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Abstract

In this note we consider the two-dimensional risk model introduced in Avram, Palmowski
and Pistorius (2008) with constant interest rate. We derive the integral-differential
equations of the Laplace transforms, and asymptotic expressions for the finite-time
ruin probabilities with respect to the joint ruin times Tmax(u1, u2) and Tmin(u1, u2),

respectively.
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1. Introduction and preliminaries

Ruin theory for the univariate risk model has been studied extensively; see [1], [10], and
many recent papers. However, there is limited research on multivariate risk models. Chan et
al. [5] studied the two-dimensional risk model

(
U1(t)

U2(t)

)
=

(
u1

u2

)
+

(
c1

c2

)
t −

N(t)∑
j=1

(
X1j

X2j

)
,

where, for fixed i = 1 or 2, {Xij , j = 1, 2, . . .} are independent and identically distributed
(i.i.d.) claim size random variables, and {X1j , j = 1, 2, . . .} and {X2j , j = 1, 2, . . .} are
independent, and also independent of the Poisson process N(t).

Cai and Li [3] studied the multivariate risk model

⎛
⎜⎝
U1(t)
...

Us(t)

⎞
⎟⎠ =

⎛
⎜⎝
u1 + p1t − ∑N(t)

n=1 X1,n
...

us + pst − ∑N(t)
n=1 Xs,n

⎞
⎟⎠ , (1.1)

where {(X1,n, . . . , Xs,n), n ≥ 1} is a sequence of i.i.d. nonnegative random vectors, and
independent of the Poisson process N(t). Model (1.1) was further studied by Cai and Li [4].
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Yuen et al. [11] discussed the bivariate compound Poisson model

(
U1(t)

U2(t)

)
=

(
u1

u2

)
+

(
c1

c2

)
t −

(∑M1(t)+M(t)
i=1 Xi∑M2(t)+M(t)
i=1 Yi

)
,

where M1(t),M2(t), and M(t) are three independent Poisson processes, and {Xi, i ≥ 1} and
{Yi, i ≥ 1} are i.i.d. claim size random variables, independent of each other and the three
Poisson processes.

Li et al. [7] discussed the bidimemsional perturbed risk model

(
U1(t)

U2(t)

)
=

(
u1

u2

)
+

(
c1

c2

)
t −

N(t)∑
j=1

(
X1j

X2j

)
+

(
σ1B1(t)

σ2B2(t)

)
,

where N(t) is a Poisson process, {(X1j , X2j ), j ≥ 1} is a sequence of i.i.d. random vectors,
(B1(t), B2(t)) is a standard bidimensional Brownian motion, and the three processes are
mutually independent.

Avram et al. [2] studied the two-dimensional risk model(
U1(t)

U2(t)

)
=

(
u1

u2

)
+

(
c1

c2

)
t −

(
δ1

δ2

)
S(t), (1.2)

where S(t) is a Lévy process with only upward jumps that represents the cumulative amount of
claims up to time t , and focused on the classic Cramér–Lundberg model, i.e. S(t) is a compound
Poisson process.

In this note we discuss the two-dimensional risk model (1.2) with constant interest rate. For
univariate ruin models with investment income, a lot of research has been carried out; see the
recent survey paper [8] and the references therein.

Now we introduce our model. Let r be a nonnegative constant, which represents the interest
rate. Then our model can be expressed as

Ui(t) = ertui + ci

∫ t

0
er(t−v) dv − δi

∫ t

0
er(t−v) dSv, i = 1, 2, (1.3)

where the ui are the initial reserves, the ci are the premium rates, and 0 < δ1, δ2 < 1 with
δ1 + δ2 = 1. Here St is taken to be a compound Poisson process, i.e. St = ∑N(t)

k=1 σk, t ≥ 0,
where N(t) is a Poisson process with intensity λ > 0 and {σk, k ≥ 1} is a sequence of i.i.d.
random variables independent of N(t). Denote by F the distribution function and by f the
probability density function of σk . Let θk be the arrival time of the kth claim. Then we can
rewrite (1.3) as

Ui(t) = ertui + ci

r
(ert − 1)− δi

N(t)∑
k=1

er(t−θk)σk, i = 1, 2. (1.4)

For k = 1, 2, . . . , denote by Tk the intertime between the (k − 1)th claim and the kth claim.
Then {Tk, k ≥ 1} is a sequence of i.i.d. random variables that has exponential distribution with
parameter λ, and θk = ∑k

i=1 Ti.

Define two joint ruin times by

Tmin(u1, u2) := inf{t ≥ 0 | min{U1(t), U2(t)} < 0},
Tmax(u1, u2) := inf{t ≥ 0 | max{U1(t), U2(t)} < 0},
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and the corresponding ruin probabilities by

ψmin(u1, u2) := P{Tmin(u1, u2) < ∞},
ψmax(u1, u2) := P{Tmax(u1, u2) < ∞}.

As in [2], we assume that c1/δ1 > c2/δ2. Then if u1/δ1 > u2/δ2, the above two joint ruin
probabilities degenerate into one-dimensional ruin probabilities as follows:

ψmin(u1, u2) = ψ2(u2) := P{there exists t < ∞ such that U2(t) < 0},
ψmax(u1, u2) = ψ1(u1) := P{there exist t < ∞ such that U1(t) < 0}.

We refer the reader to [2] for the deduction. Throughout the rest of this note, we assume that
c1/δ1 > c2/δ2 and u1/δ1 ≤ u2/δ2.

Remark 1.1. For each i, we know that

Ui(t) = ertui + ci

∫ t

0
er(t−v) dv − δi

∫ t

0
er(t−v) dSv = ertui +

∫ t

0
er(t−v) d(civ − δiSv).

Define �U(t) = (U1(t), U2(t)), �u = (u1, u2), and �Zv = (c1v − δ1Sv, c2v − δ2Sv). Then we
have

�U(t) = ert �u+
∫ t

0
er(t−v) d �Zv = ert

(
�u+

∫ t

0
e−rv d �Zv

)
. (1.5)

Differentiating both sides of (1.5) relative to t , we obtain

d �U(t) = rert
(

�u+
∫ t

0
e−rv d �Zv

)
dt + erte−rt d �Zt = r �U(t) dt + d �Zt . (1.6)

Integrating both sides of (1.6) relative to t , we obtain

�U(t) = �U(0)+ r

∫ t

0

�U(s) ds +
∫ t

0
d �Zs. (1.7)

By (1.7) and the fact that (t, �Zt) = (t, c1t − δ1S(t), c2t − δ2S(t)) is a three-dimensional Lévy
process, following Protter [9, Theorem 32], we know that �U(t) is a two-dimensional
homogeneous strong Markov process.

The rest of this note is organized as follows. In Section 2 we show the integral-differential
equations of the Laplace transforms of the joint ruin times Tmin(u1, u2) and Tmax(u1, u2). In
Section 3 we provide two asymptotic expressions for the finite-time ruin probabilities with
respect to the joint ruin times Tmax(u1, u2) and Tmin(u1, u2).

2. Integral-differential equation

In this section we establish the integral-differential equations of the Laplace transforms of
the joint ruin times Tmin(u1, u2) and Tmax(u1, u2).

2.1. The result for Tmin(u1, u2)

In this subsection we consider the joint ruin time Tmin(u1, u2). For convenience, we denote
Tmin(u1, u2) by τ(u1, u2). Its Laplace transform is defined by

�min(u1, u2, s) := E[e−sτ (u1,u2)] for s > 0.
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Then
0 ≤ �min(u1, u2, s) ≤ 1. (2.1)

Now we have the following result.

Theorem 2.1. For u1/δ1 ≤ u2/δ2 and s > 0, the function �min(·, ·, s) satisfies the integral-
differential equation(

u1 + c1

r

)
∂�min

∂u1
+

(
u2 + c2

r

)
∂�min

∂u2
− λ+ s

r
�min

+ λ

r

∫ ∞

0
�min(u1 − δ1z, u2 − δ2z, s)f (z) dz

= 0 (2.2)

with boundary condition

�min

(
u1,

δ2

δ1
u1, s

)
= E[e−sτ2(δ2u1/δ1)], (2.3)

where f (z) is the probability density function of σk and τ2 is the ruin time of the risk process
U2(t). Furthermore, �min is the unique solution of (2.2)–(2.3).

Proof. Existence. For any h > 0, by considering the occurrence time T1 of the first claim,
we have

E[e−sτ (u1,u2)] = E[e−sτ (u1,u2), T1 > h] + E[e−sτ (u1,u2), T1 ≤ h]. (2.4)

For any t ≥ 0, denote by Ft the information of the two-dimensional risk process {(U1(s),

U2(s)) : s ≥ 0} up to time t , and by θt the shift operator of the sample path, i.e. (θt (ω))s = ωs+t
for any sample path ω = (ωs, s ≥ 0). By the properties of conditional expectation and the
strong Markov property, we have

E[e−sτ (u1,u2), T1 > h]
= E[e−sτ (u1,u2)1{T1>h}]
= E[E[e−sτ (u1,u2)1{T1>h} | Fh]]
= E[1{T1>h}E[e−s[h+τ◦θh] | Fh]]
= E[1{T1>h}e−sh

E(U1(h),U2(h))[e−sτ ]]
=

∫ ∞

h

e−sh�min

(
erhu1 + c1

r
(erh − 1), erhu2 + c2

r
(erh − 1), s

)
λe−λu du

= e−(λ+s)h�min

(
erhu1 + c1

r
(erh − 1), erhu2 + c2

r
(erh − 1), s

)
. (2.5)

For the second term on the right-hand side of (2.4), we have

E[e−sτ (u1,u2), T1 ≤ h]

= E

[
e−sτ (u1,u2), T1 ≤ h, σ1 ≤ erT1u1 + c1r

−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]

+ E

[
e−sτ , T1 ≤ h, σ1 >

erT1u1 + c1r
−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]
.

(2.6)

https://doi.org/10.1239/jap/1371648943 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648943


Joint ruin probabilities with constant interest rate 313

By the strong Markov property, we have

E

[
e−sτ (u1,u2), T1 ≤ h, σ1 ≤ erT1u1 + c1r

−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]

= E

[
e−sT1E(U1(T1),U2(T1))[e−sτ ], T1 ≤ h,

σ1 ≤ erT1u1 + c1r
−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]

=
∫ h

0
λe−λt dt

∫ (ert u1+c1r
−1(ert−1))/δ1∧(ert u2+c2r

−1(ert−1))/δ2

0
e−st

×�min

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz. (2.7)

On the other hand, if

σ1 >
erT1u1 + c1r

−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

then τ(u1, u2) = T1, and, thus,

E

[
e−sτ (u1,u2), T1 ≤ h, σ1 >

erT1u1 + c1r
−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]

= E

[
e−sT1 , T1 ≤ h, σ1 >

erT1u1 + c1r
−1(erT1 − 1)

δ1
∧ erT1u2 + c2r

−1(erT1 − 1)

δ2

]

=
∫ h

0
λe−λt dt

∫ ∞

(ert u1+c1r−1(ert−1))/δ1∧(ert u2+c2r−1(ert−1))/δ2

e−stf (z) dz. (2.8)

By (2.4)–(2.8), we obtain

�min(u1, u2, s)

= e−(λ+s)h�min

(
erhu1 + c1

r
(erh − 1), erhu2 + c2

r
(erh − 1), s

)

+
∫ h

0
λe−λt dt

∫ (ert u1+c1r
−1(ert−1))/δ1∧(ert u2+c2r

−1(ert−1))/δ2

0
e−st

×�min

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz

+
∫ h

0
λe−λt dt

∫ ∞

(ert u1+c1r−1(ert−1))/δ1∧(ert u2+c2r−1(ert−1))/δ2

e−stf (z) dz. (2.9)

By the definition of �min(·, ·, ·), we know that if

z >
ertu1 + c1r

−1(ert − 1)

δ1
∧ ertu2 + c2r

−1(ert − 1)

δ2

then �min(ertu1 + c1r
−1(ert − 1) − δ1z, ertu2 + c2r

−1(ert − 1) − δ2z, s) = 1. By virtue of
this fact and letting y := erh − 1, q1 := u1 + c1r

−1, and q2 := u2 + c2r
−1, we can rewrite
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(2.9) as

�min(u1, u2, s)

= e−(λ+s)h�min(u1 + q1y, u2 + q2y, s)

+
∫ h

0
λe−λt dt

∫ ∞

0
e−st

×�min

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz.

(2.10)

It is easy to check that y ↑ 0 if and only if h ↓ 0. Hence, by (2.10), we have

lim
y↑0

�min(u1 + q1y, u2 + q2y, s) = �min(u1, u2, s). (2.11)

By (2.10), for any h > 0 and y = erh − 1, we have

0 = �min(u1 + q1y, u2 + q2y, s)−�min(u1, u2, s)

y

+ e−(λ+s)h − 1

y
�min(u1 + q1y, u2 + q2y, s)

+ 1

y

∫ h

0
λe−λt dt

∫ ∞

0
e−st

×�min

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz

= �min(u1 + q1y, u2 + q2y, s)−�min(u1, u2, s)

y

+ e−(λ+s)h − 1

erh − 1
�min(u1 + q1y, u2 + q2y, s)

+ 1

erh − 1

∫ h

0
λe−λt dt

∫ ∞

0
e−st

×�min

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz.

By (2.11), letting y ↑ 0 and h ↓ 0 in the above formula and noting that (2.1) assures the
interchange of the limit and integration, we obtain

q1
∂�min

∂u1
+q2

∂�min

∂u2
− λ+ s

r
�min + λ

r

∫ ∞

0
�min(u1 − δ1z, u2 − δ2z, s)f (z) dz = 0. (2.12)

Replacing q1 and q2 in (2.12) by u1 + c1r
−1 and u2 + c2r

−1, respectively, we obtain the
integral-differential equation. When u1/δ1 = u2/δ2, the joint ruin model degenerates into a
univariate model, and then, by the analysis in [2], we obtain the boundary condition.
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Uniqueness. By using similar arguments as in [6] and noting (2.10), we define an operator T
by

T g(u1, u2, s) = e−(λ+s)hg
(
u1 + q1y, u2 + q2y, s

)

+
∫ h

0
λe−λt dt

∫ ∞

0
e−st g

(
ertu1 + c1

r
(ert − 1)− δ1z,

ertu2 + c2

r
(ert − 1)− δ2z, s

)
f (z) dz

for any h > 0. It can be easily seen that �min is a fixed point of the operator T , as T �min =
�min. Also, for two different functions g1 and g2, we have, for any h > 0 and s > 0,

|T g1 − T g2|
≤ e−(λ+s)h|g1(u1 + q1y, u2 + q2y, s)− g2(u1 + q1y, u2 + q2y, s)|

+
∫ h

0
λe−λt dt

×
∫ ∞

0
e−st

∣∣∣∣g1

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)

− g2

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)∣∣∣∣f (z) dz

≤ e−(λ+s)h||g1 − g2||∞ +
(∫ h

0
λe−(λ+s)t dt

)
||g1 − g2||∞

= λ+ se−(λ+s)h

λ+ s
||g1 − g2||∞,

where || · ||∞ is the supremum norm over (u1, u2) ∈ R
2. Therefore, T is a contraction and, by

Banach’s fixed point theorem and (2.1), the solution of (2.2)–(2.3) is unique.

Remark 2.1. One way to obtain the Laplace transform �min of the joint ruin probability
Tmin(u1, u2) is to solve the above integral-differential equation (2.2)–(2.3) numerically. The
following natural question arises.

• Can we give an analytical representation for the solution to (2.2)–(2.3) in some special
cases such as exponential claim sizes?

Unfortunately, even in the case of exponential claim sizes, we have not found a way to solve
(2.2)–(2.3).

2.2. The result for Tmax(u1, u2)

Define the Laplace transform of Tmax(u1, u2) by

�max(u1, u2, s) := E[e−sTmax(u1,u2)] for s > 0.

Then we have the following result.

Theorem 2.2. For u1/δ1 ≤ u2/δ2 and s > 0, the function �max(·, ·, s) satisfies the same
integral-differential equation (2.2) with boundary condition

�max

(
u1,

δ2

δ1
u1, s

)
= E[e−sτ1(u1)], (2.13)
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where f (z) is the probability density function of σk and τ1 is the ruin time of the risk process
U1(t). Furthermore, �max is the unique solution of (2.2) and (2.13).

Proof. The proof is almost the same as that of Theorem 2.1; we need only note the following
three things.

1. In this case, (2.6) becomes

E[e−sτ (u1,u2), T1 ≤ h]
= E

[
e−sτ (u1,u2), T1 ≤ h,

σ1 ≤ erT1u1 + c1r
−1(erT1 − 1)

δ1
∨ erT1u2c2r

−1(erT1 − 1)

δ2

]

+ E

[
e−sτ , T1 ≤ h,

σ1 >
erT1u1 + c1r

−1(erT1 − 1)

δ1
∨ erT1u2 + c2r

−1(erT1 − 1)

δ2

]
,

where τ(u1, u2) stands for Tmax(u1, u2).

2. τ(u1, u2) = T1 ifσ1 > (erT1u1 + c1r
−1(erT1 − 1))/δ1∨(erT1u2 + c2r

−1(erT1 − 1))/δ2.

3. If z > (ertu1 + c1r
−1(ert − 1))/δ1 ∨ (ertu2 + c2r

−1(ert − 1))/δ2 then

�max

(
ertu1 + c1

r
(ert − 1)− δ1z, ertu2 + c2

r
(ert − 1)− δ2z, s

)
= 1.

We omit the details.

3. Asymptotics for finite-time ruin probabilities

In this section we consider the finite-time ruin probability associated with Tmax(u1, u2) and
Tmin(u1, u2). The original idea comes from [7, Section 4].

Define Xi(t) := e−rtUi(t)/δi, i = 1, 2. Then (X1(t), X2(t)) has the same ruin times and
probabilities with (U1(t), U2(t)). Define xi := ui/δi and pi := ci/rδi, i = 1, 2. Then, by
(1.4) and our assumptions, we have

Xi(t) = xi + pi(1 − e−rt )−
N(t)∑
k=1

e−rθkσk, i = 1, 2,

where p1 > p2 and x1 ≤ x2.
For T > 0, define �max(x1, x2, T ) := P{Tmax(δ1x1, δ2x2) ≤ T }. Then we have

�max(x1, x2, T ) = P{there exists t ≤ T such that X1(t) < 0 and X2(t) < 0}. (3.1)

Alternatively, we can also define �min(x1, x2, T ) := P{Tmin(δ1x1, δ2x2) ≤ T } and get

�min(x1, x2, T ) = P{there exists t ≤ T such that X1(t) < 0 or X2(t) < 0}. (3.2)

In the following, we will provide asymptotic results on both �max(x1, x2,T ) and �min(x1,

x2, T ) under some condition.
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3.1. Asymptotic result for Tmax(u1, u2)

LetT > 0, n ∈ N, and {Vk, k = 1, 2, . . . , n} be a sequence of i.i.d. random variables with the
uniform distribution on (0, T ]. Denote by (V ∗

1 , . . . , V
∗
n ) the ordered statistic of (V1, . . . , Vn).

It is well known that, conditioning on {N(t) = n}, the random vectors (θ1, . . . , θn) and
(V ∗

1 , . . . , V
∗
n ) have the same distribution. Assume that {Vk, k = 1, 2, . . . , n} is independent of

{σk, k ≥ 1}. Define FT (x) = P{e−rV1σ1 ≤ x}. Then we have

P

{ n∑
k=1

e−rθkσk > x

∣∣∣∣ N(T ) = n

}
= P

{ n∑
k=1

e−rV ∗
k σk > x

}

= P

{ n∑
k=1

e−rVkσk > x

}

= FT
∗n(x), (3.3)

where FT ∗n(x) stands for the n-multiple convolution of FT (x).

Theorem 3.1. If σk has a regularly varying tail with P{σk > x} = L(x)/xα , where L is
continuous and slowly varying, limx→∞ L(x) = ∞, and α > 0, then, for any T > 0, we have

lim
x2≥x1→∞

�max(x1, x2, T )

λT FT (x2)
= 1. (3.4)

Before proving Theorem 3.1, we need the following lemma.

Lemma 3.1. Suppose that σk satisfies the condition in Theorem 3.1. Then FT has a regularly
varying tail.

Proof. By the independence of V1 and σ1, we have

FT (x) = P{e−rV1σ1 > x}

=
∫ T

0
P{e−ryσ1 > x} 1

T
dy

= 1

T

∫ T

0

L(eryx)

(eryx)α
dy

:= S(x)

xα
,

where

S(x) = 1

T

∫ T

0

L(eryx)

(ery)α
dy,

which together with the assumption that L is continuous and limx→∞ L(x) = ∞ implies that

lim
x→∞ S(x) = ∞. (3.5)

By the change of variable, we obtain

S(x) = xα

rT

∫ erT x

x

L(u)

uα+1 du. (3.6)
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For any t > 0, by (3.5), (3.6), and the fact that L is a slowing varying function, we obtain

lim
x→∞

S(tx)

S(x)
= lim
x→∞

tα
∫ erT tx
tx

(L(u)/uα+1) du∫ erT x
x

(L(u)/uα+1) du

= lim
x→∞

tα(L(erT tx)erT t/(erT tx)α+1 − L(tx)t/(tx)α+1)

L(erT x)erT /(erT x)α+1 − L(x)/xα+1

= lim
x→∞

L(erT tx)/(erT )α − L(tx)

L(erT x)/(erT )α − L(x)

= lim
x→∞

L(erT tx)/L(erT x)− (erT )αL(tx)/L(erT x)

1 − (erT )αL(x)/L(erT x)

= 1 − (erT )α

1 − (erT )α

= 1.

Hence, FT has a regularly varying tail.

Proof of Theorem 3.1. By Lemma 3.1 and [1, Proposition IX.1.4], we know that FT is a
subexponential distribution. By (3.1) and (3.3), we have

�max(x1, x2, T )

= P

{N(t)∑
k=1

e−rθkσk > xi + pi(1 − e−rt ), i = 1, 2, for some t ≤ T

}

≥ P

{N(T )∑
k=1

e−rθkσk > xi + pi(1 − e−rT ), i = 1, 2

}

=
∞∑
n=0

P{N(T ) = n}

× P

{ n∑
k=1

e−rθkσk > xi + pi(1 − e−rT ), i = 1, 2

∣∣∣∣ N(T ) = n

}
. (3.7)

If x1 + p1(1 − e−rT ) ≥ x2 + p2(1 − e−rT ) then, by (3.3) and the assumption that x2 ≥ x1,
we obtain

P

{ n∑
k=1

e−rθkσk > xi + pi(1 − e−rT ), i = 1, 2

∣∣∣∣ N(T ) = n

}

= P

{ n∑
k=1

e−rθkσk > x1 + p1(1 − e−rT )
∣∣∣∣ N(T ) = n

}

= FT
∗n(x1 + p1(1 − e−rT )), (3.8)

and x2 + p1(1 − e−rT ) ≥ x1 + p1(1 − e−rT ) ≥ x2 + p2(1 − e−rT ) > x2, which implies that

FT
∗n(x2 + p1(1 − e−rT )) ≤ FT

∗n(x1 + p1(1 − e−rT )) ≤ FT
∗n(x2),
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and, thus,
FT

∗n(x2 + p1(1 − e−rT ))
FT

∗n(x2)
≤ FT

∗n(x1 + p1(1 − e−rT ))
FT

∗n(x2)
≤ 1. (3.9)

Since FT is a subexponential distribution, by [1, Proposition IX.1.5] and (3.9), it holds that

lim inf
x1→∞

FT
∗n(x1 + p1(1 − e−rT ))

FT
∗n(x2)

= 1. (3.10)

By Fatou’s lemma, (3.10), and [1, Proposition IX.1.7], we have

lim inf
x1→∞

∑∞
n=0 P{N(T ) = n}FT ∗n(x1 + p1(1 − e−rT ))

λT FT (x2)

= lim inf
x1→∞

∞∑
n=0

P{N(T ) = n}FT
∗n(x1 + p1(1 − e−rT ))

FT
∗n(x2)

FT
∗n(x2)

λT FT (x2)

≥ 1

λT

∞∑
n=0

P{N(T ) = n} lim inf
x1→∞

FT
∗n(x1 + p1(1 − e−rT ))

FT
∗n(x2)

lim inf
x1→∞

FT
∗n(x2)

FT (x2)

= 1

λT

∞∑
n=0

P{N(T ) = n} lim inf
x1→∞

FT
∗n(x2)

FT (x2)

= 1

λT

∞∑
n=0

P{N(T ) = n}n

= 1

λT
E[N(t)]

= 1. (3.11)

By (3.7), (3.8), and (3.11), and under the condition that x1 +p1(1−e−rT ) ≥ x2 +p2(1−e−rT ),
we have

lim inf
x1→∞

�max(x1, x2, T )

λT FT (x2)
≥ 1.

If x1 + p1(1 − e−rT ) < x2 + p2(1 − e−rT ) then

P

[ n∑
k=1

e−rθkσk > xi + pi(1 − e−rT ), i = 1, 2

∣∣∣∣ N(T ) = n

]

= P

[ n∑
k=1

e−rθkσk > x2 + p2(1 − e−rT )
∣∣∣∣ N(T ) = n

]

= FT
∗n(x2 + p2(1 − e−rT )). (3.12)

Since FT is a subexponential distribution and x2 ≥ x1, by [1, Proposition IX.1.5] we have

lim
x1→∞

FT
∗n(x2 + p2(1 − e−rT ))

FT
∗n(x2)

= 1. (3.13)
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Now, by (3.7), (3.12), and (3.13), similar to the arguments in (3.11), we find that, under the
condition that x1 + p1(1 − e−rT ) < x2 + p2(1 − e−rT ),

lim inf
x1→∞

�max(x1, x2, T )

λT FT (x2)
≥ 1.

Hence, we always have

lim inf
x1→∞

�max(x1, x2, T )

λT FT (x2)
≥ 1. (3.14)

On the other hand, by the assumption that x2 ≥ x1, and (3.3), we have

�max(x1, x2, T )

= P

{N(t)∑
k=1

e−rθkσk > xi + pi(1 − e−rt ), i = 1, 2, for some t ≤ T

}

≤ P

{N(T )∑
k=1

e−rθkσk > x2

}

=
∞∑
n=0

P{N(T ) = n}P
{ n∑
k=1

e−rθkσk > x2

∣∣∣∣ N(T ) = n

}

=
∞∑
n=0

P{N(T ) = n}FT ∗n(x2).

By Fatou’s lemma, the above formula, and [1, Proposition IX.1.7], we have

lim sup
x1→∞

�max(x1, x2, T )

λT FT (x2)
≤ lim sup

x1→∞

∑∞
n=0 P{N(T ) = n}FT ∗n(x2)

λT FT (x2)

≤ 1

λT

∞∑
n=0

P{N(T ) = n} lim sup
x1→∞

FT
∗n(x2)

FT (x2)

≤ 1

λT

∞∑
n=0

P{N(T ) = n}n

= 1

λT
E[N(t)]

= 1. (3.15)

It follows from (3.14) and (3.15) that (3.4) holds.

3.2. Asymptotic result for Tmin(u1, u2)

By Theorem 3.1 we can easily obtain the asymptotic result for �min(x1, x2, T ), which is
formulated as follows.

Theorem 3.2. If σk has a regularly varying tail with P{σk > x} = L(x)/xα , where L is
continuous and slowly varying, limx→∞ L(x) = ∞, and α > 0, then, for any T > 0, we have

lim
x2≥x1→∞

�min(x1, x2, T )

λT FT (x1)
= 1.
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Proof. First, for i = 1, 2, define

ψi(xi, T ) = P{there exists t ≤ T such that Xi(t) < 0},
i.e. ψi(xi, T ), i = 1, 2 represents the ruin probability of Xi(t), i = 1, 2 within finite time T .

Note the fact that

P{there exists t ≤ T such that X1(t) < 0 and X2(t) < 0}
= P{there exists t ≤ T such that X1(t) < 0}

+ P{there exists t ≤ T such that X2(t) < 0}
− P{there exists t ≤ T such that X1(t) < 0 or X2(t) < 0}.

Then, by (3.1) and (3.2), we have

�max(x1, x2, T ) = ψ1(x1, T )+ ψ2(x2, T )−�min(x1, x2, T ). (3.16)

By Lemma 3.1, FT is a subexponential distribution. Then, by [1, Proposition IX.1.5], for
i = 1, 2, we have

lim
x2≥x1→∞

ψi(xi, T )

λT FT (xi)
= 1. (3.17)

By (3.16), (3.17), (3.4), and the fact that x2 ≥ x1, we obtain
∣∣∣∣�min(x1, x2, T )

λT FT (x1)
− 1

∣∣∣∣
=

∣∣∣∣ψ1(x1, T )− λT FT (x1)+ ψ2(x2, T )−�max(x1, x2, T )

λT FT (x1)

∣∣∣∣
≤

∣∣∣∣ψ1(x1, T )− λT FT (x1)

λT FT (x1)

∣∣∣∣ +
∣∣∣∣ψ2(x2, T )−�max(x1, x2, T )

λT FT (x2)

∣∣∣∣
∣∣∣∣FT (x2)

FT (x1)

∣∣∣∣
≤

∣∣∣∣ψ1(x1, T )− λT FT (x1)

λT FT (x1)

∣∣∣∣ +
∣∣∣∣ψ2(x2, T )−�max(x1, x2, T )

λT FT (x2)

∣∣∣∣
→ 0 as x2 ≥ x1 → ∞.
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