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1. INTRODUCTION

Vince [12] introduced the following generalization of chromatic number.

Definition 1.1. A (k, d)-coloringof a graphG is a functionc : V (G) → Zk
such that for everyxy ∈ E(G), |c(x) − c(y)| ≥ d. (Here, Zk denotes the cyclic
group of residues modk, and |a| is the smaller of the two integersa andk − a.)
Thestar chromatic number,χ∗(G), is the infimum ofk/d over all (k, d)-colorings
ofG.

Vince proved, by means of analytical arguments, that this infimum is a minimum
(and hence rational). He also proved that for everyk, d such thatk/d ≥ χ∗(G),
there exists a(k, d)-coloring ofG. Settingd = 1 we have that the chromatic number
of G is χ(G) = dχ∗(G)e. Later, Bondy and Hell [1] improved Vince’s result by
giving a purely combinatorial proof. A further study and an alternate definition of
χ∗(G) in terms of homomorphisms into intervals of a unit circle appear in [14].
The purpose of this note is to show that(k, d)-colorings are instances of the more
general concept of fractional nowhere-zero flows in regular matroids.

2. FRACTIONAL FLOWS IN GRAPHS

It is helpful to introduce the notion of fractional flows in graphs before considering
the general matroidal case. Letk be a positive integer. Ak-flow in a graphG is an
orientationω(G) together with a functionf : E(G) → {0,±1,±2, . . . ,±(k−1)}
such that the net flow

∑
vu∈δ+(v) f(vu) − ∑

uv∈δ−(v) f(uv) is zero for eachv ∈
V (G). The flow index, ξ(G) is the leastk for which G has anowhere-zerok-
flow (that is,f(e) /= 0, for all e ∈ E(G)). This parameter has been studied by
many authors (see [8] for a thorough review). We generalize this notion with the
following.

Definition 2.1. A (k, d)-flow in a graphG is a k-flow (ω(G), f) such that the
range off is contained in{±d,±(d+1), . . . ,±(k−d)}.Thestar flow indexξ∗(G)
is the infimum ofk/d over all (k, d)-flows inG.

Thus, a(k, 1)-flow is the same as a nowhere-zerok-flow. We shall see that,
analogously to(k, d)-colorings, the infimum in Definition 2.1 is a minimum, and
G has a(k, d)-flow wheneverk/d ≥ ξ∗(G), and, thus, thatξ(G) = dξ∗(G)e.

It is well known that, in the setting of matroids, vertex colorings and nowhere-
zero flows are dual concepts. In particular, ifG is a plane graph andH its planar
dual, thenχ(G) = ξ(H). We shall see that a similar correspondence holds between
the concepts of star chromatic number and star flow index.

3. FLOWS IN MATROIDS

The proper setting for the study of flows and colorings is that of regular matroids.
We assume familiarity with the circuit/cocircuit axioms of basic matroid theory
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such as in [13]. LetC(B) denote the{0, 1}-valued circuit-element (cocircuit-
element) incidence matrix of a matroidM . If M is binary then, over GF(2), we
haveCBT = 0. An orientationω(M) of M is a signing(1 7→ ±1) of the elements
of C andB such thatCBT = 0 as rational matrices. It is well known that a binary
matroid is orientable if and only if it isregular. (See [13] for terminology and a
proof.) It is a good exercise to find the relationship between orientations of a graph
G and of the graphic matroidM(G). For any circuitC in M , letC+(C−) denote
the set of elements inC that are positively (negatively) oriented with respect to
ω(M). For any cocircuitB in M , we defineB+ andB− similarly.

Let Γ be an abelian group. AΓ-flow in a regular matroidM is an orientation
ω(M) and a functionf : M → Γ such that, for every cocircuitB,

∑
e∈B+ f(e) =∑

e∈B− f(e). A flow f is said to benowhere-zeroif f(e) /= 0, for all e ∈ M . An
integer flowis aΓ-flow whereΓ = Z, the ring of integers. For integers0 < d < k, a
(k, d)-flow is an integer flow with values in the set{±d,±(d+1), . . . ,±(k− d)},
and anowhere-zerok-flow is a (k, 1)-flow. As with graphs, thestar flow index
ξ∗(M) is the infimum ofk/d over all(k, d)-flows inM , and theflow indexξ(M)
is the minimumk for whichM has a nowhere-zerok-flow.

The following facts about nowhere-zero flows are well known and can be found
in [11].

Proposition 3.1. Letω(M) be an oriented regular matroid.

1. If M has no coloops(one-element cocircuits), thenM has a nowhere-zero
k-flow for some integerk, and, hence, ξ(M) andξ∗(M) are bounded.

2. For any abelian groupΓ of orderk,M has a nowhere-zeroΓ-flow if and only
if M has a nowhere-zerok-flow. Furthermore, if f is aZk-flow inM, then
M has ak-flow f ′ such thatf ′(e) ≡ f(e) (modk), for all e ∈ E.

Our starting point is the following lemma, due to Hoffman [7].

Lemma 3.1(Hoffman’s Lemma). LetM be an oriented regular matroid. Given
a pair of non-negative rational functionsl, u : M → Q such that0 ≤ l(e) ≤ u(e)
for e ∈ M, there exists a rational flowf : M → Q such thatl(e) ≤ f(e) ≤ u(e)
for everye ∈ M if and only if, for every cocircuitB,∑

e∈B+

l(e) ≤
∑
e∈B−

u(e) and
∑
e∈B−

l(e) ≤
∑
e∈B+

u(e). (1)

Additionally, f can be chosen to be integer valued provided thatl andu are integer
valued.

In caseM is graphic, Hoffman’s Lemma is just the Ford–Fulkerson flow theorem
[3]. If M is cographic, then this is the Potential Differences Existence Theorem of
Ghouila–Houri [5]. If l(e) ≡ l andu(e) ≡ u are constant, then (1) becomes

l

u
≤ |B+|

|B−| ≤ u

l
.

Thus, by Hoffman’s Lemma withl ≡ d andu ≡ k−d, we obtain the following.
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Theorem 3.1. A regular matroidM has a(k, d)-flow if and only if there exists
an orientationω(M) such that, for any cocircuitB, d/(k − d) ≤ |B+|/|B−| ≤
(k − d)/d.

Corollary 3.1. The star flow indexξ∗(M) of a regular matroidM is the mini-
mum over all orientationsω(M) of

1 + max

{
|B+|
|B−| ,

|B−|
|B+| : B is a cocircuit inM

}
.

= max
{ |B|

|B−| ,
|B|
|B+| : B is a cocircuit inM

}
.

This maximum is unbounded (and, hence,ξ∗(M) := ∞) if and only ifM has a
coloop. Puttingd = 1, we have that, for any regular matroidM ,

ξ(M) = dξ∗(M)e.
A (k, d)-coloringc : V (G) → Zk of an (arbitrarily oriented) graphG induces

a Zk-nowhere-zero flowf in the cographic matroidM∗(G) by letting f(xy) =
c(x) − c(y) for every arcxy ∈ G. By 2. of Proposition 3.1, this is equivalent to
the existence of an integer flow inM∗(G) whose values range in absolute value
betweend andk− d, that is, a(k, d)-flow in M∗(G). This process can be reversed
to obtain a(k, d)-coloring ofG from a(k, d)-flow of M∗(G). Thus, from Theorem
3.1 we have the following.

Corollary 3.2. The star chromatic numberχ∗(G) = ξ∗(M∗(G)) of a graphG
equals

min
ω(G)

max
C

{ |C|
|C+| ,

|C|
|C−|

}
,

where the minimum is over all orientations ofGand the maximum is over all circuits
ofG.

We note that the characterization of the (integer) chromatic numberχ = dχ∗e of
a graph via the formula of Corollary 3.2 was proved independently of Hoffman’s
Lemma by Minty [9].

4. SOME OBSERVATIONS REGARDING χ∗ AND ξ∗

(1) Vince’s results [12] regarding the star-chromatic number of a graph immediately
follow from Corollary 3.2. For example, in the case of the odd circuitC2k+1,
at leastk + 1 edges must be similarly oriented in any orientation and, hence,
χ∗(C2k+1) = (2k + 1)/k = 2 + 1/k.

(2) Let c : V → Zk be a(k, d)-coloring of a graphG = (V,E). For eacha ∈ Zk,
let I(a) denote the independent set{v ∈ V : c(v) ∈ {a, a + 1, . . . , a + d −
1}(modk)}. Thek independent sets{I(a) : a ∈ Zk} together cover every vertex
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exactlyd times. Let us call such a collection a(k, d)-independent cover. Since
any graph with a(k, d)-independent cover has an independent set of size at least
|V |d/k, it follows thatα(G) ≥ |V |/χ∗(G), an improvement on the well-known
bound|V |/χ(G).

Although a(k, d)-coloring always provides a(k, d)-independent cover, the two
concepts are not equivalent. Take, for example, the graphG10 on 10 vertices and
35 edges obtained by adding all edges joining two disjoint circuits of length five.
Each ‘‘side’’ of G10 induces aC5 subgraph and, hence, has a (5, 2)-independent
cover. Two such covers, one from each ‘‘side,’’ form a (10, 2)-independent cover
of G10. On the other hand,G10 does not admit a (10, 2)-coloring asχ(G10) = 6.

(3) A weighted independent coveris a collection of independent sets, each of which
is assigned a positive rational weight, such that the total weight of the sets containing
each vertex is at least 1. Thefractional chromatic numberχf (G) is defined to be
the least total weight of any weighted independent cover ofG. This parameter has
been studied in several articles (see [4], [6], for example). As the existence of a
(k, d)-independent cover ofG impliesχf (G) ≤ k/d, we have the following.

Observation 4.1. For any graphG,χf (G) ≤ χ∗(G).
Equality does not always hold here; for instance,χf (G10) = 5, whileχ∗(G10) =

6. (We leave these for the reader to check!)

(4) Let the graphG = (V,E1 ∪ E2) be the union of two subgraphsG1 = (V,E1)
andG2 = (V,E2). Obviously,χ(G) ≤ χ(G1)χ(G2). Such a product formula
also holds for the flow index a fact utilized in Seymour’s proof [10] thatξ(G) ≤
6 = 2×3 for any 2-edge connected graphG. Unfortunately, analogous statements,
whereχ andξ are replaced byχ∗ andξ∗, are false. A counterexample forχ∗ is
provided again by the graphG10; the star chromatic number of the disjoint union
of two C5’s is 2.5 andχ∗(K5,5) = 2, whereasχ∗(G10) = 6. Using a similar
construction, one can find, for any pair of rational numbersa, b ≥ 2, a graphG
consisting of two subgraphsG1 andG2, such thatχ∗(G1) = a, χ∗(G2) = b, and
χ∗(G) = daedbe. Analogous examples exist forξ∗.

(5) We finish with an extension of the notion of chromatic number to (general)
orientable matroids. As explained in [2], orientable matroids need not be binary
(as is tacitly assumed in some works such as [13]). The following definition is
more general thanbut consistent with that given in Section 3. Anorientation
of an arbitrary matroid is a signing1 → ±1 of C andB such that, for any row
C of C and any rowB of B, if Ce, Be /= 0 for somee ∈ E, then there exists
f ∈ E \ {e} such that one ofCeBe, CfBf equals+1 and the other equals−1.
A matroid isorientableif it has at least one orientation. One can use Corollaries
3.1 and 3.2 todefineξ∗(M) andχ∗(M) (and, hence,ξ(M) andχ(M)) for an
arbitrary orientable matroidM . There are several natural questions one might ask.
For example, the chromatic number of a (loop-free) orientable matroid of rankr is
bounded by the size of its largest circuit, which is at mostr + 1. However, we do
not know whether the flow index of a (coloop-free) orientable matroid of bounded
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rank is bounded. (This is true for regular matroids, since their underlying simple
matroids have bounded size.)

Two orientations ofM are said to belong to the samereorientation classif one
is obtained from the other by multiplying a corresponding set of columns ofB and
C by −1. Although regular matroids have only one reorientation class, orientable
matroids can have many reorientation classes. Winfried Hochstättler has pointed
out that it may be more sensible to defineξ∗ (andχ∗) for each reorientation class
ψ(M) of M by appropriately restricting the minimum in Corollary 3.2.

Definition 4.1. The star flow index of a reorientation classψ(M) of an orient-
able matroidM is given by

ξ∗(ψ(M)) = min
ω∈ψ(M)

max
B

{ |B|
|B+| ,

|B|
|B−|

}
,

where the maximum is taken over the cocircuitsB ofM.
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