31.29 14.24

TABLE VI
RESULTS ON ASVSPOOF 2019 LOGICAL AND PHYSICAL ACCESS EVALUATION SCENARIOS IN TERMS OF AUE FOR DIFFERENT β OPERATING POINTS.

System
Logical Access Test Set Physical Access Test Set

AUE (β = 0.5) AUE (β = 0.8) AUE (β = 0.2) AUE (β = 0.5) AUE (β = 0.8) AUE (β = 0.2)

ASV: b-vector System 0.2130 0.1790 0.0964 0.2549 0.1767 0.1281

ASV: Standard PLDA 0.1966 0.1768 0.0930 0.2312 0.1733 0.1214

Tandem ASV-Spoof 0.1243 0.1805 0.0663 0.0570 0.0511 0.0550

Tandem Spoof-ASV 0.0787 0.0816 0.0547 0.1061 0.0588 0.1408

Logistic Regression 0.0917 0.0894 0.0569 0.0977 0.0599 0.0912

Gaussian Fusion 0.0945 0.1023 0.0771 0.0763 0.0565 0.0792

Two-stage PLDA 0.1920 0.1771 0.0929 0.2332 0.1730 0.1240

Multi-task Triplet TDNN 0.0754 0.0857 0.0442 0.0566 0.0473 0.0654

Integration Neural Network (CE) 0.0753 0.0757 0.0412 0.0656 0.0493 0.0584

Integration Neural Network (AUE) 0.0571 0.0558 0.0361 0.0422 0.0365 0.0359

systems, the first two systems correspond to the b-vector and

standard PLDA standalone ASV systems, which achieve the

best performance in terms of ZFAR along with the two-stage

PLDA integration system. This is not surprising since the ASV

systems are trained to detect only zero-effort impostor trials,

and the two-stage PLDA integration system includes a similar

ASV system in its first stage. However, these three techniques

are the worst in terms of spoof and joint EERs, as they are

not able to detect spoofing attacks effectively. In fact, they are

fed with x-vectors which only contain speaker information,

but not spoofing information. In this way, the joint EER of

the standard PLDA ASV system drastically degrades when

considering spoofing attacks from 2.16 and 5.02% to 29.29

and 25.43% in the LA and PA scenarios, respectively.

The proposed integration neural network achieves the best

joint EER and SFAR in the LA and PA scenarios, irrespective

of the loss function employed for optimizing it (CE or AUE).

These results show the effectiveness of our proposal, out-

performing other classical score-level integration techniques,

such as logistic regression, Gaussian fusion and cascaded or

tandem systems. Moreover, our proposal also outperforms the

other two embedding-based integration systems: (i) two-stage

PLDA, and (ii) multi-task triplet TDNN. Only the two-stage

PLDA system outperforms the proposed integration neural

network in terms of ZFAR and licit EER. This is due to the

fact that the two-stage PLDA system is only able to detect

zero-effort impostors effectively, with a similar behaviour to

(a) (b)

Fig. 5. Scores distribution of genuine target accesses, genuine non-target
or impostors accesses, and spoofing attacks, evaluated in the logical access
dataset. (a) ASV system (PLDA standard). (b) Integration Neural Network
(AUE).

the standalone ASV systems. In general, all the integration

systems with the exception of two-stage PLDA suffer from

a performance degradation of the licit EER with respect to

their corresponding standalone ASV systems. This could be

expected since the integration systems normally have a trade-

off between detecting zero-effort impostor attacks and spoofing

attacks. On the other hand, the proposed loss function, which

minimizes the AUE, outperforms the classical cross-entropy

(CE), achieving an absolute reduction of 1.51% and 1.21%

joint EER in the LA and PA scenarios, respectively.

Fig. 5 shows the score distribution of the proposed in-

tegration system and the ASV system with PLDA scoring,
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Expected Performance and Spoofability Curves (EPSC) of different ASV and integration systems evaluated at different operating points and datasets.
(a) Logical Access (β = 0.5). (b) Logical Access (β = 0.8). (c) Logical Access (β = 0.2). (d) Physical Access (β = 0.5). (e) Physical Access (β = 0.8).
(f) Physical Access (β = 0.2).

(a) (b)

Fig. 7. Detection Error Tradeoff (DET) curves of different integration systems evaluated in the evaluation datasets of the ASVspoof 2019 database: (a) Logical
Access; and (b) Physical Access.

evaluated in the LA test dataset. The scores are divided into

three classes: (i) genuine target, (ii) genuine non-target or zero-

effort impostors, and (iii) spoofing attacks. As can be seen, the

ASV system (Fig. 5a) is only able to differentiate between

genuine target and zero-effort impostor accesses, while the

integration system is also able to effectively detect spoofing

attacks (Fig. 5b).

Table VI shows the AUE of the same systems evaluated

in the LA and PA scenarios at different operating points.

Fig. 6 and 7 depict the EPS and DET curves, respectively,

of the proposed integration neural network which minimizes

the AUE and the other four better integration techniques

(Gaussian fusion, ASV/Spoof tandems and multi-task triplet

TDNN). If β is set close to 1, the biometric system gives
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more importance to detecting false alarms than false rejections,

and the contrary occurs when β is set close to 0. As can be

seen, the standalone ASV systems and the two-stage PLDA

integration system are the ones which obtain the worst WER

in all scenarios, since (as mentioned before) they are not able

to detect spoofing attacks. The performance of the tandem

Spoof-ASV system is very remarkable in the LA evaluation,

although it is degraded considerably in the PA evaluation. On

the contrary, the tandem ASV-Spoof achieves small AUEs in

the PA evaluation, but they are increased considerably in the

LA evaluation. These differences of performance can be due to

the difficult calibration of these systems for choosing the ASV

and spoofing thresholds, so that they may be better adapted for

detecting LA attacks than PA attacks, and viceversa.

On the other hand, the logistic regression and Gaussian

fusion integration techniques have a similar performance at the

different operating points, so that logistic regression slightly

outperforms Gaussian fusion in the LA evaluation, and the

contrary occurs in the PA evaluation. Similarly to the results

reported in Table V, we can see in Fig. 6 that the proposed

integration neural network achieves the smallest WER in

almost the whole range of ω at the three β operating points

considered in the evaluation of the LA and PA scenarios, and

therefore obtains the best AUE in all scenarios. There is only

one case in which the tandem ASV-Spoof outperforms our

proposal in the PA scenario for β = 0.2 and low values of ω.

This could be attributed to the fact that in this range the WER

gives much more importance to zero-effort accesses than to

spoofing attacks, and the tandem ASV-Spoof contains a PLDA

scoring based ASV system in its first stage which obtains a

higher performance than b-vector system, as previously shown

in Table III. Similarly, we can see in Fig. 7, which shows the

DET curves for different integration systems, that the proposed

integration neural network outperforms the other integration

techniques in almost the whole range of operating points.

Moreover, we can see in Table VI that the AUE loss function

(8) outperforms the classical cross-entropy (7) in all scenarios,

demonstrating the effectiveness of the proposed loss function

for integration systems.

B. Comparison between agnostic and fusion of non-agnostic

integration systems

In order to evaluate the agnosticism to the type of spoofing

attacks (LA or PA-based attacks) that we considered in all

the integration systems evaluated in the previous section, we

compare the performance of the agnostic integration systems,

which are able to detect both types of spoofing attacks, with

the performance of the fusion of two similar non-agnostic

integration systems, where each one can only detect either LA

or PA-based attacks. In the latter case, the two non-agnostic

integration systems share the same ASV system, but they

only contain one module of anti-spoofing trained for detecting

either LA or PA-based attacks. For the sake of simplicity, the

fusion of these two non-agnostic integration systems is based

on a logistic regression. Fig. 8 and 9 show the joint EERs

of these systems for the LA and PA evaluation scenarios,

respectively. As can be seen, all the agnostic integration

Fig. 8. Averaged joint EERs (%) evaluated in the LA test scenario of the
agnostic and fusion of 2 integration systems. Mean intervals are presented at
95% of confidence.

Fig. 9. Averaged joint EERs (%) evaluated in the PA test scenario of the
agnostic and fusion of 2 integration systems. Mean intervals are presented at
95% of confidence.

systems outperform the fusion of the two non-agnostic inte-

gration systems in both the LA and PA evaluation scenarios.

This can be due to achieving a better generalization when

training the agnostic integration system with both LA and PA

embeddings. Although the difference in terms of joint EER

between the two types of integration systems is under 1.33%

in all cases, the agnostic integration system always obtains a

better performance. Moreover, the proposed integration neural

network trained with the AUE loss leads to the best integration

system in both cases (agnostic and fusion of non-agnostic

integration systems). These results reveal the suitability of

the agnostic approach for real scenarios, where the biometric

system does not know about the type of spoofing attack that

it might encounter.

VII. CONCLUSION

In this paper, we proposed a new integration neural network

which jointly processes the embeddings extracted by ASV and

anti-spoofing systems in order to detect whether the test utter-

ance is bonafide and belongs to the claimed speaker. Further-

more, a new loss function which minimizes the area under the

expected (AUE) performance and spoofability curve (EPSC)

was proposed to optimize the integration neural network on the
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operating range in which the biometric system is expected to

work. The proposed approach and the other techniques were

trained and evaluated using the LA and PA datasets of the

ASVspoof 2019 corpus. Experimental results have shown that

the joint processing of the ASV and PAD embeddings with the

proposed integration neural network clearly outperforms other

state-of-the-art integration techniques, trained on the same

conditions. Specifically, our proposal achieves up to 23.62%

and 22.03% relative equal error rate (EER) improvement over

the best performing baseline (multitask triplet TDNN [15])

in the LA and PA scenarios, respectively, as well as relative

gains of 27.62% and 29.15% on the AUE metric. Moreover,

the proposed loss function also achieves up to 22.19% and

20.81% relative joint EER improvement over the classical

cross-entropy (CE) loss in both the LA and PA evaluation

scenarios, respectively.

To the best of our knowledge, most of the existing integra-

tion systems from the literature have only been trained and

evaluated to detect either LA- or PA-based attacks. In this

work, we also adapted and evaluated them for detecting TTS,

VC and replay attacks, so that they are agnostic to the type

of spoofing attack which they might encounter. In addition,

we concluded that training a unique integration system for

detecting LA- and PA-based attacks (agnostic integration sys-

tem) is better than fusing two similar non-agnostic integration

systems, where each one can only detect either LA- or PA-

based attacks.

The proposed approach validated the feasibility of the joint

processing of ASV and anti-spoofing embeddings with an

integration neural network. One of the limitations of this work

is that we only used one database of spoofing attacks for

evaluating the integration systems. As future work, we will

explore a cross-database evaluation of the integration systems

in order to study their generalization between different datasets

[67]. We also envision that the proposed integration neural

network and loss function can be effectively used in other

biometrics applications, taking into account that its hyper-

parameters should be adapted according to the new biometrics

system.
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